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The idea of Inferential Statistics

Agenda

Experimental Analysis



▪ Descriptive statistics: simply what is 
going on in data

▪ Inferential statistics: make inferences 
form our data to general conditions

→ General Linear Model (t-test, ANOVA, 
ANCOVA regression analysis) and 
multivariate analysis (factor analysis, 
multidimensional analysis, cluster 
analysis,…)

→ Dummy variable (proxy variable) for 
modelling two separate lines (each 
treatment group) with single equation 

Inferential Statistics



▪ How do we decide whether to make inferences? 
Not every result as important as any other result 

→ Significance testing, confidence intervals and effect size
interpret precision and magnitude of results

→ significance level is the level of risk we are willing to accept as the price of our 
inference from sample population 

P-value = how likely you are to have found a particular set of observations 
if the null hypothesis were true

Inferential Statistics



HA : People are happier in summer (There is an effect)
H0  : People are equally happy in summer and winter 
(There is no effect)

▪ if p-value is 0.05 → 5% of the time you would see a 

test statistic at least as extreme as the one you found 
if the null hypothesis was true

▪ The smaller the p-value, the less likely it is that the 
observed data can occur under the null hypothesis.

Statistical significance is another way of saying that 
the p-value of a statistical test is small enough to reject 
the null hypothesis of the test

Significance testing

https://www.scribbr.com/statistics/statistical-significance/


In February 2014, George Cobb, Professor Emeritus of 
Mathematics and Statistics at Mount Holyoke College, 
posed these questions to an ASA discussion forum: 

Q:Why do so many colleges and grad schools teach 
p=0.05? 
A: Because that’s still what the scientific community 
and journal editors use. 
Q: Why do so many people still use p = 0.05? 
A: Because that’s what they were taught in college or 
grad school.

Significance testing 



American Statistical Association statement on P-
values

1. P-values can indicate how incompatible the data are 
with a specified statistical model

2. P-values do not measure the probability that the 
studied hypothesis is true, or the probability that the 
data were produced by random chance alone. 

3. Scientific conclusions and business or policy decisions 
should not be based only on whether a p-value 
passes a specific threshold. 

4. Proper inference requires full reporting and 
transparency. 

5. A p-value, or statistical significance, does not 
measure the size of an effect or the importance of a 
result. 

6. By itself, a p-value does not provide a good measure 
of evidence regarding a model or hypothesis.

Significance testing 



So.. Should we get rid of p-value?

▪ The p-value can only tell you whether or not the null hypothesis is supported. It 
cannot tell you whether your alternative hypothesis is true, or why.

→ Statistical significance

▪ supplement them in very sensible ways with estimates of the precision and 
importance of our results → confidence intervals an effect sizes

→ Practical significance

Significance testing



This is the range of values you expect your estimate to fall between if you redo 
your test, within a certain level of confidence

▪ the range that encompasses plus or minus two standard errors

→ confident that f. ex. 95 percent of the time our estimate will be in our interval 

defined by two times the standard error.

▪ p-value + confidence interval → probability of our results and how it fits our 

level of risk cutoff criterion for testing hypothesis

Confidence intervall



▪ error, reflecting inevitable inaccuracy that occurs when observing only one population 
→ Using the standard error to report on how big the range is; how precise estimate

▪ This is the range of values you expect your estimate to fall between if you redo 
your test, within a certain level of confidence

▪ f. ex. confident that 95 percent of the time our estimate will be in our interval 
defined by two times the standard error.

Confidence intervall

Unknown parameter of the population is 
estimated based on the sample
→ f. ex. variance, mean, etc.

SamplePopulation



Is poured too little beer into the mugs at Oktoberfest systematically? 

Confidence intervall

▪ How accurate is this estimate of 962ml?

▪ What is the most likely range of the true 

average?

▪ Is it possible that the total/true average is 

also 950ml? Is it even possible that in 

reality the average is 1000ml, but we were 

just unlucky in this sample?

What range is the true value with high 
probability?

1000 ml

Estimate
All beer mugs at Oktoberfest Mean

Sample 1

962 ml



Is poured too little beer into the mugs at Oktoberfest systematically? 

Confidence intervall

Mean
Sample 1

Estimate
All beer mugs at 

Oktoberfest

962 ml

confidence level (probability of error)
range in which true parameter lies with 

95% certainty; α = 0.05 or 5%

Mean
Sample 2

948 ml

Mean
Sample 3

992 ml1000 ml



effect size is a way of quantifying the difference 
between two groups

→ “How big is the result?” Practical 
relevance/significance

▪ Effect sizes complement statistical hypothesis 
testing, and play an important role in power 
analyses, sample size planning, and in meta-
analyses

▪ magnitude and direction of the difference 
between two groups or the relationship between 
two variables

Effect size 



f. ex. Cohen’s d = (x1 – x2) / s

▪ X1 = sample mean group 1

▪ X2 = sample mean group 2

▪ s = standard deviation of the population

→ How far the signal-to-noise ratio deviates from zero

→ If H0 (no relationship) is true, signal-to-noise ratio is 
zero, and so is the effect 

→ Since you can always diminish the noise level by 
increasing the sample size, your estimate effect and 
the p-value associated with it reflect the sample size 

Effect size 



▪ system of equations used as 
mathematical framework for most of the 
statistical analyses used in applied 
social research 

▪ Foundation for t-test, ANOVA, ANCOVA, 
regression analysis, multivariate 
analysis,…

Why General Linear Model?

▪ Linear: fitting a line

▪ Model: equation that summarizes the 
line that you fit 

→ aim: describing general patterns

General Linear Model
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Two-variable-Linear Model 

Each dot = pretest + posttest score →

positive relationship 

→ What is happening? How to 
summarize the data?

Regression line 
describes relationship between two 
variables, just like any deskriptive 
statistic, f.ex. mean

General Linear Model: 
Two-variable Linear Model
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▪ Y = y-axis variable, outcome or posttest

▪ X = x-axis variable, pretest

▪ b0 = intercept, value of y when x=0

▪ b1 = slope (change of y for a change in 
x of one unit)

Why do we need slope? 
→ describes the way this line fits to 

bivariate plot

General Linear Model: 
Two-variable Linear Model



▪ Equation does not perfectly fit cloud of points

→ One more compontent?

Error term 

Captures degree to which the line is in error in 
describing each point

General Linear Model: 
Two-variable Linear Model
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▪ Difference: each of four terms can represent a set of variables 

General Linear Model: 
General Case 

Set of intercepts
(value of each y when 
each x = 0)

Set of outcome 
variables

Set of pre-program 
variable / covariates 
(adjust in your study)

Set of coefficients 
(one each for each x)



▪ Difference: each of four terms can represent a set of variables 

▪ Summarize a variety of research outcomes:

▪ Experimental or quasi-experimental study: represent program/treatment with dummy-coded 
variables (Z for dummy-coded x)

▪ Multiple outcome variables 

▪ Multiple pretests 

→ For each x-value you estimate a b-value that represents x-y-relationship 

→ Test relationships between variables or differences between groups 

Major problem: which equation summarizes the data best?

→ Model specification = process of stating the equation that believe best summarizes 
the data for a study 

General Linear Model: 
General Case 



Dummy variable (Z)

Numerical variable used in regression analysis to represent subgroup of the sample in 
your study 

▪ Treat a nominal-variable like an interval-level variable

▪ Like switches, turn paramenters „on and off“

→  Enables to use as single regression equation to represent multiple groups

Gerneral Linear Model:
Dummy Variables



Example: 
Posttest-only two-group randomized experiment

Eaquation for each group separatly:

Gerneral Linear Model:
Dummy Variables

Treatment group
1

Control group
0

→ Predicted value for 
control group is β0

→ Predicted value for 
treatment group is 
β0 + β1 



Example: 
Posttest-only two-group randomized experiment

Eaquation for each group separatly:

Gerneral Linear Model:
Dummy Variables

Treatment group
1

Control group
0

→ Predicted value for 
control group is β0

→ Predicted value for 
treatment group is 
β0 + β1 



Example: 
Posttest-only two-group randomized experiment

How to determine the difference between the two groups?

→ Difference between equations of two groups

Gerneral Linear Model:
Dummy Variables

Treatment group
1

Control group
0



Example: 
Posttest-only two-group randomized experiment

How to determine the difference between the two groups?

→ Difference between equations of two groups

Take away:

- Create seperate equations for each group by substituting 
dummy variable

- Find difference between two groups by difference between their 
equations

Gerneral Linear Model:
Dummy Variables

Treatment group
1

Control group
0



What is one of the simplest inferential tests when you 
want to compare the average performance of two groups 

on a single measure to see whether there is a 
difference…?

Experimental Analysis



• Purpose: To analyze the differences between two groups in a posttest-only 
randomized experimental design.

• Key Requirements:

• Analysis has two groups

• Uses a post-only measure

• Has two distributions (measures), each with an average and variation

• Assesses treatment effect = statistical (non-chance) difference between the groups

Why Use a t-Test? The t-Test assesses whether the means of two groups are 
statistically different from each other.

• Significance: Determines if observed differences are due to the treatment and not by 
chance.

Understanding the t-Test



Why “t“-Test?

Remember the  formula for the straight line: y=mx+b?

Using the name t-Test is like calling that formula the y-formula.

The statician who invented this analysis first wrote out the formula, he used 
the letter “t“ by to symbolize the value that describes the difference between 
the groups



Idealized distribution for treated and control 
group posttest values

„Is there a differnce between the groups?“: Each group can be represented by a bell-shaped curve 
describing the distribution on a single variable.

▪ Dotted line: the Distribution for the treated groups in a study
▪ Solid line: Control groups in a study

→ Idealized/smoothed distribution 

▪ Figure indicates where the control and treatment group means are located.
▪ The t-Test asseses whether the means of two groups are statistically different from each other. 



• Moderate Variability: Scores 
within each group show moderate 
overlap.

• High Variability: High overlap, 
making group differences less 
striking despite identical mean 
differences.

• Low Variability: High-variability 
case with little overlap between 
curves.

Three Scenarios for Differences Between Means

Conclusion: Differences must be judged relative to the variability of scores. The t-Test 
quantifies this relationship.



1. Control group and treatment group posttest scores.

2. Calculation of t-value.

3. Interpretation of results.

Key Takeaway: t-Test provides a clear method to assess treatment effects in 
experimental designs.

• Summary:

• t-Test evaluates differences between two group means.

• Takes into account the variability within groups.

• Essential for determining statistical significance in experiments.

T-Test Summary



• t-Test formula is a ratio

• Numerator (top part of ratio): Difference between the two means (averages).

• Denominator (bottom part of ratio): Measure of variability or dispersion of the 
scores.

• Formula is an example of the signal-to-noise metaphor in research.

• Signal: Difference between the means (effect of the treatment).

• Noise: Variability in the data (makes it harder to detect the effect).

The ratio that is computed is called a t-value – describes differences between the 
groups relative to variability of the scores in the groups

Statistical Analysis of a t-Test: Formula



▪ Figure 14-7a: shows the formula for the t-test 
and how the numerator and denominator are
related to the distribution.

▪ Figure 14-7b: specific formula for standard
error of the differnce. 

▪ Figure 14-7c: Final formula for the t-test.

Formula



• t-Value: The computed ratio that describes the difference between the groups 
relative to the variability of the scores.

• The formula's numerator and denominator relate to the distributions.

• Numerator: Difference between means.

• Denominator: Standard error of the difference, calculated as:

t-Value



• Sign of t-Value:

• Positive if the first mean is larger.

• Negative if the first mean is smaller.

• Significance Testing:

1. Calculate the t-value.

2. Look up the p-value associated with the t-value in a table of significance (many statistical programs automatically provide the p-
value).

3. Look up the p-value associated with the t-value  in a table of significance (many statistical programs automatically provide the p-
value). → To test whether the t-ration is large enough to say that the difference between the groups is not likely to have been a chance 
finding.

4. Set a risk level (called the alpha level) at .05. → Means that 5 times out of 100, you would find a statistically significant difference 

between the means even if there were none.

5. Determine degrees of freedom (df):

6. Use df, t-value, and alpha to find the p-value in a significance table.

7. Compare the p-value with alpha to determine if the t-value is significant.

Conclusion: If significant, the difference between group means is unlikely due to chance

Interpreting the t-Value



Methods to Estimate Treatment Effect

• Three Approaches:

• Independent t-Test: As described.

• One-Way ANOVA: Between two independent groups.

• Regression Analysis: Regress posttest values onto a dummy-coded treatment 
variable. (most general)

→ Note: All three methods yield identical results.

Testing the Significance



Regression formula for t-test or two-group one-
way analysis of variance (ANOVA)

• It is identical to the formula to 
introduce dummy variables.

• Essentially this formula is the 
equation for a straight line with a 
random error term thrown in.



▪ Equation for a Straight Line: 𝑦=𝑚𝑥+𝑏

▪ In statistical terms:

Elements of the Equation in Graphic Form



Elements of the Equation in Graphic Form

Figure Explanation:

• The graph shows posttest scores on the 
vertical axis.

• Horizontal axis: Dummy variable 𝑍 (0 for 

control, 1 for treatment).
• The slope of the line indicates the 

difference in posttest means: The line’s 
slope shows the difference in average posttest 
scores between the groups.

Conslusion

• The slope (𝛽1) indicates the treatment effect 

(difference in means) after adjusting for 
variability.

• A significant slope means the treatment likely 
had a real effect.



Summary

The t-test, on-way ANOVA, and regression analysis all yield the 
same results in this case

The regression-analysis method utilizes a dummy variable (Z) for 
treatment

Regression analysis is the most general model of three



• Definition: Factorial design involves experiments with more than one independent variable (factor).

• Purpose: To study the interaction effects between factors and their individual effects on the dependent 
variable.

• Example: 2x2 factorial design includes two factors, each with two levels.

• Main Effects: The effect of each independent variable on the dependent variable.

• Interaction Effects: How the independent variables interact to influence the dependent variable.

• Design Notation: Described using numbers to indicate levels of factors (e.g., 2x3 factorial design).

• Setup: Two factors (e.g., Type of Instruction and Gender), each with two levels (e.g., Traditional vs. 
Experimental instruction, Male vs. Female).

• Groups: Four groups resulting from the combination of levels (Traditional-Male, Traditional-Female, 
Experimental-Male, Experimental-Female).

• Analysis: Evaluate the main effect of each factor and their interaction effect.

Factorial Design Analysis



Regression model for a simple 2x2 factorial design



Analyzing Main Effects

• Main effects represent the independent effect of one factor on the dependent variable, averaged over the levels of the other factor.

• Calculation: Compare the means of the levels of one factor, ignoring the other factor.

• Example: Calculate the average performance of all students receiving traditional instruction versus experimental instruction.

Analyzing Interaction Effects

• Definition: Interaction effects occur when the effect of one factor depends on the level of another factor.

• Identification: Determine if the differences between levels of one factor vary across levels of the other factor.

• Graphical Representation: Interaction plots can visually display interaction effects by plotting means for each combination of factor levels.

Statistical Analysis of Factorial Designs

• ANOVA: Analysis of Variance (ANOVA) is used to assess main and interaction effects.

• Steps:

• Compute sum of squares for main effects, interaction effects, and error.

• Calculate mean squares by dividing sum of squares by respective degrees of freedom.

• F-ratios: Compare mean squares of effects to mean squares of error.

• Significance Testing: Determine if observed effects are statistically significant.

Factorial Design



• Factorial designs allow for the examination of multiple factors and their 
interactions.

• Main effects and interaction effects provide comprehensive insights into the 
factors' influences.

• ANOVA is the primary tool for analyzing factorial designs.

Advantages:

• Efficiency: Examines multiple factors simultaneously.

• Interaction Insights: Reveals interaction effects not identifiable in single-factor 
designs.

Disadvantages:

• Complexity: More factors increase the complexity of the design and analysis.

• Larger Sample Size: Requires more participants to maintain power.

Summary



• Definition: A randomized block design is an experimental setup that groups subjects 
into blocks based on a certain characteristic before randomly assigning treatments 
within each block.

• Purpose: To control for variability among subjects and increase the precision of the 
experiment by reducing the impact of confounding variables.

• Example: Blocking by age, gender, or pre-existing conditions to ensure balanced 
groups.

Key Features

▪ Blocking: Subjects are divided into homogeneous blocks to control for specific 
variables.

• Randomization: Within each block, subjects are randomly assigned to different 
treatment groups.

• Improved Precision: By controlling for block variables, this design increases the 
accuracy and reliability of the treatment effect estimation.

Randomizes Block Design



ANOVA for Randomized Block Design: Analysis of Variance (ANOVA) is used to compare the means 
across treatment groups while accounting for block effects.

Statistical Analysis



▪ RD can also be presented in regression
analysis notation

▪ Figure shows a model for a case where
there are four blocks or homogeneous
subgroups

▪ Note: a number of dummy variables are
used to specify this model

▪ Z1: treatment Group

▪ Dummy variables Z2,Z3,Z4 indicates
blocks 2-4

Randomizes Block Design



1. Identify Blocking Variable: Choose a characteristic that is expected to affect the outcome.

2. Form Blocks: Group subjects into blocks based on the chosen variable.

3. Random Assignment: Randomly assign subjects within each block to different treatment groups.

4. Conduct Experiment: Apply treatments and measure outcomes.

5. Analyze Data: Use appropriate statistical methods to assess treatment effects within and across 
blocks.

Scenario: Testing a new drug's effect on blood pressure with blocks based on age groups (young, middle-
aged, elderly).

Steps:

1. Form blocks by age group.

2. Randomly assign subjects within each age group to the drug or placebo.

3. Measure blood pressure changes.

4. Analyze the results using ANOVA to determine the drug's effect while accounting for age 
differences.

Steps in Randomized Block Design



Advantages:

• Controls for variability within blocks.

• Increases precision of treatment effect estimation.

• Reduces experimental error.

Disadvantages:

• More complex to design and analyze.

• Requires careful selection of blocking variables.

Practical Considerations

• Selecting Blocking Variables: Choose variables that significantly influence the outcome.

• Sample Size: Ensure each block has sufficient sample size for reliable analysis.

• Implementation: Proper randomization within blocks is crucial for validity.

Summary:

• Randomized block design enhances experimental precision by controlling for specific variables.

• ANOVA is used for analyzing data, accounting for block effects.

• Effective for reducing experimental error and increasing the reliability of results.

Example and Conslusion



• Definition: ANCOVA combines ANOVA and regression to evaluate whether 
population means differ when controlling for covariates.

• Purpose: To increase statistical power by reducing error variance.

• Application: Commonly used to adjust for pre-existing differences between 
groups.

Analysis of Covariance



▪ Dependent Variable: The outcome
being measured.

▪ Independent Variable(s): The factors
or treatments being tested.

▪ Covariate(s): Continuous variables 
that are controlled for, reducing the
impact of extraneous variables.

Key Components



1. Collect Data: Gather data for dependent variable, independent variable(s), and 
covariate(s).

1. Check Assumptions:

▪ Linearity: Relationship between covariate and dependent variable should be 
linear.

▪ Homogeneity of Regression Slopes: Slopes of regression lines should be similar 
across groups.

2. Conduct ANCOVA:

▪ Adjust the dependent variable for the covariate.

▪ Compare adjusted means of the groups.

3. Interpret Results: Determine if the adjusted group means differ significantly.

Steps in Performing ANCOVA



• Adjusting for Covariates: The covariate adjusts the dependent variable to account 
for pre-existing differences.

• F-Test: Used to test the significance of the main effects and interaction effects.

• Sum of Squares:

• Total Sum of Squares (SST): Total variation in the data.

• Sum of Squares for Regression (SSR): Variation explained by the model.

• Sum of Squares for Error (SSE): Variation not explained by the model.

Example:

• Scenario: Evaluating a new educational program's effect on student performance, 
controlling for initial test scores.

• Steps:

• Measure initial test scores (covariate).

• Apply the program (independent variable).

• Measure final test scores (dependent variable).

• Use ANCOVA to adjust final scores based on initial scores.

Statistical Analysis in ANCOVA



• ANCOVA adjusts for covariates to compare group means more accurately.

• Enhances the ability to detect significant differences by controlling for extraneous variables.

• Essential tool for improving experimental precision.

Advantages:

• Controls for pre-existing differences.

• Increases statistical power by reducing error variance.

• Provides a clearer understanding of the treatment effect.

Disadvantages:

• More complex analysis.

• Assumptions need to be met for valid results.

Practical Considerations

• Choosing Covariates: Select covariates that are related to the dependent variable but not influenced by the treatment.

• Sample Size: Ensure adequate sample size for reliable analysis.

• Software: Most statistical software packages (e.g., SPSS, SAS, R) can perform ANCOVA.

Summary
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