Problems for “High Performance Computing with R”

Florian Schwendinger, Gregor Kastner, Stefan Theufll

Due: 20.November 2021 (via email to fschwend@wu.ac.at)

1. Read the vignette of the parallel package.

2.

(a)

Implement a sequential (sum_sequential) and a parallel (sum_parallel) ver-
sion of the function sum. Test your implementation on the following vector
vec <- as.numeric(1l:1e7) / 1le7. Is the parallel version faster than the se-
quential version? If not, why not?

A common problem in text mining is to calculate the [inverted index of a vector.
The file inverted_index.R (from exercises.zip) contains three implementa-
tions of an inverted index function.

Implement a parallel version and benchmark the execution time for all four ver-
sions of the function (three sequential versions given in inverted_index.R one
parallel version implemented by you) with the following parameters
number_of_words <- 1lebL; number_of_unique_words <- 1le4lL,
number_of_words <- 1le4L; number_of_unique_words <- 1le3L,
number_of_words <- 1e3L; number_of_unique_words <- 100L and
number_of_words <- 100L; number_of_unique_words <- 10L.

How does the performence of the functions change?

The file rng_parallel_faulty.R (from exercises.zip) contains a parallel im-
plementaion of random number generation. As the file name indicates there is
something wrong with the implementaion. Find the mistake and fix it. Com-
pare (graphically) the random numbers generated by the faulty script with the
random numbers generated by the fixed script.


mailto:fschwend@wu.ac.at
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
http://nlp.stanford.edu/IR-book/html/htmledition/a-first-take-at-building-an-inverted-index-1.html

4.

(a)

Find the global minimum of the function f : R — R using the R function
optim(). Try several different starting points. What is the behavior of the
"Nelder-Mead" algorithm (the default) in terms of optima found?

fla,y) =3(1 —x)%e ™ W - 10(% — = yP)e Y %6—(9ﬁ+1)2—y2

Use parallel and foreach to solve the above problem.

Use Monte Carlo simulation to find the fair price for a lookback call option with
payoff

foax S(t) — S(T),
by approximating this maximum for suitable, equally spaced values of t; € [0, T.
The current price of the underlying Sy = 100, volatility o = 0.3, time to maturity
T = 3 (in years), and the risk-free interest rate r = 1%. Assume that the
underlying follows the usual Black-Scholes SDE

—= =rdt+ odW(t),

where W is a standard Brownian motion. Show graphically how estimation
accuracy depends on the spacing of the discrete grid (i.e. t; — ¢;_1) and give
(approximate) confidence bounds for the accuracy of your result for different
values of simulated underlyings.

Use parallel Monte Carlo simulation to price the option presented above. How
does this affect the run time? Provide a table showing the scaling efficiency for
several numbers of cores employed. Use both shared memory (e.g. mclapply)
as well as distributed memory (e.g. parLapply) implementations.



