Quantitative Research Methods Quasi-Experimental Design

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Nikolaj Thallmayer (01608292)

© 2014 BOANET.AT

Quasi-Experimental design differs from true experimental design in its non-random group assignment

Today's agenda

🟠 Nonequivalent Groups Design

Regression-Discontinuity Design

Other Quasi-Experimental Designs

Today's agenda

Regression-Discontinuity Design

Other Quasi-Experimental Designs

Nonequivalent groups design uses already existing groups for treatment and control

- Treatment and control group are formed based on previously existing groups, i.e., in a school using two comparable classrooms or using two similar communities
- Even if similar groups are selected, they are unlikely as similar as if chosen at random -> therefore "nonequivalent groups"
- Prior differences in groups raises **internal validity threat of selection**, meaning that differences of groups may affect outcome of study

Bivariate distribution reveals issue of selection threat to internal validity

Control cases

Treatment cases

Looking at hypothetical bivariate distribution of NEGD reveals two insights:

- 1. Treatment cases clearly score higher on posttest than control cases (y-axis)
- 2. On average, treatment cases performed slightly better on pretest already (x-axis)
- Hard to determine, whether difference is partially or fully caused by treatment or if initial advantage led to better outcomes (selection threat)

Bivariate distribution reveals issue of selection threat to internal validity

Looking at hypothetical bivariate distribution of NEGD reveals two insights:

- 1. Treatment cases clearly score higher on posttest than control cases (y-axis)
- 2. On average, treatment cases performed slightly better on pretest already (x-axis)
- Hard to determine, whether difference is partially or fully caused by treatment or if initial advantage led to better outcomes (selection threat)

AND BUSINE

Most important types of selection threats to internal validity

Selection-maturation threat

Implies that groups are maturing at different rates, which creates illusion of program effect

Selection-history threat

Occurrence of event that only affected one group or that only occurred for one group

Selection-regression

Implies that observed differences stem from sample mean of group regressing to population mean over time

Exemplary graph #1: No clear evidence for effectiveness can be inferred

Different representation of previous graph – what possible threats apply?

- Selection-maturation threat
 - Unlikely, as no maturation at all can be observed in comparison group
- Selection-history threat
 - Plausible for case due to differences in development

Selection-regression

 Unlikely, as upwards trend in program group implies they were below population mean – if regression to the mean was cause we would see it in comparison group too

Exemplary graph #2: No clear evidence for effectiveness can be inferred

What possible threats apply?

Selection-maturation threat

- Likely, as previous differences might have arisen from different maturation rates, which further increased

Selection-history threat

 Also likely, if groups react differently to some event, which causes different developments

Selection-regression

 Unlikely, as upwards trend in program group implies they were below population mean – if regression to the mean was cause we would see it in comparison even more strongly

Exemplary graph #3 & #4: No clear evidence for effectiveness can be inferred

What possible threats apply?

Selection-maturation threat

 Unlikely, as maturation in program group with no maturation in comparison group seems hard to explain

Selection-regression

 Very likely -> program group was very high/low on pre-test and simply regressing to population mean, whereas comparison group was already at population mean levels

Exemplary graph #5: Cross-over pattern implies strongest evidence for effectiveness

What possible threats apply?

Selection-maturation threat

- Unlikely, as one would need to argue that program group matured from below average to above average with no maturation in comparison group
- Selection-history threat
 - Unlikely, as program group started out worse off and improved beyond comp

Selection-regression

- Unlikely, as program group would need to approach comparison group, but not cross over, while no movement in comparison group

Cross-over pattern implies strong evidence for treatment effect, however one shouldn't structure research intentionally in such way (treating disadvantaged group and hoping it even outperforms comparison group)

Today's agenda

Nonequivalent Groups Design

Regression-Discontinuity Design

Other Quasi-Experimental Designs

Regression-Discontinuity Design (RD)

- Regression-Discontinuity Design (RD design) can refer to several design variations - simplest traditional form represents pretestposttest program-comparison group strategy
- Assignment to groups is based on a cutoff score on a pre-program measure
- Biggest advantage is that it allows to assign treatment to those who need it most
- Internal validity comparable to randomized experiments, however statistical power lower by a factor of ~2.75¹
- **RD design not yet frequently implemented**, as its rather novel (first introduced in mid 1970s), not flexible (single quantitative measure determines group assignment), and **counterintuitive as it maximizes group differences** instead of trying to have similar groups

14

Bivariate distribution without any intervention shows continuous distribution

] Control cases

🔇 Treatment cases

- Example of cases where composite health score (100= healthy, 0 = not healthy) is used as pre-test and post-test
- Chart shows bivariate distribution of cases without any program intervention
- On average, being healthy on pretest means being healthy on posttest
- Smooth regression line can be put on data points

ECONOMICS AND BUSINE

Bivariate distribution with intervention shows discontinuity in regression line

] Control cases

- Hypothetical distribution, assuming that treatment has a constant positive effect
- Green dotted line implies expected regression line if treatment had no effect
- Under presence of a treatment effect, there will be disruption (or discontinuation) in regression line
 -> therefore Regression Discontinuity Design

ECONOMICS AND BUSINE

Bivariate distribution with intervention shows discontinuity in regression line

Control cases

Treatment cases

- Hypothetical distribution, assuming that treatment has a constant positive effect
- Green dotted line implies expected regression line if treatment had no effect
- Under presence of a treatment effect, there will be disruption (or discontinuation) in regression line
 -> therefore Regression Discontinuity Design

UNIVERSITY OF ECONOMICS AND BUSINESS

Interpretation of results depends on nature of assignment and outcome variable

Example:

- Hospital staff to receive treatment to improve quality of care
- Two measures available: Quality of care (judged by supervisor) and complaint rate (number of complaints relative to patients)

WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

RD design requires a continuous preprogram variable and a defined cutoff value

- RD design requires a continuous quantitative pre-program measure (which can but doesn't have to be different from the pretest measure)
- All persons on one side of cutoff are assigned to treatment, all persons on other side are assigned to control
- Selection of cutoff
 - **Based on project resources**: I.e., if 25 people can be treated, cutoff can be set such that 25 fall into treatment and rest into control
 - **Based on expert views**: I.e., if expert believe health score of 50 or lower indicates treatment, then 50 can be set as cutoff
- In other designs, we assume or provide evidence that treatment and control group are equivalent and that differences can be attributed to program
- In RD design we instead assume that in absence of program pre-post-relationship is equivalent for both groups this assumes the following:
 - No spurious discontinuity that coincides with cutoff point
 - Correct modelling of the pre-post-relationship
 - Introduces possibility of selection threat to internal validity

Selection maturation threat to internal validity

- \bigcirc A: Absolute maturing rate
- B: Relative maturing rate

- Selection maturity threat implies that different groups could have different rates of maturing
- I.e., group A shows a constant absolute maturing rate of +10 from pretest to posttest
- I.e., group B shows constant relative maturing rate of x2, which leads to differing absolute changes from pre to post, depending on the pre-level
- Both scenarios can be captured by a regression line, so lang that differences in maturing rates do not coincide with the cutoff point

ECONOMICS AND BUSINES

Selection regression threat to internal validity

- Regression to the mean would imply that sampled cases approach the population mean over time
- The expected regression to the mean from pretest to posttest score is exactly what is modelled by the regression line itself
- As we do not expect a difference in regression to the mean between any two groups, there should not be a discontinuity in the regression line without intervention

UNIVERSITY C ECONOMICS AND BUSINES

RD design shows strong internal validity with some practical caveats to be considered

There is some caveats that can practically hinder internal validity:

- Participants can manipulate their pre-program measure, making it not random – i.e., if using students' grades as pre-program measure and 50% as the cutoff, teachers might be giving students slightly below 50% a mercy pass lifting them above 50% and thus changing their group assignment
- There is another treatment coinciding with the cutoff of the actual treatment – i.e., studying alcohol's effects on mental health using legal drinking age as cutoff coincides with legal gambling age, potentially contaminating the results
- Correct modelling of the pretest-posttest relationship incorrect modelling of non-linear relationships could be mistaken as discontinuity

Today's agenda

🗸 Nonequivalent Groups Design

Regression-Discontinuity Design

Other Quasi-Experimental Designs

Proxy Pretest Design

24

- In general same setup as normal pretest-posttest design
- However, no pretest conducted, instead proxy measure used instead of pretest:
 - **Recollection proxy pretest**: Participants own assessment, what they believe their pretest score might have been
 - Archived proxy pretest: Using measure from before treatment that is readily available and was collected independent of study
- Proxy pretest design should not be actively pursued, but is rather a backup if study has begun and no proper pretest was conducted

Separate Pre-Post Sample Design

- Two non-equivalent groups, where pretest and posttest are conducted on different subgroups each
- This setup can occur, if you can not be sure to track the same participants within each group at pretest and posttest
- I.e., trying to improve customer satisfaction: one organization is getting the treatment, another one is serving as control; customers that are surveyed during pretest will most likely not be the same as during posttest as different customers will have issues
- Variation of experiment design includes random subsampling within group this doesn't change issues of design however

Treatment	Group 1a Group 1b	Test -	- X	- Test
Comparison	Group 2a Group 2b	Test -	-	- Test
	Participants	Pretest	Treatment	Posttest

Double Pretest Design

- WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS
- Similar to classical Nonequivalent Groups Design, however two pretests are conducted
- This eliminates possible selection maturation biases, as differences in maturation could be observed between the two pretests
- Often referred to as "dry run" quasi-experimental design, as it simulates the null case
- Design is very strong in internal validity

Treatment	Group 1	Test	Test	Х	Test
Comparison	Group 2	Test	Test	-	Test
	Participants	Pretest 1	Pretest 2	Treatment	Posttest

26

Switching Replications Design

- Design involves two separate non-random groups, where both are treated consecutively with posttests in between
- Strong in internal validity, and strong in external validity due to two separate implementations of treatment
- Ethically strong, as all participants receive treatment at some point

Nonequivalent Dependent Variables (NEDV) Design

- Only treatment group (no comparison group) which is evaluated based on two different variables in pretest and posttest
- Treatment is supposed to affect one variable, but not the other variables
- Other variables serve as "control", to capture any selection threats (i.e., history, maturation, etc.)
- Key is that control variables are similar enough, so that selection threats realize identical to target variable, but not so similar that treatment affects them
- E.g., program to improve algebra score, which is controlled with geometry scores

80

28

EOUIS

• Overall design is rather weak in internal validity

Group 1

Participants

Treatment

Comparison

• Similar to previous design, however many more test metrics are being used

- Ex ante the researcher specifies what the expected impact of the treatment is on each variable
- Matching patterns between expectation of observation is strong evidence for effect, as only other event with exactly same impact as expected could cause results
- The more variables the better internal validity, but also harder to find expected patterns in data

Pattern Matching NEDV Design

UNIVERSITY O ECONOMICS AND BUSINES

80

70

60

50

40

30

20

10

0

Regression Point Displacement (RPD) Design

- Useful when implementation of treatment is expensive and thus only a single unit can be treated
- Design is enhanced by leveraging a larger number of comparison units
- I.e., one community receives AIDS education program; before and after HIV rates for all communities in the state are captured -> posttest displacement of treated community is observed
- Useful, when many control case units are available and routine measurement are conducted

Today's agenda

Nonequivalent Groups Design

Regression-Discontinuity Design

Other Quasi-Experimental Designs

Summary

Nonequivalent Groups Design

- Uses pre-existing groups for control and comparison
- Relatively easy to implement and allows for some discretion over group selection
- Multiple threats to internal validity

Regression-Discontinuity Design

- Group assignment based on cutoff value of pre-program metric
- Theoretically **strong internal validity**, however lower statistical power than random experiments
- Practically a few challenges to ensure internal validity
- Ethically strong as it allows treatment of those who need it most

Other Quasi-Experimental Designs

- **Switching Replications Design**: Strong internal validity, ethically strong, however double effort for treatment
- **Pattern Matching NEDV Design**: Theoretically strong internal validity, but difficult to practically achieve
- **Regression Point Displacement Design**: Relatively strong internal validity, useful when treatment is expensive (i.e. community research)
- Double Pretest Design: Strong internal validity
- Proxy Pretest Design, Separate Pre-Post Sample Design,, Nonequivalent Dependent Variables Design: Not desirable but sometimes useful as least bad option
 32

Now some quiz!

https://create.kahoot.it/details/511c1 71c-520d-4787-a9bd-8e3636de4b5d

