
Introduction to Maxima for Economics

Josef Leydold Martin Petry

September 26, 2011

Institute for Statistics and Mathematics, WU Wien

The following verions of the Maxima CAS has been used when writing this manual:

Maxima 5.25.1
wxMaxima 11.04.0

© 2010–2011 Josef Leydold

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Austria License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/3.0/at/deed.en or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/at/deed.en
http://creativecommons.org/licenses/by-nc-sa/3.0/at/deed.en

Contents

1 Introduction 1
1.1 Maxima Interfaces . 1
1.2 How to Read this Tutorial . 2

2 Basics 3
2.1 Getting Started . 3
2.2 wxMaxima . 4
2.3 Maxima as a Calculator . 5
2.4 Basic Arithmetic Operators . 5
2.5 Constants . 5
2.6 Functions . 6
2.7 Variables and User Defined Functions . 7
2.8 Use Output for Further Computations . 9
2.9 Help . 9
2.10 System Variables . 10
2.11 Numbers . 10
2.12 Numeric Results . 12
2.13 Lists . 14
2.14 Strings . 15
2.15 Equations . 15
2.16 Complex Numbers . 17
2.17 Loading Packages . 18
2.18 Writing Your Own Package . 18
2.19 LISP . 19

3 Symbolic Computation 21
3.1 Symbolic Calculator . 21
3.2 Expand, Factor, and Simplify . 22
3.3 Verbs and Nouns . 24
3.4 Logical Operators . 26
3.5 Conditional Evaluation . 27
3.6 Assumptions and Facts . 27
3.7 Local Evaluations . 29

4 Plotting 31
4.1 Plots in 2D . 32
4.2 Plots in 3D . 36
4.3 Plot Options . 38

5 The Draw Package 45
5.1 Draw Scenes . 45
5.2 Graphic Objects in 2D . 46
5.3 Graphic Objects in 3D . 51
5.4 Graphic Options . 58

6 Linear Algebra 65
6.1 Vectors . 65
6.2 Matrices . 66

iii

Contents

6.3 Operations on Matrices . 67
6.4 Rank of a Matrix . 68
6.5 Lists (Revised) . 68
6.6 Linear Equations . 69
6.7 Eigenvalues and Eigenvectors . 71

7 Calculus 75
7.1 Limits . 75
7.2 Sums and Products . 76
7.3 Derivatives and Total Differentials . 77
7.4 Dependencies and Chain Rule . 78
7.5 Jacobian Matrix and Gradient . 80
7.6 Taylor Series . 81
7.7 Minima and Maxima of Univariate Functions . 82
7.8 Minima and Maxima of Multivariate Functions . 83
7.9 Integration . 86

8 Ordinary Differential Equations (ODE) 89
8.1 Analytic Solutions of Ordinary Differential Equations 89
8.2 Linear Systems . 91
8.3 Direction Fields . 92

9 Economic Examples 97
9.1 Monopoly . 97
9.2 Profit Maximization . 98
9.3 Price Discrimination . 99
9.4 Cournot Duopoly . 101
9.5 Cobb-Douglas Production Function . 101
9.6 Stationary Points and Cobb-Douglas Function . 102
9.7 Constraint Optimization . 104

Answers to the Exercises 107

Index 113

iv

1 Introduction

Maxima is a computer algebra system (CAS) like Maple® and Mathematica®. Thus it is a powerful
tool for the manipulation of symbolic and numerical expressions, including differentiation, inte-
gration, vectors, matrices, . . . and so on. It also provides commands for plotting functions, curves
and data in two and three dimensions. In opposition to other CAS Maxima has a quite long history
and is open source software. From the Maxima manual:

Maxima is a descendant of Macsyma, the legendary computer algebra system devel-
oped in the late 1960s at the MIT. It is the only system based on that effort still publicly
available and with an active user community. Macsyma was revolutionary in its day,
and many other systems were inspired by it. In 1998, Professor W. F. Schelter of the
University of Texas obtained permission form the Department of Energy to release the
Macsyma source code under the GNU Public License, and in 2000 he initiated the Max-
ima project at SourceForge to maintain and develop Macsyma, now called Maxima.

Maxima is available on many operating systems including MS Windows®, Mac OSX and Linux.
The software can be downloaded from

http://maxima.sourceforge.net/.

There one can find links to more information as well as to related software.

Maxima also allows to define your own commands. Thus it is easy to Maxima’s capabilities and
adjust it to own’s need. Thus you find contributed “packages” that have been developed and made
publicly available by users of this CAS.

The obvious advantage of open source software (OSS) is that it can be downloaded and used for
free. Nevertheless, there are also other gains for users: It allows to see how other people solved
a similar problem (and you are free to copy and modify their solutions). In case of unexpected
results one can investigate the sources and thus there is some chance to detect a possible error1.

1.1 Maxima Interfaces

Maxima at its heart has a command line interface and by itself it is not capable of displaying for-
matted mathematics beyond the plain text level. For most users that has been grown up with
graphical user interfaces (GUI) this is unfamiliar and may seem quite arcane. Fortunately, nowa-
days more fancy GUIs are available.

We will use the most popular one called wxMaxima. It is available at

http://wxmaxima.sourceforge.net/.

Its interface consists of a notebook with menus and a toolbar which allows an inexperienced user
to pick an appropriate command. These commands as well as their outputs are printed into the
notebook. On the other hand these commands can also directly be entered and edited and thus
provide a powerful workspace for the experienced user. The notebook can then be saved at the

1The core functionality of Maxima is written in LISP.

1

http://maxima.sourceforge.net/
http://wxmaxima.sourceforge.net/

1 Introduction

end of a session and reloaded for later use. Thus it allows the user to construct a document that
consists of text, calculations, and plots.

In this tutorial we simulate the output as it is given by wxMaxima. Moreover, we will explain some
features of this interface. However, we mainly describe the commandline interface of Maxima.
Exploring the toolbar is left to the reader.

Alternatives GUIs are Xmaxima which is shipped with Maxima. It is less fancy but more stable
than wxMaxima that is currently being actively developed. A nice interface is also provided by
Texmacs, a WYSIWYG word processing system that allows to include Maxima code and prints its
output. Last but not least, an really excellent Emacs mode has been written for Maxima.

1.2 How to Read this Tutorial

The sections in each chapter first shows a table of (new) Maxima commands.

Command Description

cmd a command

In addition we may need to change some special variables that control the behavior of Maxima’s
output or evaluations. These are listed in the following way.

Variable Default Description

var true a special variable

Examples of Maxima code are printed in a yellow box. The output mimics the output of the wx-
Maxima program.

(%i1) input;

(%o1) output

Maxima code is running text is printed using courier.

Keyboard buttons are shown as KEY . Notice that SHIFT + ENTER means that one has first press and
hold the SHIFT button and then press the ENTER button.

Important
Caveats and possible errors are marked by an exclamation mark inside a triangle.B
Each Section closes with a small set of exercises.

The tutorial organized in the following way. Chapter 2 presents the basic commands and concept
that are necessary to run the Maxima system. Here we mainly focus on numerical calculations
but we also point to possible errors. In Chapter 3 we discuss the principles of symbolic computa-
tions. The remaining chapters then deal with special topics, like Plotting (Chap. 4), Linear Algebra
(Chap. 6), and Calculus (Chap. 7).

The topics in this manual are strongly influenced by typical applications in economics. Thus we
present some relevant examples in Chapter 9.

Important
This manual gives insight into a small subset of the Maxima system. In addition, we tried to makeB
the presentation as simple as possible and thus we did not explain all the details. Thus the reader
is encouraged to read the online documentation (see Sect. 2.9) for a comprehensive description of
the presented commands.

2

2 Basics

Maxima is a computer algebra system that accepts some input, evaluates the given commands
and returns the results. As with all CAS we have to be familiar with the syntactical rules of this
system.

2.1 Getting Started

Symbol Description

%i1 Input (input prompt)
%o1 Output of evaluation (output prompt)
; End-of-input marker
$ End-of-input marker. Output will be suppressed

Start Maxima or wxMaxima. Then you can enter your commands that must be terminated by a
semicolon ; .Observe that your input will be automatically prefixed by %i1. The given string is B
then evaluated by Maxima according to rules that are basically based on pattern matching. The
result is then printed and the output is prefixed by %o1. It can be used to refer to the result in
further computations, see Sect. 2.8 below.

A command may also be terminated by the special symbol $ instead of a semicolon. Then the
output of your result is suppressed, i.e., Maxima evaluates your input expression but does not
show its results. This can be quite convenient when an intermediate result is very long and fills
several pages. Here is a simple example.

(%i1) 2+3;

(%o1) 5

(%i2) 4*5$

As you can observe your input and output with be enumerated. It is also possible to put more than
one command on one line. On the other hand an command can also be spread over two or more
lines (thus the command has to be terminated by means of ; or $).

(%i3) 2+3; 4*5;

(%o3) 5

(%o4) 20

(%i5) 2+3*(4+5)
+6*7-8/4;

(%o5) 69

3

2 Basics

2.2 wxMaxima

wxMaxima provides a more convenient interface. It shows a notebook where one can insert an
expression. This notebook is organized using co called cells. Notice that the bar on the left hand
side indicates which input and output cells belong together. Whenever, a cell is currently edited
or evaluated the color of this bar changes. (Some evaluations can be very time consuming.)

Important
One has to press SHIFT + ENTER to start the evaluation of your input. A missing ; character is thenB
automatically inserted. Notice that pressing ENTER alone (without pressing SHIFT) only inserts a
line break1 even when a ; or $ is present.

wxMaxima also provides a toolbar where one can select commands from menus. This is very
convenient for the beginner as it disburdens one from memorizing the command syntax. (But it
is cumbersome for the more experienced user.)

Using the notebook one can insert his or her commands almost everywhere on the page. Even fur-
ther command can be edited and reevaluated. (Of course the number of the cell is then updated.)
Thus the cells are not necessary in chronological order.

In addition one can insert sections headers and text to comment one’s calculations. For this pur-
pose use the corresponding entries in menu Cell.

When a Maxima session is finished one can save a notebook (using File->Save) and reload it again
(using File->Open). Here is a typical wxMaxima notebook.

1However, this default behavior of wxMaxima can be changed: tick the box Enter evaluates cells in the wxMaxima con-
figuration window.

4

2.3 Maxima as a Calculator

2.3 Maxima as a Calculator

Almost any mathematical expression is available in Maxima. The operators are the same as on
your calculator, see Sections 2.4 and 2.6.

2.4 Basic Arithmetic Operators

Operator Description

+ Addition
- Subtraction
/ Division
* Multiplication
^ Raise to power

Some examples are:

(%i1) 5+3;

(%o1) 8

(%i2) 22-7;

(%o2) 15

(%i3) 121/11;

(%o3) 11

(%i4) 25*4;

(%o4) 100

(%i5) 2^8;

(%o5) 256

(%i6) (2+3)^4-(5+6+7)/(2+4);

(%o6) 622

Maxima can compute very large numbers as the following example demonstrates.

(%i7) 2^100;

(%o7) 1267650600228229401496703205376

2.5 Constants

Constant Description

%e Euler’s number e = 2.71828 . . .
%pi π = 3.14159 . . .
%i Imaginary unit i =

√
−1

inf Positive infinity ∞
minf Minus infinity−∞

Maxima knows important numerical constants like e and π as well as±∞.

5

2 Basics

2.6 Functions

Function Description

abs(x) Absolute value of x
sqrt(x) Square root of x
log(x) Natural logarithm (i.e, to base e) of x
exp(x) Exponential function of x
sin(x) Sine of x
cos(x) Cosine of x
tan(x) Tangent of x

As any calculator Maxima provides commands for computing functions.

(%i1) cos(%pi);

(%o1) −1

(%i2) exp(2);

(%o2) %e2

(%i3) abs(-5);

(%o3) 5

Important
Notice that the arguments to sin and cosmust be angles given in radians (i.e., where a right angleB
is π

2). If you need to do computations using degrees (i.e., where a right angle is 90◦), then you have

to convert degree d into radian x using x = d
π

180
.

The exponential function for an arbitrary base a can computed by means of the the ^ operator.
Similarly the n-th root can be computed using ^(1/n). Notice that %e^x is an alternative for
exp(x).

(%i4) 10^4;

(%o4) 1000

(%i5) 1000^(1/3);

(%o5) 10

(%i6) 8^(2/3);

(%o6) 4

Maxima only provides the natural logarithm function (with base e). The common logarithm (base
10) can be computed using

log10(x) =
log(x)
log(10)

.

Important
Do not use ln(x) to compute the natural logarithm. Maxima does not know this function andB
thus it returns it unevaluated.

(%i7) log(%e);

(%o7) 1

(%i8) ln(%e);

(%o8) ln(%e)

6

2.7 Variables and User Defined Functions

2.7 Variables and User Defined Functions

operator Description

: Assignment operator
:= Function definition operator
kill(x) Removes all bindings (value, function) from x
kill(all) Removes all bindings from all items

Variable Default Description

values [] List of user-defined variables
functions [] List of user-defined functions

Expressions like numbers can be stored in variables, i.e., a sequence of alphanumeric characters
(that start with a letter). The alphanumeric characters are A through Z, a through z, 0 through 9,
%, and _. Examples of valid variable names are: a, beta, or y_1. Thus one can store the result
of any evaluation by means of the assignment operator :. This operator evaluates its right-hand
side and associates that value with the left-hand side. When the variable is evaluated in further
computations, then it is replaced by its value. Here is a simple example.

(%i1) x;

(%o1) x

(%i2) x: 2+3;

(%o2) 5

(%i3) x;

(%o3) 5

(%i4) y: 2*x^2;

(%o4) 50

Important
Maxima is case-sensitive, that is, the identifiers foo, FOO, and Foo are distinct. B
It also possible to extend Maxima with one’s own functions by means of the function definition
operator :=. Function names are similar to variable names but are followed by parenthesis (...)
that contain a comma separated list of its arguments (which themselves are variables). The right-
hand side of the function assignment operator := (i.e., the function body) is never evaluated.

In the following example we define functions sqr for computing the square of a given expression
and sindeg for the sine function where the angle is given in degrees. Notice the function body
contains expression x which is note evaluated. Otherwise it would be replaced by value 5 which
has been assigned in the previous example.

(%i5) sqr(x):= x^2;

(%o5) sqr(x) := x2

(%i6) sqr(4);

(%o6) 16

(%i7) sindeg(x):= sin(x*%pi/180);

(%o7) sindeg(x) := sin
(xπ

180

)
(%i8) sindeg(45);

(%o8)
1√
2

7

2 Basics

Of course it is possible to define functions in two or more variables.

(%i9) norm(x,y):= sqrt(x^2+y^2);

(%o9) norm(x, y) :=
√

x2 + y2

(%i10) norm(3,4);

(%o10) 5

The system variables values and functions contain a list of user defined variables and func-
tions, resp.

(%i11) values;

(%o11) [x, y]

(%i12) functions;

(%o12) [sindeg(x), sqr(x), norm(x, y)]

Notice that both variables and functions remain persistent until the Maxima session is closed.
Sometimes it is convenient to remove these again. This can be accomplished by function kill.

(%i13) kill(x);

(%o13) done

(%i14) values;

(%o14) [y]

(%i15) functions;

(%o15) [sindeg(x), sqr(x), norm(x, y)]

(%i16) kill(all);

(%o16) done

(%i17) values;

(%o17) []

(%i18) functions;

(%o18) []

Important
You must not use symbol = to define variables and functions. This symbol is used for definingB
equations, see Sect. 2.15.

(%i19) x=3;

(%o19) x = 3

(%i20) x;

(%o20) x

8

2.8 Use Output for Further Computations

2.8 Use Output for Further Computations

Command Description

% Result of last evaluation
%oi Result of i-th evaluation (content of output cell i)

The operator % refers to the output expression most recently computed my Maxima, whether or
not it was displayed. In addition the result of the i-th computation is available by %oi.

(%i1) 2+3;

(%o1) 5

(%i2) % * 20;

(%o2) 100

(%i3) % - 10;

(%o3) 90

(%i4) %o1 - 10;

(%o4) −5

Important
Notice that % refers to the result of the last evaluation. As you can enter a command almost ev- B
erywhere in a wxMaxima notebook this is not necessarily the content of the output cell just above
your current input cell.

2.9 Help

Command Description

? cmd Show help page for command cmd (short for describe)
?? cmd Search for inexact matches of cmd in help pages
apropos("cmd") List of all Maxima names that contain substring cmd

Help pages for all commands and operators are available using the special symbols ? cmd and
?? cmd. The double question mark ?? can be used to search for string cmd in the manual.

(%i1) ? sqrt;
-- Function: sqrt (<x>)

The square root of <x>. It is represented internally by
`<x>^(1/2)'. See also `rootscontract'.
`radexpand' if `true' will cause nth roots of factors of a product
which are powers of n to be pulled outside of the radical, e.g.
`sqrt(16*x^2)' will become `4*x' only if `radexpand' is `true'.

There are also some inexact matches for `sqrt'.
Try `?? sqrt' to see them.

Important
It is important to insert a space between ? and cmd. Otherwise the input is interpreted as an B
internal LISP variable which is simply returned. It also might result in a weird error message from
the LISP interpreter.

(%i2) ?sqrt;

(%o2) sqrt

9

2 Basics

If you only remember a substring of a command name, then apropos is quite useful. It returns a
list of all those Maxima names that contain this string.

(%i3) apropos("sqrt");

(%o3) [isqrt, sqrt, sqrtdisp f lag]

For an alternative method to access the manual within wxMaxima press the F1 button or use the
Help button in the menu bar. It gives access to the whole library including an index and a search
function.

2.10 System Variables

Command Description

ev(x,envir) Evaluate expression x with in given environment envir
reset() Resets many (global) system variables

Maxima uses a set of system variables to control the behavior of the system. For example, in
Sect. 2.11 below variable fpprintprec is used to control the printing of floating point numbers,
and numer controls whether mathematical functions are evaluated in floating point or not.

One may use assign operator : to change value of system variables globally. Command reset()
allows to reset many global system variables and some other variables, to their default values.

An alternative approach to changing and resetting system variables is the use of command ev
which allows to evaluate an expression with locally changed system variables. An example with
variable numer is given in Sect. 2.12 below.

2.11 Numbers

Command Description

123 integer 123
123. integer 123
123.0 floating point number 123
123e0 floating point number 123
123b0 big float number 123

Variable Default Description

fpprec 16 Number of significant digits for arithmetic of bigfloat numbers
fpprintprec 0 Number of digits when printing a float (default: all significant digits)

Maxima distinguishes between four different types of numbers:

• integers: . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

• rational numbers: ratio of two integers

• floating point numbers: consist of a mantissa of (approximately) 16 decimal digits and an ex-
ponent to base 10, e.g., 1.234567890123456 · 105. In common speech these are called decimal
numbers and usually written without the exponent; in our example 123456.7890123456.

• arbitrary precision floating point numbers (called bigfloat numbers: floating point numbers
where the size of the mantissa can be set to some fixed but arbitrary number (using the sys-
tem variable fpprec.

10

2.11 Numbers

In addition, Maxima can handle some special constants, see Sect. 2.5.

Floating point numbers can be entered either as a decimal number with at least one digit after the
decimal point, e.g., 123.0, or using the scientific notation, e.g., 123e0.

Integers and rational numbers are stored without loss of precision while this is not possible for
floating point numbers. They can be seen as an approximation to real numbers. Notice that the
decimal expression of real numbers (as elements from R) may have an infinite number of digits
as in 1

7 = 0.1428571428571428 . . . or
√

2 = 1.414213562373095 When stored as floating point
numbers only a limited number of digits can be stored and one looses precision. Additions and
subtractions of floating point numbers then may results in further loss of precision due to cancel-
lation errors. The following example demonstrates the difference between rational numbers and
floating point numbers.

(%i1) 2/10 * 11 - 2 - 4/20;

(%o1) 0

(%i2) 2.0/10.0 * 11.0 - 2.0 - 4.0/20.0;

(%o2) 1.665334536937735 10−16

Important
In opposition to decimal representation modern computer use a binary representation of num- B
bers by means of the binary digits 0 and 1 called bits. As a consequence numbers like 0.2 cannot
be stored exactly due an infinite binary representation.

Maxima tries to do all its evaluation as exact as possible. Consequently, Maxima reduces rational
numbers or simplifies numerical expression where possible but does not convert to floating point
numbers unless forced to do so (see Sect. 2.12 below). In particular Maxima also returns special
numbers as results of computations.

(%i3) 19 / 3;

(%o3)
19
3

(%i4) 2^1000;

(%o4) 107150860718626732094842504906[242 digits]429831652624386837205668069376

(%i5) sqrt(2);

(%o5)
√

2

(%i6) 14 / 6;

(%o6)
7
3

(%i7) sqrt(12);

(%o7) 3
√

2

(%i8) sqrt(8);

(%o8) 23/2

(%i9) exp(3);

(%o9) %e3

(%i10) atan(1);

(%o10)
π

4
(%i11) tan(%pi/4);

(%o11) 1

11

2 Basics

When we use floating point numbers instead, we get a less precise result, i.e., stored as floating
point numbers. As the first line of the following example shows, it is often sufficient to insert just
one floating point number in order to obtain a floating point answer. As the last line shows, the
answer can sometimes a bit weird.

(%i12) 19.0 / 3;

(%o12) 6.333333333333333

(%i13) 2.0^1000;

(%o13) 1.07150860718627 10301

(%i14) sqrt(2.0);

(%o14) 1.414213562373095

(%i15) sqrt(12.0);

(%o15) 3.464101615137754

(%i16) exp(3.0);

(%o16) 20.08553692318767

(%i17) atan(1.0);

(%o17) .7853981633974483

(%i18) tan(%pi/4.0);

(%o18) tan(0.25 ∗%pi)

We again stress that the difference between integers and floating point numbers is important. In
the inputs in the following two lines of code are different and thus are handled differently!B
(%i19) 123;

(%o19) 123

(%i20) 123.0;

(%o20) 123.0

Sometimes it can be annoying when 16 digits of floating point numbers are printed. This can be
controlled by setting system variable fpprintprec.

(%i21) fpprintprec: 4$

(%i22) sqrt(2.0);

(%o22) 1.141

(%i23) fpprintprec: 0$

(%i24) sqrt(2.0);

(%o24) 1.414213562373095

2.12 Numeric Results

Command Description

float(x) Convert x to floating point number
bfloat(x) Convert x to big float
set_display(ascii) Set display mode to plain ASCII
set_display(xml) Set display mode to XML (default)

12

2.12 Numeric Results

Variable Default Description

numer false if true, then mathematical functions are evaluated in floating point

When we are interested in numeric results we can set the system variable numer to true. Then
all evaluations are performed in floating point numbers. This can also be done locally using the
command ev.

(%i1) ev(19/3, numer:true);

(%o1) 6.333333333333333

In many situations we can simplify the notation. numer is interpreted as numer:true. Thus ev
may be omitted, too. The following works as well.

(%i2) 19/3, numer;

(%o2) 6.333333333333333

(%i3) sin(4), numer;

(%o3) −0.75680249530793

(%i4) %pi, numer;

(%o4) 3.141592653589793

An alternative approach is to use the float command.

(%i5) float(19/3);

(%o5) 6.333333333333333

(%i6) float(sin(4));

(%o6) −0.75680249530793

(%i7) float(%pi);

(%o7) 3.141592653589793

wxMaxima tries to print Maxima’s output in a nice manner. Number are printed into one line.
Suppose you need all digits of 100! or the first 500 digits of π. Then not all digits are displayed
which may not be what you want.

(%i8) 100!;

(%o8) 933262154439441526816992388562[98 digits]916864000000000000000000000000

(%i9) fpprec: 500$

(%i10) bfloat(%pi);

(%o10) 3.1415926535897932384626433832[443 digits]8857527248912279381830119491b0

(%i11) reset()$

However, it is possible to switch back to Maxima’s native output format using command
set_display(ascii). Then all digits are printed albeit in a not so nice form. The backslash sign
\ at the end of each line indicates that it is continued on the next. Do not forget to reset the display
format again by means of set_display(xml);

13

2 Basics

(%i12) set_display(ascii)$

(%i13) 100!;

(%o13) 93326215443944152681699238856266700490715968264381621468592963895217599\
993229915608941463976156518286253697920827223758251185210916864000000000000000\
000000000

(%i14) fpprec: 500$

(%i15) bfloat(%pi);

(%o15) 3.141592653589793238462643383279502884197169399375105820974944592307816\
406286208998628034825342117067982148086513282306647093844609550582231725359408\
128481117450284102701938521105559644622948954930381964428810975665933446128475\
648233786783165271201909145648566923460348610454326648213393607260249141273724\
587006606315588174881520920962829254091715364367892590360011330530548820466521\
384146951941511609433057270365759591953092186117381932611793105118548074462379\
9627495673518857527248912279381830119491b0

(%i16) reset()$

(%i17) set_display(xml)$

2.13 Lists

Command Description

[...] Marks a list or enclose subscripts of a list
length(L) Length of list L
append(...) Concatenate given lists
delete(x,L) Remove x from list L

Lists are used to combine several items into a single object. They are displayed by enclosing its
elements between square brackets. A simple method to create list by means of square brackets
[. . .]. A list may even contain other lists as its entries. It may also consists of one or zero elements.

(%i1) L: [1,4,9,16,25,[36,49]];

(%o1) [1, 4, 9, 16, 25, [36, 49]]

(%i2) emptylist: [];

(%o2) []

An element of a list can be accessed by its index enclosed in square brackets. The first element has
index 1 and the largest index must not exceed the length of the list.

(%i3) L[4];

(%o3) 16

(%i4) length(L);

(%o4) 6

(%i5) L[3]: -99;

(%o5) −99

(%i6) L;

(%o6) [1, 4,−99, 16, 25, [36, 49]]

14

2.14 Strings

There exist a couple of commands for manipulating lists. Concatenating lists (append elements of
one list to another) and deleting elements from a list are the most important functions.

(%i7) append(L,[1,2,3]);

(%o7) [1, 4,−99, 16, 25, [36, 49], 1, 2, 3]

(%i8) delete(1,L);

(%o8) [4,−99, 16, 25, [36, 49]]

Notice that these commands return a new list and do not modify the existing one. For the latter
purpose one has to replace the original list.

(%i9) L: delete(4,L);

(%o9) [1,−99, 16, 25, [36, 49]]

(%i10) L;

(%o10) [1,−99, 16, 25, [36, 49]]

2.14 Strings

Command Description

"a string" Character string

Character strings are enclosed in double quote marks " for input. Strings may contain any char-
acters, including embedded tab, newline, and carriage return characters.

(%i1) s1: "This is a String.";

(%o1) This is a String.

2.15 Equations

Command Description

= Equation operator
solve(eqn,x) Solve equation eqn with respect to x
lhs(eqn) Left-hand side of equation eqn
rhs(eqn) Right-hand side of equation eqn
allroots(polyn) Numerical approximations of roots of polynomial polyn of one variable

Command solve tries to solve algebraic equations. It returns a list of solution equations. (Use
float when numeric solutions are required.)

(%i1) solve(x^2+3*x-1=0, x);

(%o1) [x = −
√

13 + 3
2

, x =

√
13− 3

2
]

(%i2) float(%);

(%o2) [x = −3.302775637731995, x = .3027756377319946]

15

2 Basics

Finding roots and zeros of expression are very important special applications of solving equations.
Thus if the expression expr that given as an argument to solve is not an equation, then the equa-
tion expr=0 is assumed in its place. Thus we also obtain the roots of the above polynomial by the
following command.

(%i3) sol: solve(x^2+3*x-1, x);

(%o3) [x = −
√

13 + 3
2

, x =

√
13− 3

2
]

The solutions can be reverted into “non-equations” or used in further computations by means
of command ev. An alternative way is to use command rhs to extract the expression from the
right-hand side of the equation.

(%i4) ev(x, sol[1]);

(%o4) −
√

13 + 3
2

(%i5) rhs(sol[2]);

(%o5)

√
13− 3

2

The variable can also be a more complex expression like a function.

(%i6) solve(exp(f(x))=10^y, f(x));

(%o6) [f (x) = log(10) y]

Systems of two or more expressions as well as their variables must be encapsulated in lists. Each
solution is then also returned as list. (Thus we get a list of lists.) Notice that we can assign equa-
tions to variables.

(%i7) eq1: 3*x^2-y^2=2;

(%o7) 3 x2 − y2 = 2

(%i8) eq2: x^2+y^2=2;

(%o8) x2 + y2 = 2

(%i9) solve([eq1,eq2], [x,y]);

(%o9) [[x = −1, y = −1], [x = −1, y = 1], [x = 1, y = −1], [x = 1, y = 1]]

solve returns its solution as equations. These solutions can be used in further computations by
means of ev.

(%i10) s: solve(x^3+2*x^2-5*x-6=0, x);

(%o10) [x = −3, x = −1, x = 2]

(%i11) z: ev(%pi^x, s[2]);

(%o11)
1
π

Important
solve does not always find (all) solutions of a system of equations. Then an empty list is returned.B
In the following example the “obvious” solution [x=1,y=1] is not found.

(%i12) solve([x^(-1/2)*y^(1/2)=1, x^(1/2)*y^(-1/2)=1], [x,y]);

(%o12) []

(%i13) ev([x^(-1/2)*y^(1/2)-1, x^(1/2)*y^(-1/2)-1], [x=1,y=1]);

(%o13) [0, 0]

16

2.16 Complex Numbers

In general there are no closed form solutions for the roots of polynomials of degree 5 or larger.
Then command allroots may be used to get at least a numerical approximation of the roots.

(%i14) solve(x^5-x^4+2*x^3+x^2-x+5, x);

(%o14) [0 = x5 − x4 + 2 ∗ x3 + x2 − x + 5]

(%i15) allroots(x^5-x^4+2*x^3+x^2-x+5);

(%o15) [x = 1.07479 %i + .970613, x = .970613− 1.07479 %i, x = −1.1828,
x = 1.41457 %i + .120788, x = .120788− 1.41457 %i]

2.16 Complex Numbers

Command Description

rectform(x) Express complex number x in Cartesian form a + b i
polarform(x) Express complex number x in polar form r eiθ

realpart(x) Real part of a complex number x
imagpart(x) Imaginary part of a complex number x
trigsimp(x) Simplifies expressions that contain trigonometric functions

Maxima performs many of its computation over the field of complex numbers. Thus the solutions
may contain imaginary numbers.

(%i1) solve(x^2-4*x+13=0,x);

(%o1) [x = 2− 3 %i, x = 3 %i + 2]

While this is quite convenient for many applications it may be annoying when we are interested
in purely real solutions. The situation may become even worse as the following example demon-
strates. Here the solution is computed by means of Cardano’s formula. It looks like complex num-
bers.

(%i2) s: solve(x^3-x+1/3=0,x);

(%o2) [x =

√
3 %i
2 − 1

2

3
(

%i

2 3
3
2
− 1

6

) 1
3
+

(
%i

2 3
3
2
− 1

6

) 1
3
(
−
√

3 %i
2
− 1

2

)
,

x =

(
%i

2 3
3
2
− 1

6

) 1
3
(√

3 %i
2
− 1

2

)
+
−
√

3 %i
2 − 1

2

3
(

%i

2 3
3
2
− 1

6

) 1
3

,

x =

(
%i

2 3
3
2
− 1

6

) 1
3
+

1

3
(

%i

2 3
3
2
− 1

6

) 1
3
]

However, all three solutions are real numbers. We can try to transform these complex numbers
into Cartesian form, i.e., into the representation a + b i where a ∈ R and b ∈ R are called real
and imaginary part, respectively. One then can try to reduce the imaginary part to 0 by means of
command trigsimp.

17

2 Basics

(%i3) trigsimp(rectform(s));

(%o3) [x =

√
3 sin

(5 π
18
)
− cos

(5 π
18
)

√
3

, x = −
√

3 sin
(5 π

18
)
+ cos

(5 π
18
)

√
3

, x =
2 cos

(5 π
18
)

√
3

]

(%i4) float(%);

(%o4) [x = .3949308436346985, x = −1.137158042603258, x = .7422271989685593]

If we do not use trigsimp or if it is not possible to reduce the imaginary part to 0, then a tiny
imaginary part might remain when we convert the solutions to floating point numbers due to
round-off errors. It can be transformed to a purely real solution by using their real parts. However,
we must be confidence that the solution is not a complex number.

(%i5) float(rectform(s));

(%o5) [x = .3949308436346984− 1.110223024625157 10−16 %i,
x = −4.163336342344337 10−17 %i− 1.137158042603257, x = .7422271989685593]

(%i6) realpart(%);

(%o6) [x = .3949308436346984, x = −1.137158042603257, x = .7422271989685593]

2.17 Loading Packages

Command Description

load(pkg) Evaluate content of file pkg (“Load package”)

Like many computing environments Maxima provides a basic set of commands (core) and offers a
variety of add-on packages for special tasks. This keeps starting time and memory consumptions
at a minimum and allows large functionality. Moreover, it is thus possible to extend the capabilities
of the system. Such packages are either automatically loaded on demand (by means of a list of
commands for which packages have to be loaded) or the packages have to be explicitly loaded.
For the latter we have to load the corresponding files.

(%i1) load(vect);

(%o1) /usr/share/maxima/5.22.1/share/vector/vect.mac

Notice that the loaded functions are added to the list of user-defined functions and can be dis-
played and removed using functions and kill(all), respectively.

2.18 Writing Your Own Package

Command Description

/*...*/ Comment: all characters between these delimiters are ignored

When working with Maxima one may use a set of functions or a complex variable definitions quite
frequently. The code for these functions can be collected in a file and loaded into one’s Maxima
session by means of command load as described in Sect. 2.17.

Important
The file must have extension .mac.B
For example, start your favorite editor, enter the line

18

2.19 LISP

/* Euclidean norm of vector [x,y] */
norm(x,y):= sqrt(xˆ2+yˆ2);

and store the content in a file named (e.g.) mydefs.mac. This file can then loaded into one’s
Maxima session and function norm can be used just like any other Maxima function.

(%i1) norm(3,4);

(%o1) norm(3, 4)

(%i2) load("mydefs.mac");

(%o2) myde f s.mac

(%i3) norm(3,4);

(%o3) 5

The line /*...*/ in the above example is ignored when the file is loaded. It is strongly recom-
mended to add such comments into one’s files. If files get longer or the coded functions get more
sophisticated it helps to maintain one’s code.

Important
Do not forget the end-of-input marker ; or $ at the end of each piece of code. B
Important
Use a string (here "mydefs.mac") as argument for load and do not forget the file extension B
(.mac) when you want to load your own file with Maxima code.

2.19 LISP

LISP (from LISt Processing) is an old programming language and has be developed in 1958 at MIT.
It was very popular in the Artificial Intelligence research community.

The core of Maxima is written in LISP. Thus when a expression is entered it is parsed and evaluated
by the underlying LISP interpreter. Fortunately, we do not need any knowledge of this language.
However, there are two incidences where you might come in contact with the interpreter. The first
one has already been mentioned in Sect 2.9 (Help) when one types ?sqrt. The second one occurs
in case of a syntax errors. Usually Maxima will try to explain your error. However, sometimes the
LISP interpreter gets confused and responses with a rather obscure error message. Then fix your
input and ignore the content of this message.

19

2 Basics

— Exercises

1. Store the so-called golden ration, 1
2 (1 +

√
5), in variable gs. In addition compute its numer-

ical value.

2. Verify, that the golden ratio is a root of x2 − x− 1. (Do not use solve!)

3. Compute all roots of x2 − x− 1.

4. Compute (-1)ˆ(1/3). How do you get all (complex) cubic roots of−1?

5. Compute the first 100 digits of π. (Do not forget to reset the precision of big float arith-
metic!)

6. Define function ln that computes the natural logarithm.

7. Define a function log10(x) that computes the common logarithm of x. Numerical input
should be evaluated in floating point. Compute log10(1000).

8. Define a function heron(a,b,c) that computes the area of a triangle with sides a, b, and c
by means of Heron’s formula

Area =
1
4

√
(a2 + b2 + c2)2 − 2(a4 + b4 + c4) .

9. Get all details about routine solve.

10. Get a list of all Maxima names that contain the (sub-) string solve.

11. Clear your working space. Remove all your variable and function definitions.

20

3 Symbolic Computation

3.1 Symbolic Calculator

In Maxima everything is an expression, including variables, functions, mathematical expressions,
objects and programming constructs. Numbers are thus just a special case. Hence Maxima can
solve algebraic equations symbolically in the same way as we do it by hand.

(%i1) solve(a*x^2+b*x+c=0,x);

(%o1) [x = −
√

b2 − 4 a c + b
2 a

, x =

√
b2 − 4 a c− b

2 a
]

Of course the coefficients and variables of this quadratic equation can be more complex expres-
sions.

(%i2) solve((s-t)*f(y)^2+abs(s+t)*f(y)+(s+t)=0, f(y));

(%o2) [f (y) =
|t + s|+

√
5 t2 + 2 s t− 3 s2

2 t− 2 s
, f (y) = −

√
5 t2 + 2 s t− 3 s2 − |t + s|

2 t− 2 s
]

When an expression is evaluated, then Maxima substitutes all expressions to which values are
assigned but leaves all other (unknown) expressions left as-is.

(%i3) foo(3*bar+2*bar) + bar^2 + log(%e);

(%o3) f oo(5 bar) + bar2 + 1

Important
Notice that due to this design of every CAS Maxima cannot detect any typo. If one mistypes a B
variable or function name, then the invalid name is simply returned as-is.

In Sect. 2.7 we have introduced the assignment operators : and :=. Of course they can be used
to assign any expression to a variable or function. Known variables are then substituted while
unknown expressions are used as-is. wxMaxima tries to print these variables in a nice way. E.g.,
names of Greek letters are printed by means of the corresponding symbol.

(%i4) x: (a+beta)*(a-beta);

(%o4) (a− β) (β + a)

(%i5) y: x-a^2;

(%o5) (a− β) (β + a)− a2

(%i6) foo(u):= log(u)-x+alpha;

(%o6) f oo(u) := log(u)− x + α

(%i7) foo(y);

(%o7) log
(
(a− β) (β + a) + 2 a2

)
− (a− β) (β + a) + α

21

3 Symbolic Computation

Important
When an expression has been assigned to some variable, say x, then it remains persistent untilB
it is killed (or Maxima is stopped). Now suppose you are running a Maxima session on your
computer for hours and use it as a symbolic calculator every now and then, then you might forget
about such assignments and you might get dubious results or obscure error messages1. From
the authors experience this is a very annoying method of “shooting yourself in the foot”. So it is
strongly recommended to kill variable and function definitions that are obsolete.

(%i8) /* ... Do a lot of computations ... */
/* Now we want to solve an equation in x and y and define: */
eq: a*x+b*y=c;

(%o8) b
(
(a− β) (β + a)− a2

)
+ a (a− β) (β + a) = c

(%i9) /* Oops! We expected: */ kill(all)$

(%i10) eq: a*x+b*y=c;

(%o10) b y + a x = c

3.2 Expand, Factor, and Simplify

Command Description

expand(expr) Expand expression expr
ratexpand(x) Expand rational expression expr (more efficient than expand)
factor(expr) Factor expression expr
ratsimp(expr) Simplifies a (rational) expression expr
fullratsimp(expr) Apply ratsimp and similar until no further changes occur
radcan(expr) Simplifies expression which contains exponentials, logs, and radicals
num(expr) Numerator of expr
denom(expr) Denominator of expr
trigsimp(expr) Simplifies expression that contains trigonometric functions
trigreduce(expr) Combines products and powers of trigonometric functions

When Maxima evaluates expressions it usually does not perform all “obvious” expansions or sim-
plifications. It also does not try to transform its results into a “nice” form, either. However, Maxima
provides a couple of commands that try to do particular simplifications or transformations of an
expression. Each of these applies several rules which embody conventional notions of simplic-
ity. Simplification of expression is quite a difficult job for a computer algebra system even though
there are established routines for standard simplification procedures.

Products of sums can be multiplied out by means of expand and ratexpand. To the contrary one
can factor an expression into irreducible terms (which are called prime, e.g., prime numbers).

(%i1) (x+y)*(x-y);

(%o1) (x− y) (x + y)

(%i2) expand(%);

(%o2) x2 − y2

(%i3) factor(%);

(%o3) −(y− x) ∗ (y + x)

1In the worse case you might receive an erroneous results that looks correct at a first glance.

22

3.2 Expand, Factor, and Simplify

(%i4) (x+y)^4;

(%o4) (y + x)4

(%i5) expand(%);

(%o5) y4 + 4 x y3 + 6 x2 y2 + 4 x3 y + x4

(%i6) factor(%);

(%o6) (y + x)4

(%i7) factor(-8*y-4*x+z^2*(2*y+x));

(%o7) (2 y + x) (z− 2) (z + 2)

(%i8) factor(20!);

(%o8) 218 ∗ 28 ∗ 54 ∗ 72 ∗ 11 ∗ 13 ∗ 17 ∗ 19

Numerator of rational terms are also split into their respective terms. Command ratexpand also
cancels out common divisors in rational expressions.

(%i9) e: (x+y)^2/(x^2-y^2);

(%o9)
(y + x)2

x2 − y2

(%i10) expand(e);

(%o10)
y2

x2 − y2 +
2 x y

x2 − y2 +
x2

x2 − y2

(%i11) ratexpand(e);

(%o11) − y
y− x

− x
y− x

Maxima provides commands to find equivalent but simpler expression for more complex one.
Thus it applies several rules which embody conventional notions of simplicity. Simplification of
expression is quite a difficult job for a computer algebra system even though there are established
routines for standard simplification procedures.

(%i12) (x^2-y^2)/(x+y)^2;

(%o12)
x2 − y2

(y + x)2

(%i13) ratsimp(%);

(%o13) −y− x
y + x

(%i14) (%e^x-1)/(1+%e^(x/2));

(%o14)
%ex − 1

%ex/2 + 1
(%i15) radcan(%);

(%o15) %ex/2 − 1

Commands num and denom allow to decompose a ratio into its numerator and its denominator.

(%i16) num(a/b);

(%o16) a

(%i17) denom(a/b);

(%o17) b

23

3 Symbolic Computation

(%i18) (3+cos(x)^4+8*sin(x)+4*(cos(x)^2-sin(x)^2)
-6*cos(x)^2*sin(x)^2+sin(x)^4)/(8*cos(x)^3);

(%o18)
3 + cos(x)4 + 8 sin(x) + 4 (cos(x)2 − sin(x)2)− 6 cos(x)2 sin(x)2 + sin(x)4

8 ∗ cos(x)3

(%i19) trigsimp(%);

(%o19)
sin(x) + cos(x)4

cos(x)3

Important
Maxima offers many more tools to simplify, expand, factor, and contract symbolic expressions.B
System variables allow a fine-grained adjustment of manipulation. Some of these methods are
offered by wxMaxima’s menubar. However, it is beyond the scope of this tutorial to describe all
the details.

3.3 Verbs and Nouns

operator Description

'expr Prevents evaluation of expression expr
''expr Causes evaluation of expression expr

Maxima distinguishes between nouns and verbs. A verb is an operator which can be executed.
A noun is an operator which appears as a symbol in an expression, without being executed. By
default, function names are verbs.

The single quote operator ' prevents evaluation of an expression. This can be useful if one needs
to “mask” a global variable. Applied to a function call it returns the noun form of the function call.

(%i1) y: 2;

(%o1) 2

(%i2) 'y^2 = y^2;

(%o2) y2 = 4

(%i3) f(x):= x^2;

(%o3) f (x) := x2

(%i4) f(a);

(%o4) a2

(%i5) 'f(a);

(%o5) f (a)

The quote-quote operator '' (two single quote marks) causes evaluation of an expression expr
when evaluation is otherwise suppressed, such as in function definitions. The value of expr is
then substituted for expr in the input expression. Applied to the operator of an expression, the
quote-quote operator changes the operator from a noun to a verb (if it is not already a verb).

(%i6) f(x):= x^2+y^2;

(%o6) f (x) := x2 + y2

(%i7) f(x):= x^2+''y^2;

(%o7) f (y) := x2 + 22

24

3.3 Verbs and Nouns

This is quite convenient when the result of a previous computation should be used as function
body of a new function. In the following example, we define a function f and its derivative fx
which we compute by means of command diff2.

(%i8) f(x):= exp(-x^2);

(%o8) f (x) := exp(−x2)

(%i9) fx(x):= ''(diff(f(x),x));

(%o9) f x(x) := −2 x %e−x2

Important
Notice that the single quote operator ' and the quote-quote operator '' act on the next variable B
or function only. In particular 'f(x) only prevents symbol f from being evaluated but not its
argument x. When the respective operator should prevent or cause evaluation for a more complex
expression, e.g. of f(x), then it must be enclosed in parentheses, '(f(x)).

The following examples demonstrates the behavior. Here only the symbol diff is evaluated (with
value diff) not the entire expression diff(f(x),x) as in the example above.

(%i10) f(x):= exp(-x^2);

(%o10) f (x) := exp(−x2)

(%i11) fx(x):= ''diff(f(x),x);

(%o11) f x(x) := di f f (f (x), x)

Here is a simple example for the quote operator.

(%i12) y: 2$

(%i13) f(x):= exp(-x^2)$

(%i14) f(y);

(%o14) %e−4

(%i15) 'f(y);

(%o15) f (2)

(%i16) f('y);

(%o16) %e−y2

(%i17) '(f(y));

(%o17) f (y)

2See Sect. 7.3 for command diff.

25

3 Symbolic Computation

3.4 Logical Operators

operator Description

= Equation operator
equal(x,y) Equivalence
Negation of equation operator
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
and Conjunction operator
or Disconjunction operator
not Negation operator
true True statement
false False statement
unknown Statement with unknown logical value
is(x) Attempts to determine whether predicate x is true or false

Operator is attempts to determine the logical value of a predicate. If the predicate is provably
then the respective value true or false is returned. Otherwise, is returns unknown.

The operators and, or, and not force evaluation of its operands, i.e., similar to a call to is.

(%i1) 3>4;

(%o1) 3 > 4

(%i2) is(3>4);

(%o2) f alse

(%i3) not(3>4);

(%o3) true

(%i4) 3>4 or 7<8;

(%o4) true

(%i5) is(x>0);

(%o5) unknown

Important
Operators = and # test for syntactical equality, in contrast to the equivalence operator equal.B
Expressions can be equivalent and not syntactically equal.

(%i6) a: (x+1)*(x-1);

(%o6) (x− 1) (x + 1)

(%i7) b: x^2-1;

(%o7) x2 − 1

(%i8) is(a=b);

(%o8) f alse

(%i9) is(equal(a,b));

(%o9) true

26

3.5 Conditional Evaluation

3.5 Conditional Evaluation

operator Description

if ... then ... else ... Conditional evaluation

Functions like the absolute value of (real) number are defined by different function terms for dif-
ferent subintervals of its domain, e.g.,

abs(x) =
{

x, if x ≥ 0,
−x, if x < 0.

We can implement such functions using conditional evaluation

if (cond) then (val_1) else (val_0).

There cond is a logical statement composed by means of logical operators (Sect. 3.4). If condition
code is proved to be true, then the expression evaluates to val_1. Otherwise, if it is false, then
the expression evaluates to val_0. If is(cond) is unknown, then the whole expression remains
unevaluated.

(%i1) fabs(x):= if (x>=0) then x else -x;

(%o1) i f x >= 0 then x else −x

3.6 Assumptions and Facts

operator Description

assume(pred) Adds predicate pred to list of “facts”
declare(x,prop) Assigns property prop to symbol x
facts() Retrieve list of assumptions
forget(pred) Remove assumption pred

We work with symbols since we are interested in general solutions to our problems. Neverthe-
less, we have some knowledge about the variables and parameters in our models. For example,
the arguments of a utility function are assumed to be nonnegative real numbers. The parameter
of a Cobb-Douglas production function fulfill some inequalities (to ensure concavity). However,
when doing symbolic computations Maxima always assumes the general case and thus often does
not provide a solution (e.g., because there might be infinitely many in the field of complex num-
bers). Moreover, for some computations (e.g., when we want to compute the integral

∫
xadx) Max-

ima asks about further properties of given symbols (e.g., whether a − 1 is zero or not in
∫

xadx),
because otherwise Maxima cannot give an closed form solution. For this purpose we can make
assumptions about particular symbols. Thus there is no need for Maxima to ask.

Assumptions can be added as an logical expressions using assume. When Maxima evaluates a
logical expression, then it takes care about our assumptions. Command facts retrieves the list of
our assumptions. We can use forget to remove assumptions again.

27

3 Symbolic Computation

(%i1) is(x>=0);

(%o1) unknown

(%i2) is(U(x)>=0);

(%o2) unknown

(%i3) assume(x>0,U(x)>0);

(%o3) [x > 0, U(x) > 0]

(%i4) is(x>=0 and U(x)>=0);

(%o4) true

(%i5) facts();

(%o5) [x > 0, U(x) > 0]

It is possible to add more assumptions and remove some of them.

(%i6) assume(y>0);

(%o6) [y > 0]

(%i7) facts();

(%o7) [x > 0, U(x) > 0, y > 0]

(%i8) forget(U(x)>0);

(%o8) [U(x) > 0]

(%i9) facts();

(%o9) [x > 0, y > 0]

Important
When we need to assume equality, then we must use equal but not the equality operator =.B

(%i10) assume(a=1);
assume: argument cannot be an '=' expression; found a=1
assume: maybe you want 'equal'.
-- an error. To debug this try: debugmode(true);

(%i11) assume(equal(a,1));

(%o11) [equal(a, 1)]

Unfortunately Maxima is not very clever in deducing the logical value of a statement.

(%i12) assume(x+y<1);

(%o12) [−y− x + 1 > 0]

(%i13) facts();

(%o13) [x > 0, y > 0,−y− x + 1 > 0]

(%i14) is(x*y>0);

(%o14) true

(%i15) is(x<1);

(%o15) unknown

However, Maxima does detect redundant and inconsistent predicates (as long as is(pred) is
evaluated to false).

28

3.7 Local Evaluations

(%i16) facts();

(%o16) [x > 0, y > 0,−y− x + 1 > 0]

(%i17) assume(x>0);

(%o17) [redundant]

(%i18) assume(x<0);

(%o18) [inconsistent]

(%i19) facts();

(%o19) [x > 0, y > 0,−y− x + 1 > 0]

In addition to state assumptions Maxima allows to assign properties to symbols. For example we
may declare symbol n to be an integer.

(%i20) declare(n,integer);

(%o20) done

(%i21) facts();

(%o21) [x > 0, y > 0,−y− x + 1 > 0, kind(n, integer)]

3.7 Local Evaluations

Command Description

ev(x,envir) Evaluate expression x with in given environment envir

Maxima uses a couple of system variables for a fine-grained control of the system. E.g., in Sect. 2.11
we have seen that the variable fpprec controls the number of significant digits in bigfloat num-
bers. Now suppose that we want to compute the first 50 digits of Euler’s number e but not want to
modify fpprec globally. This can be performed by changing its value locally within function ev.

(%i1) ev(bfloat(%e), fpprec:100);

(%o1) 2.7182818284590452353602874713526624977572470937b0

If ev is not used as part of another expression, e.g., in a function, then it is sufficient just to type its
arguments.

(%i2) bfloat(%e), fpprec:100;

(%o2) 2.7182818284590452353602874713526624977572470937b0

29

3 Symbolic Computation

— Exercises

12. Multiply out (a + b)10.

13. Factor a10 − b10 and a10 + b10.

14. Simplify
a10 − b10

a2 − b2 .

15. Find all solutions x of

x2 + 2 (sin(α) + cos(α)) x + sin(2 α) + 1 = 0.

16. Define function sgn(x) the determines the sign of number x. Compute sgn(x) for −2, 0,
and π.

sgn(x) =

 −1, if x < 0,
0, if x = 0,
1, if x > 0.

17. Add a minimal set of predicates to your facts such that α > 0, β > 0, α + β < 1, α β > 0,
(α− 1) (β− 1) > 0, α (1− α) > 0, β (1− β) > 0, and α (α− 1) < 0, β (β− 1) < 0 evaluate all to
true. What are then the results of is(alpha>-1/2), is(alpha>1/2) and is(alpha>1)?
Remove your assumptions when you are done.

18. Define function numeric(x,prec) which evaluates expression x in bigfloat with precision
prec (number significant digits). Use this function and compute the first 30 digits of 1/e.

30

4 Plotting

Plotting graphs of univariate an bivariate functions is an important tool to investigate the proper-
ties of such functions. For this task Maxima uses external plotting packages. Thus one can choose
among two powerful plotting devices1:

• gnuplot (the default)
See http://www.gnuplot.info/ for further information.

• xmaxima (formerly called openmath)

Maxima’s plotting functions calculate a set of points and pass them to the plotting package to-
gether with a set of commands. All these points and plotting commands are saved into the file
maxout.gnuplot which is located in your home folder.

Within wxMaxima you can easily switch between these plotting packages when the plot menu is
used. Notice that both packages, gnuplot and xmaxima open a window that shows the requested
plot. Therefore, wxMaxima offers a third device

• inline

that draws the plots into the notebook rather than a separate window. By right clicking on the
inline plot and choosing a destination folder you can save it as an image file.

In this manual we only describe package gnuplot.

The standard commands for plotting in Maxima are plot2d and plot3d. For the inline device
wxMaxima uses special functions wxplot2d and wxplot3d, respectively.

In general there are three types of plots: explicit, implicit, and parametric plots. In fact the syntax
listed in the sections below are nearly identical.

1. Explicit: The function is given in terms of the input values. For example the functions y =
f (x) = x2 defined in R, or z = f (x, y) = sin(x y) defined over the rectangle [−2, 2]× [−3, 2].

2. Implicit: The function is implicitly given by solving an equation of the form F(x, y) = 0. An
example is x2 + y2 − 1 = 0 in the unit square [0, 1]× [0, 1].

3. Parametric: The plotted curve is given as a path, that is a map (0, 1)→ R2. For example, the
parabola y = x2 can be parametrized by using a free parameter named t, and setting x = t
and y = t2.

1Do not be afraid. Both packages are installed together with Maxima.

31

4 Plotting

4.1 Plots in 2D

4.1.1 Explicit: Univariate Functions

Command Description

plot2d(funct,x_range,opts) Plot graph of a function of one variable

Option Default Description

[x,x_min,x_max] mandatory Domain x_range of variable x
[y,y_min,y_max] automatic Range of vertical axis (“y-axis”)

The most common use of plot2d is to draw the graph of a function. The first argument funct is
an expression that describes the function in question. The second argument x_range is manda-
tory and is a list [x, x_min, x_max] that contains the name of the variable (usually x but other
variable names are also possible), and the minimum and maximum values, x_min and x_max,
respectively. In addition options opts may be given as third, forth, . . . , argument, each of which is
a list enclosed in square brackets, see Sect. 4.3.

(%i1) plot2d(sin(x), [x,-%pi,%pi]);

(%o1)

-1

-0.5

 0

 0.5

 1

-3 -2 -1 0 1 2 3

si
n
(x

)

x

The range for the vertical axis can be adjusted by an optional argument with the form[y, y_min,
y_max] (the keyword y is always used for the vertical axis). If that option is used, the plot will show
that exact vertical range, independently of the values reached by the plot. If the vertical range is
not specified, it will be set up according to the minimum and maximum values of the second
coordinate of the plot points.

32

4.1 Plots in 2D

(%i2) plot2d(sin(x), [x,-%pi,%pi], [y,-2,2]);

(%o2)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

si
n
(x

)

x

4.1.2 Discrete Points

Command Description

plot2d([discrete,[x_coords,...],[y_coords,...]],opts) Plot points
plot2d([discrete,[[x_coord,y_coord],...],opts) Plot points

Option Default Description

style lines Plotting style

A plot can also be defined in discrete form, i.e., a set of points with given coordinates. A discrete
plot is defined by a list starting with the keyword discrete, followed by one or two lists of values.
If two lists are given, they must have the same length; the first list will be interpreted as the x
coordinates of the points to be plotted and the second list as the y coordinates. If only one list is
given after the discrete keyword, each element on the list should also be a list with two values that
correspond to the x and y coordinates of a point.

The first example shows the points joined by lines.

(%i3) plot2d([discrete, [10,20,30,40,50], [.6,.9,1.1,1.3,1.4]]);

(%o3)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

y

x

33

4 Plotting

The second example just plots the points. Notice that this time we have given the points in single
list where each point is a list of two elements.

(%i4) plot2d([discrete, [[10,.6],[20,.9],[30,1.1],[40,1.3],[50,1.4]]],
[style,points]);

(%o4)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

y

x

4.1.3 Parametric Plots

Command Description

plot2d([parameter,x_coord,y_coord,t_range],opts) Parametric plot

Option Default Description

[t,t_min,t_max] mandatory Domain t_range of “parameter” t
nticks 29 Number of points used for plot

A parametric plot is defined by a list starting with the keyword parametric, followed by two ex-
pressions which are functions of the “parameter” for each coordinate, and a range for the param-
eter. The range for the parameter must be a list with the name of the parameter (usually t but
other names are also possible) followed by its minimum and maximum values. The plot will show
the path traced out by the point with coordinates given by the two expressions or functions, as
parameter t increases from t_min to t_max.

Option nticks sets the number of points shown in the plot. It controls the smoothness of the
parametric curve.

34

4.1 Plots in 2D

(%i5) plot2d([parametric, t*sin(2*%pi*t), t*cos(2*%pi*t), [t,0,2],
[nticks, 1000]]);

(%o5)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

t*
co

s(
2

*%
p
i*

t)

t*sin(2*%pi*t)

4.1.4 Combining Plots

Command Description

plot2d([plot_1,...,plot_n],opts) Displays several plots

It is possible to combine two or more plots into one picture. The plots have to be given as a list.
Here is an example which combines the graph of f (x) = x3 and a parametric plot of a circle.

(%i6) plot2d([x^3, [parametric,cos(t),sin(t),[t,-%pi,%pi]]],
[x,-1,1]);

(%o6)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

x

x^3
cos(t), sin(t)

35

4 Plotting

4.1.5 Implicit: Univariate Functions

Command Description

implicit_plot(funct,x_range,y_range,opts) Implicit plot

For plotting implicit functions we must load the package implicit_plot.

The syntax of an implicit plot is a little bit different from command plot2d. It requires that inter-
vals for both variables involved in the relation are be specified.

(%i7) load(implicit_plot)$

(%i8) implicit_plot(x^2-y^3+3*y-1=0, [x,-4,4], [y,-4,4]);

(%o8)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

y

x

4.2 Plots in 3D

4.2.1 Graphs of Bivariate Functions

Command Description

plot3d(funct,x_range,y_range,opts) Plot graph of bivariate function funct

In general the plot commands for plots in three dimensions are similar to the command in two
dimensions. We focus on graphs of bivariate functions. The only modification needed is the ad-
dition of the second variable. Furthermore, the mouse can be used to rotate the plot looking at
the surface from view points. Just click with your mouse on the image and keep the mouse button
pressed while moving the mouse. (Unfortunately it depends on your OS which mouse button has
to be used.)

36

4.2 Plots in 3D

(%i1) plot3d(2^(-x^2+y^2),[x,-3,3],[y,-2,2]);

(%o1)

-3 -2 -1 0 1 2 3 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

z

2^(y^2-x^2)

x

y

z

4.2.2 Parametric Plots

Command Description

plot3d([x,y,z],s_range,t_range,opts) Parametric plot in 3d

The next example demonstrates a parametric plot. The surface is given by three expression for
the three coordinates as functions of two “parameters” often called s and t. It shows the famous
Möbius strip.

(%i2) moeb_x: cos(s)*(3+t*cos(s/2))$

(%i3) moeb_y: sin(s)*(3+t*cos(s/2))$

(%i4) moeb_z: t*sin(s/2)$

(%i5) plot3d([moeb_x,moeb_y,moeb_z], [s,-4,4], [t,-4,4]);

(%o5)

-4 -2 0 2 4 6 8 -6
-4

-2
 0

 2
 4

 6

-4
-3
-2
-1
 0
 1
 2
 3
 4

z

Parametric function

x

y

z

37

4 Plotting

4.2.3 Contour Plots

Command Description

contour_plot(funct,x_range,y_range,opts) Contour plot

A contour plot consists of curves where the given function yields the same value. Unfortunately,
one has to pass options to gnuplot to set the number of contour levels. The contour plot in the
following example shows 12 levels.

(%i6) contour_plot(u^3+v^2, [u,-4,4], [v,-4,4], [legend,false],
[gnuplot_preamble,"set cntrparam levels 12"]);

(%o6)

-4 -3 -2 -1 0 1 2 3 4

u

-4

-3

-2

-1

 0

 1

 2

 3

 4

v

4.3 Plot Options

Maxima offers a vast set of options creating plots. Thus we only describe the most important
ones. Please see Section “Plotting” in the Maxima manual. Options are always given as list with
the option name as its first entry: [opt, value, ...].

4.3.1 Annotation

Option Default Description

[xlabel, "text"] "x" Label for x axis
[ylabel, "text"] "y" Label for y axis
[zlabel, "text"] "z" Label for z axis

With these options one can insert any text for the labels of the two (plot2d) and three axes
(plot3d), respectively.

Option Default Description

[legend, "text1", "text2", ...] automatic Labels for curves are shown
[legend, false] suppress legend

When a more than one curve is shown in plot (two or more graphs or points in plot2d, or for
contour_plot), then these curves are drawn with different lines (usually in different colors). A
legend in the right upper labels these lines. By default, the names of the expressions or functions
will be used, or the words discrete1, discrete2, . . . , for discrete sets of points. Displaying the
legend can be suppressed by means of [legend,false].

38

4.3 Plot Options

4.3.2 Plotting Range

Option Default Description

[x, x_min, x_max] mandatory Range for x coordinate
[y, y_min, y_max] Range for y coordinate
[z, z_min, z_max] optional Range for z coordinate

When a function is plotted using plot2d, then the range for the variable is obligatory. The range of
the vertical axes is automatically computed, it will be set up according to the minimum and max-
imum values of the second coordinate of the plot points. This may sometimes not appropriate.
Then the vertical range can be adjusted using option y.

Similarly, when using plot3d the ranges of two variables must be given and the range of the third
coordinate (z) is computed automatically or my be adjusted using option z.

Notice that the variables of the functions given to plot2d and plot3d need not be called x and
y. Then options x and y can be still used to adjust the plotting range of the first coordinates. In
particular, the plotting range may be even larger than the given function plot.

4.3.3 Smoothness Parameters

Option Default Description

[nticks, integer] 29 Initial number of points in plot2d

When plotting functions with plot2d, we can control the smoothness of the drawn curve by set-
ting the number of points by means of option nticks. For explicit plots this is just the initial
number of plots that will be automatically increased when the given function has great variation.
For parametric plots this is the actual number of points that will be shown for the plot. This often
can result in curve that does not look as smooth as expected. In this case it is recommended to
increase nticks.

Option Default Description

[grid, integer, integer] [30,30] Number of grid points in plot3d

The command plot3d evaluates the given function over a given grid. This grid can be specified by
setting the number of points to use in the x and y directions for three-dimensional plotting. May
be warned that increasing these numbers may result in very long computation times.

4.3.4 Plotting Styles

Option Default Description

[style, type_1, type_2, ...] automatic Plotting styles
[style, [type_1], [type_2], ...] automatic Plotting styles

Gnuplot selects some style for each function or set of data points such these can be distinguished
in one plot. However, this may always what your want. E.g., you want to join your data points with
line segments. Option style allows to specify such styles manually. For each function or data set
a style must be given. Each style can be either

lines for line segments,
points for isolated points,
linespoints for segments and points, or
dots for small isolated dots.

39

4 Plotting

The first three styles accept an optional parameter2 (integer) that specifies the line width and point
size, respectively. Then each style has the be a list: [lines,2] sets the style to lines of width 2.

Option Default Description

[color, color_1, color_2,...] automatic Line/point color

In plot2d and implicit_plot we can defines the color (or colors) for the various curves using
option color. The colors for each curve are taken from the given list in sequential order.

In plot3d, this option defines the colors used for the mesh lines of the surfaces, when no palette
is being used; one side of the surface will have color color_1 and the other color_2 (or the same
color if there is only one color).

Available colors are: blue, red, green, magenta, black, cyan.

Option Default Description

[point_type, type_1, type_2, ...] automatic Point type

When plotting points we can choose among a list of possible point types. The point type for each
data set are taken from the given list in sequential order.

Available types are: bullet, circle, plus, times, asterisk, box, square, triangle, delta,
wedge, nabla, diamond, lozenge.

4.3.5 Meshes and Shading

Option Default Description

[mesh_lines_color, color] black Color used for drawing mesh lines
[mesh_lines_color, false] Switch off mesh lines
[palette, [palette_1], ...] Colors for shading surface
[palette, false] Switch of shading of surface

Command plot3D uses two technique to draws a surface: It draws a mesh according to the given
grid bounds. Then the squares of this mesh are filled using a given color palette. Thus the colors
indicate function values (as on any map of a mountain) or it may mimic shading.

The colors of the surface are given by option palette. Each palette is a list with a keyword fol-
lowed by four numbers. The keyword specifies which of the three attributes (hue, saturation
or value) will be increased according to the values of z. The first three numbers, which must be
between 0 and 1, define the basis color to be assigned to the minimum value of z. The last number
indicates the increase corresponding to the maximum value of z.
Default for the first plot is: [hue, 0.25, 0.7, 0.8, 0.5]

If palette is given the value false, the surfaces will not be shaded but represented with a mesh
of curves only. In that case, the colors of the lines will be determined by the option color (see
Sect. 4.3.4).

Otherwise the color of mesh lines is set my option mesh_lines_color. It accepts the same colors
as for the option color. It can also be given a value false to eliminate completely the mesh lines.

4.3.6 Examples for plot2d

In our first example we plot two functions denoted by first function and second function.
Labels for x and y coordinates are abscissa and ordinate, respectively. We use 100 initial points

2In fact there are even more optional parameters, see plot option style in Section Plotting of the manual for more details.

40

4.3 Plot Options

for each plot and restrict the vertical axis to the interval [0, 1.5]. The first function is plotted by a
thick magenta line while the second function is plotted by a thin blue one.

(%i1) plot2d([exp(-x^2/2), sqrt(%e)*exp(-x)], [x,0,2],
[y,0,1.5], [nticks, 100],
[legend,"first function", "second function"],
[xlabel, "abscissa"], [ylabel, "ordinate"],
[style, [lines,10],[lines,1]], [color, magenta,blue]);

(%o1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

o
rd

in
a
te

abscissa

first function
second function

The next example shows data points together with an approximating function.

(%i2) data_list: [[0,-4], [0.5,-1], [1,0.25], [1.2,0.4], [1.5,0.1],
[1.7,0.3], [2,1], [2.2,0.75], [3,1.1]]$

(%i3) plot2d([log(x), [discrete, data_list]], [x,0,5],
[legend, "theory", "experiment"],
[style, [line,2], [points]],
[color, blue, red], [point_type, triangle]);

(%o3)

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 1 2 3 4 5

x

theory
experiment

4.3.7 Examples for plot3d

In the first example we only use a mesh but do not use shading. We use blue color for the upper
side of the surface and red for its lower side. (When we only gave one color, then both sides are

41

4 Plotting

plotted with that color.)

(%i4) plot3d(sin(x*y), [x,-2,2], [y,-2,2],
[palette,false], [color, red, blue]);

(%o4)

sin(x*y)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

y
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

z

The next example shows a plot without mesh. In addition the shading is different from the default
setting and we use a finer grid.

(%i5) plot3d(sin(x*y), [x,-2,2], [y,-2,2], [grid, 50,50],
[mesh_lines_color,false], [palette, [hue, 0.5,0.7,0.6, 0.2]]);

(%o5)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

z

sin(x*y)

x

y

z

42

4.3 Plot Options

The last example shows the influence of option grid. Here we use a very coarse mesh.

(%i6) plot3d(sin(x*y), [x,-2,2], [y,-2,2], [grid, 5,5]);

(%o6)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

z

sin(x*y)

x

y

z

— Exercises

19. Plot the graph of the density of the standard normal distribution, f (x) = 1√
2π

e−
x2
2 , in the

range [−3, 3]. Label the y axis with density.

20. Plot the graphs of the density of the standard normal distribution, f (x) = 1√
2π

e−
x2
2 , and

the Cauchy distribution, g(x) = 1
π(1+x2)

, in the range [−3, 3]. Use a thick red line for the

Cauchy distribution, and a thin black line for the normal distribution. The lines should be
annotated with Gaussian distribution and Cauchy distribution, respectively. The
vertical axis should be labeled density.

21. Plot the graphs of the power functions xn for n = −2,−1, 0, 1, 2 in the range [0, 2].

22. We are given the set of data points {(.25,−1.03), (.5,−0.63), (.75,−0.28), (1., 0.), (1.25, 0.22),
(1.5, 0.38), (1.75, 0.47)}. Plot these points together with function log(x) in the range [0, 2].
Choose an appropriate range for the vertical axis.

23. Plot the curve t 7→
(

sin(4π t)
cos(4π t)

)
for t ∈ [0, 4]. What do you see and what do you expect?

24. Plot the graph of the binormal distribution, f (x, y) = 1
2π exp

(
− 1

2 (x2 + y2)
)

.

(a) Use default setting.

(b) Use a blue mesh, no shading.

(c) Use a mesh that is blue on the upper surface and cyan on the lower one.

(d) Use shading only but no mesh.

43

5 The Draw Package

The abilities of Maxima’s plot command (see Chap. 4) are a bit restricted and do not satisfy all
needs. Moreover, additional parameters for the underlying plotting routine have a syntax that is
different from that of Maxima.

Package draw provides a more powerful and flexible plotting (and drawing) tool. In addition more
complex pictures can be created by means of vector graphics1. However, it only supports the Gnu-
plot plotting routine. It thus is a (powerful) Maxima–Gnuplot interface. Before we can use the
package it must be loaded as described in Sect. 2.17 on p. 18.

(%i1) load(draw)$

It out of the scope of this tutorial to give a detailed description of the package. Thus we refer to the
Maxima online help and the corresponding pages in Maxima’s online manual which also includes
a link to more elaborate examples.

The layout of this chapters roughly follows that of Chap. 4 (Plotting).

5.1 Draw Scenes

Command Description

gr2d(opts,graphic_objects) Builds an object for a 2D scene
gr3d(opts,graphic_objects) Builds an object for a 3D scene
draw(scenes,opts) Plot (a series of) scenes
draw2d(opts,graphic_object) Shortcut for draw(gr2d(opts,graphic_object))
draw3d(opts,graphic_object) Shortcut for draw(gr3d(opts,graphic_object))

Roughly spoken the draw package works as follows. Scenes are described in gr2d or gr3d objects,
which are then passed to function draw. If more than one scene is described, a multiplot will be
generated. Thus it is possible to construct quite complex pictures. If only one scene is build, then
draw2d(...) and draw3d(...) can be used as these are equivalent to draw(gr2d(...)) and
draw(gr3d(...)), respectively.

Type ?gr2d and ?gr3d to get a list of available graphic objects in two and three dimensions.

Options for these functions (graphics options) are given as key=value pairs.

Scenes in the gr2d and gr3d constructor are interpreted sequentially: graphic options affect
those graphic objects placed on its right. Some graphic options affect the global appearance of
the scene and may be located at any position or given to the draw command (global options).

1In Vector graphics a figure is composed of elementary geometric objects like lines, polygons, circles, arcs, etc., which are
stored by the coordinates of their characteristic points and characteristic parameters like the radius of a circle.

45

5 The Draw Package

5.2 Graphic Objects in 2D

Two dimensional scenes can be build by means of the gr2d scene constructor. There are a couple
of graphic objects available. For plotting graphs of functions we have:

• explicit: The function is given in terms of the input values, e.g., f(x):=xˆ2.

• implicit: The function is implicitly given by the solution of an equation of the form F(x, y) =
0, e.g., xˆ2+yˆ2-1=0.

• parametric: The plotted curve is given as a path in R2, e.g., [sin(t*%pi),cos(t*%pi)].

Besides these there are some low level graphic objects for adding lines or annotating graphs. The
following objects have self-explanatory names. For details use Maxima’s online help, e.g., ?points.

• label: Places text on the plot.

• bars

• ellipse

• points

• polygon

• quadrilateral

• rectangle

• triangle

• vector: Draws an arrow.

• region: Plots a region on the plane defined by inequalities.

• image: Plot a bitmap graphic.

In the following we give a short description of the most important graphic objects.

5.2.1 Explicit Functions

Graphic Object Description

explicit(func, x,xmin,xmax) Explicit function with variable x in 2D

Option Default Description

xrange=[xmin,xmax] automatic Range of horizontal axis (“y-axis”)
yrange=[ymin,ymax] automatic Range of vertical axis (“y-axis”)
color black Set color of curve

Plots of explicit functions can be created by means of graphic object explicit. Notice that in
contrast to the plot2d command, the domain argument are not given as a list but as arguments
to the explicit call. Of course the argument need not be called x.

46

5.2 Graphic Objects in 2D

(%i1) draw2d(explicit(sin(x), x,-%pi,%pi));

(%o1)

-1

-0.5

 0

 0.5

 1

-3 -2 -1 0 1 2 3

The range for the horizontal and vertical axes are computed automatically from the given do-
main of the function and the range of the function values. They can be adjusted by the respective
options xrange and yrange. Notice that these are global options and may be specified at any
position.

The color of the drawn curve can be specified by option color. This is a local option and thus it
only has affect on graphic objects that are placed in its right in the argument list of grd2d. Thus
in the following example color has to be set in before adding the explicit function object.

(%i2) draw2d(color=blue, explicit(sin(x), x,-%pi,%pi),
xrange=[-4,4], yrange=[-2,2]);

(%o2)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -3 -2 -1 0 1 2 3 4

47

5 The Draw Package

5.2.2 Implicit Functions

Graphic Object Description

implicit(feq, x,xmin,xmax, y,ymin,ymax) Implicit function given by equation feq
with variables x and y in 2D

Implicit functions are defined by an equality relation of the form F(x, y) = 0, e.g., xˆ2-yˆ3+3*y-1=0.
It is given similar to the explicit functions but in contrast toexplicit, implicit requires that the
domain for both variables involved have to be specified. The first variable listed in the implicit
call will be plotted on the x-axis and the second variable is plotted on the y-axis. Of course the two
arguments need not be called x and y.

(%i3) draw2d(implicit(x^2-y^3+3*y-1=0, x,-4,4, y,-4,4));

(%o3)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

y

x

5.2.3 Parametric Plots

Graphic Object Description

parametric(xfun,yfun, t,tmin,tmax) Parametric function with parameter t in 2D

Option Default Description

nticks=integer 29 Number of points used for plot

A parametric plot is defined by a pair of expressions for the x and y coordinates, respectively, and
a variable (called parameter) for each of these two functions (often called t but other names are
also possible). The plot will show the path traced out by the point with coordinates given by the
two expressions as parameter t increases from tmin to tmax.

Option nticks sets the number of points shown in the plot. It controls the smoothness of the
parametric curve.

48

5.2 Graphic Objects in 2D

(%i4) draw2d(color=blue, nticks=1000,
parametric(t*sin(2*%pi*t),t*cos(2*%pi*t), t,0,2));

(%o4)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1

5.2.4 Discrete Points

Graphic Object Description

points([[x_coord,y_coord],...]) Points in 2D
points([x_coords,...],[y_coords,...]) Points in 2D

Option Default Description

point_type plus (1) Type of point
point_size 1 Size of plotted point.
points_joined false If true, then the points are joined by lines.

A plot can also be defined in discrete form, i.e., a set of points with given coordinates. These
can be given either by a list of lists of values [x,y], or by two lists of equal length of the x and y
coordinates of each point, respectively.

By default Maxima produces a scatter plot of the points. The style and size of the plotted points
can be changed by the respective optionspoint_type andpoint_size. Point types can be spec-
ified either by a number or the name of the plot style: none (-1), dot (0), plus (1), multiply (2),
asterisk (3), square (4), filled_square (5), circle (6), filled_circle (7), up_triangle
(8), filled_up_triangle (9), down_triangle (10), filled_down_triangle (11), diamant
(12), filled_diamant (13).

49

5 The Draw Package

The first example shows a scatter plot where each point is indicated by a blue filled circle. The
points are given as a list of 2-tuples.

(%i5) draw2d(color=blue, point_type=filled_circle, point_size=2,
points([[10,.6],[20,.9],[30,1.1],[40,1.3],[50,1.4]]));

(%o5)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

In the second example the points are joined by lines. Moreover, we suppress plotting a mark for
each of the points by using plot style none. The points are given as two lists of the x and y coordi-
nates, respectively.

(%i6) draw2d(color=blue, point_type=none, points_joined=true,
points([10,20,30,40,50],[.6,.9,1.1,1.3,1.4]));

(%o6)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 15 20 25 30 35 40 45 50

50

5.3 Graphic Objects in 3D

5.2.5 Combining Plots

Option Default Description

key="Text" "" (empty string) Name of function in the legend

It is possible to combine two or more graphic objects in one picture. These are just given as ar-
guments to the gr2d or draw2d call. Local graphic options may be given between the graphic
objects. Recall that these local options affect all those graphic objects that are placed on its right. B
Option key can be used to add the name of the function or other graphic objects into the legend
of the scene. Here is an example which combines the graph of f (x) = x3 (blue) and a parametric
plot of a circle (red).

(%i7) draw2d(color=blue,key="x^3", explicit(x^3, x,-1,1),
color=red,key="circle", parametric(cos(t), sin(t), t,-%pi,%pi));

(%o7)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

x3

circle

5.3 Graphic Objects in 3D

Most of what we have discussed in Sect. 5.2 about 2D graphics also applies here. Three dimen-
sional scenes can be build by means of the gr3d scene constructor. Its syntax is similar to that of
the gr2d. The main difference between these constructors is an additional third variable. Again
there are a couple of available graphic objects. For plotting graphs of functions we have:

• explicit: The function is given in terms of the input values, e.g., f(x,y):=xˆ2+yˆ2.

• implicit: The function is implicitly given by the solution of an equation of the form F(x, y, z) =
0, e.g., xˆ2+yˆ2+zˆ2-1=0.

Curves and surfaces in R3 can be produced by the following graphic objects:

• parametric: A parametric curve in R3, e.g., [sin(t*%pi),cos(t*%pi),t].

• parametric_surface: A parametric surface in R3.

Besides these there are some low level graphic objects for adding lines or annotating graphs. The
following objects have self-explanatory names. For details use Maxima’s online help, e.g., ?points.

• label: Places text on the plot.

51

5 The Draw Package

• mesh: Draws a quadrangular mesh in 3D.

• points

• quadrilateral

• triangle

• tube

• vector: Draws an arrow.

There are many, many options available for controlling the appearance of 3D graphics. Although
we will describe the most important ones, we refer to the Maxima manual.

Notice that the 3D plots the mouse can be used to rotate the plot looking at the surface from view
points. Just click with your mouse on the image and keep the mouse button pressed while moving
the mouse. (Unfortunately it depends on your OS which mouse button has to be used.)

5.3.1 Explicit Functions (Graphs of Bivariate Functions)

Graphic Object Description

explicit(func, x,xmin,xmax, y,ymin,ymax) Explicit function with variables x,y

Option Default Description

surface_hide false If true, hidden parts are not plotted
enhanced3d none Get colored surface
colorbox true If true, a color scale is drawn

Similarly to univariate functions we get the graph of a bivariate functions using graphical object
explicit. Note that in opposition to plot3d only a mesh in drawn.

(%i1) draw3d(explicit(2^(-x^2+y^2), x,-3,3, y,-2,2));

(%o1)

-3 -2 -1 0 1 2 3 -2-1.5-1
-0.5 0

 0.5 1
 1.5 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

52

5.3 Graphic Objects in 3D

Option surface_hide controls whether the surface is opaque or not. In the first case hidden
parts are not drawn.

(%i2) draw3d(explicit(2^(-x^2+y^2), x,-3,3, y,-2,2),
surface_hide=true);

(%o2)

-3 -2 -1 0 1 2 3 -2-1.5-1
-0.5 0

 0.5 1
 1.5 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

For colored surfaced one has to use option enhanced3d. The simplest way is to use value true.
For an advanced usage of this option we refer to the corresponding man page. The color scale can
be suppressed by mean of option colorbox=false.

(%i3) draw3d(enhanced3d=true, explicit(2^(-x^2+y^2), x,-3,3, y,-2,2));

(%o3)

-3 -2 -1 0 1 2 3 -2-1.5-1
-0.5 0

 0.5 1
 1.5 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0
 2
 4
 6
 8
 10
 12
 14
 16

53

5 The Draw Package

5.3.2 Implicit Functions

Graphic Object Description

implicit(feq, x,xmin,xmax, y,ymin,ymax, z,zmin,zmax) Implicit function

Implicit functions are defined by an equality relation of the form F(x, y, z) = 0. It is given similar
to the explicit functions but in contrast to explicit, implicit requires that the domain for
all three variables involved have to be specified. The next example shows the implicit function
x2 + sin(y) = z2 in the domain [−2, 2] × [−2, 2] × [−2, 2]. When enhanced3d is true, then the
colors of the surface depend on the z-values.

(%i4) draw3d(implicit(x^2+sin(y)=z^2, x,-2,2, y,-2,2, z,-2,2));

(%o4)

-2-1.5 -1-0.5 0 0.5 1 1.5 2 -2-1.5-1
-0.5 0

 0.5 1
 1.5 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

5.3.3 Parametric Plots

Graphic Object Description

parametric(xfun,yfun,zfun, t,tmin,tmax)
parametric_surface(xfun,yfun,zfun, s,smin,smax, t,tmin,tmax)

Graphic object parametric also allows to draw curves in 3D. However, in opposition to the 2D
graphic object (see 5.2.3 on p. 48) it now requires the additional argument zfun for the 3rd dimen-
sion. Here is a simple example that draws a helix.

54

5.3 Graphic Objects in 3D

(%i5) draw3d(nticks=500, parametric(sin(t),cos(t),t, t,0,6*%pi));

(%o5)

-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 -1-0.8-0.6-0.4-0.2 0
 0.2 0.4 0.6 0.8 1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

A parametric surface in 3D is defined by functions for the x, y, and z coordinates, respectively.
Each is a function in two variables (called parameters). Such a surfaces is represented by graphic
object parametric_surface. The next example shows the famous Möbius strip.

(%i6) moeb_x: cos(s)*(3+t*cos(s/2))$

(%i7) moeb_y: sin(s)*(3+t*cos(s/2))$

(%i8) moeb_z: t*sin(s/2)$

(%i9) draw3d(parametric_surface(moeb_x,moeb_y,moeb_z, s,-%pi,%pi,
t,-1,1));

(%o9)

-3 -2 -1 0 1 2 3 -3
-2

-1
 0 1

 2
 3

-1
-0.5

 0
 0.5

 1

55

5 The Draw Package

5.3.4 Contour Plots

Option Default Description

contour none Enable contour plots
contour_levels 5 Number or location of contour levels

Contour curves of a function f (x, y) are lines where f (x, y) = c for some constants c. In the draw
package, contour plots can be created for explicit functions using graphic option contour.
Possible values are:

• none: no contour lines are plotted.

• base: contour lines are projected on the xy plane.

• surface: contour lines are plotted on the surface.

• both: two contour lines are plotted: on the xy plane and on the surface.

• map: contour lines are projected on the xy plane, and the view point is set just in the vertical.

The number of contour lines can be controlled by graphic option contour_levels. It either can
be a single number for the number of levels, or can be given explicitly a list or set of numbers, see
its man page for details.

The following example reproduces the contour plot from Sect. 4.2.3 on p. 38. Notice that we have
to use map for this purpose.

(%i10) draw3d(explicit(x^3+y^2, x,-4,4, y,-4,4),
contour=map, contour_levels=12);

(%o10)

 60
 40
 20
 0

 -20
 -40
 -60

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

 0

 1

 2

 3

 4

In addition we can also draw contour lines directly on the surface of the function graph as well
on the base (the xy plane), or both. Here is an example for both with function f (x, y) = x2 + y2.

56

5.3 Graphic Objects in 3D

(%i11) draw3d(explicit(x^2+y^2, x,-4,4, y,-4,4),
contour=both, contour_levels=15);

(%o11)

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
 0
 5

 10
 15
 20
 25
 30

 30
 25
 20
 15
 10
 5

5.3.5 Discrete Points in 3D

Graphic Object Description

points([[x_coord,y_coord,z_coord],...]) Points in 3D
points([x_coords,...],[y_coords,...],[z_coords,...]) Points in 3D

It is also possible to plot discrete plots in three dimensions. The commands and options described
in Sect. 5.2.4 on p. 49. In the following example the data points (1, 5, 2), (2, 4, 4), (3, 2, 3), (4, 7, 1),
(5, 4, 6) are plotted.

(%i12) xc:[1,2,3,4,5]$

(%i13) yc:[5,4,2,7,4]$

(%i14) zc:[2,4,3,1,6]$

(%i15) draw3d(color=red, point_type=filled_circle, points(xc,yc,zc));

(%o15)

 1 1.5 2 2.5 3 3.5 4 4.5 5 2
 3

 4
 5

 6
 7

 1
 2
 3
 4
 5
 6

57

5 The Draw Package

5.4 Graphic Options

Package draw offers a vast set of options creating and controlling plots. Thus we only describe the
most important ones. Please see Section “Draw” in the Maxima manual.

Graphic Options are always given as key=value pairs.

5.4.1 Global Settings

Command Description

set_draw_defaults(opts,...) Set user graphics options

Function set_draw_defaults allows to set global defaults for a Maxima session. Calling this
function without arguments removes user defaults again.

The following piece of code changes the default color for plots to red and turns on plotting a grid
on the xy plane.

(%i1) set_draw_defaults(color=red, grid=true)$

5.4.2 Annotation and Axes

Graphic Object Description

label(["Text",x_coord,y_coord],...]) Write label(s) in 2D
label(["Text",x_coord,y_coord,z_coord],...]) Write label(s) in 3D

One can use graphic object label to write any text anywhere in the plot.

Option Default Description

title="Text" "" (empty string) Main title for scene
xlabel="Text" "" (empty string) Label for x axis
ylabel="Text" "" (empty string) Label for y axis
zlabel="Text" "" (empty string) Label for z axis
xtics auto Tic marks on x axis
ytics auto Tic marks on y axis
ztics auto Tic marks on z axis

Option title adds a title for the scene. Options xlabel, xlabel, and xlabel inserts a label
for the corresponding axes. Options xtics,ytics,and ztics controls the way how tic marks are
drawn. For possible values see the corresponding man pages.

Option Default Description

key="Text" "" (empty string) Name of function in the legend

Option key inserts Text to annotate a given function in the legend. For each function plot a
key must be given before the graphic object. The entry into the legend for further objects can be
suppressed by setting key="".

58

5.4 Graphic Options

Option Default Description

xaxis false If true, the x axis is shown drawn
yaxis false If true, the y axis is shown drawn
zaxis false If true, the z axis is shown drawn (3D only)
grid false If true, a grid will be drawn on the xy plane

By default there are no coordinate axes in plots of scenes. These can be drawn by adding options
xaxis=true, yaxis=true and/or zaxis=true. There are further options that controls the style,
width of color of the corresponding axis, see the man pages of these graphic options for details.

5.4.3 Plotting Range

Option Default Description

x=[x_min,x_max] auto Range for x coordinate
y=[y_min,y_max] auto Range for y coordinate
z=[z_min,z_max] auto Range for z coordinate

These options set the range of the plotting region for each direction.

Notice that in case of (explicit or implicit) functions the name of these graphic options are inde-
pendent of the particular name of the variables for the function, i.e., x, y, z just refer to the first,
second, and third coordinate (direction).

5.4.4 Smoothness Parameters

Option Default Description

nticks=integer 29 Initial number of points used for 2D function plots

When plotting explicit or parametric functions, we can control the smoothness of the drawn
curve by setting the number of points by means of option nticks. For explicit plots this is
just the initial number of plots that will be automatically increased when the given function has
great variation. For parametric plots this is the actual number of points that will be shown for
the plot. This often can result in curve that does not look as smooth as expected. In this case it is
recommended to increase nticks.

Option Default Description

xu_grid=integer 30 Number of coordinates of the first variable (3D)
yv_grid=integer 30 Number of coordinates of the second variable (3D)

For explicit functions and parametric_surface in 3D a grid of sample points is computed.
The number of points in each coordinate can be specified by means of the two options xu_grid
and yv_grid. Thus the given function has to be evaluated in xu_grid times yv_grid points.

Option Default Description

ip_grid=[integer,integer] [50,50] Number of grid points for the first sampling
in implicit plots

ip_grid_in=[integer,integer] [5,5] Number of grid points for the second sam-
pling

Plots for implicit graphic objects are created in a two step procedure. In the first step the coarse
structure of the implicit plot is computed. In a second step this structure is refined by means of a
local grids. The smoothness of implicit graphic objects is thus controlled by means of ip_grid
and ip_grid_in. It may be necessary to increase the values of ip_grid for very rugged func-
tions.

59

5 The Draw Package

5.4.5 Export Graphics

Option Default Description

terminal 'screen Selects the terminal for plotting
file_name="file" "maxima_out" Name of file for saving graphical output

Option terminal allows to set the output device for graphics. By default all graphics are drawn
on the screen. However, plots also can be exported into some file by setting one of the following
terminals:

• 'pdf

• 'eps

• 'png

• 'gif

• 'svg

The output is then stored in a file set by option file_name. The respective extension is then
automatically added to the file name.

Here is a simple example where we save the plot of the cosine function in PNG format in file
cosine.png. Notice that one must not add extension .png.

(%i2) draw2d(explicit(cos(x),x,-2*%pi,2*%pi),
terminal='png, file_name="cosine");

5.4.6 Style and Colors

Option Default Description

point_type plus (1) Type of point (see Sect. 5.2.4)
point_size 1 Size of plotted point

Option Default Description

line_type solid Type of line (solid or dots)
line_width 1 Width of plotted line

Option Default Description

color blue Color lines, points and labels

Plotting of points and lines can be controlled by various options. Colors can be set by means of
option color and can given as names or in hexadecimal RGB code. Available colors are (for a
complete list see the man page): gray, blue, red, green, magenta, black, cyan, yellow.

Option Default Description

surface_hide false If true, hidden parts are not plotted in 3D
enhanced3d none Get colored surface in 3D
palette color Indicates how to map gray levels onto color components

By default 3D graphical objects are drawn as transparent meshes. If the surface should be opaque
use option surface_hide=true. For colored surfaced one has to use option enhanced3d to
enable colored surfaces and option palette to set a particular color set, see the corresponding
man pages for details.

60

5.4 Graphic Options

5.4.7 Examples for draw2d

In our first example we plot two functions denoted by first function and second function.
Labels for x and y coordinates are abscissa and ordinate, respectively. We use 100 initial points
for each plot and restrict the vertical axis to the interval [0, 1.5]. The first function is plotted by a
thick magenta line while the second function is plotted by a thin blue one.

(%i3) draw2d(nticks=100, yrange=[0,1.5],
xlabel="abscissa", ylabel="ordinate",
color=magenta, line_width=10, key="first function",
explicit(exp(-x^2/2), x,0,2),
color=blue, line_width=1,key="second function",
explicit(sqrt(%e)*exp(-x), x,0,2));

(%o3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2

o
rd

in
a
te

abscissa

first function
second function

The next example shows data points together with an approximating function.

61

5 The Draw Package

(%i4) datalist: [[0,-4], [0.5,-1], [1,0.25], [1.2,0.4], [1.5,0.1],
[1.7,0.3], [2,1], [2.2,0.75], [3,1.1]]$

(%i5) draw2d(color=blue, key="theory", explicit(log(x), x,0,5),
color=red, point_type=filled_up_triangle, point_size=3,
key="experiment", points(datalist));

(%o5)

-4

-3

-2

-1

 0

 1

 0 1 2 3 4 5

theory
experiment

5.4.8 Examples for draw3d

The following example demonstrates that it us also possible to combine two or more plots in 3D.

(%i6) draw3d(key="Gauss", color=blue,
explicit(20*exp(-x^2-y^2)-10,x,-3,3,y,-3,3),
key="Plane", color=red, yv_grid=10,
explicit(x+y,x,-5,5,y,-5,5),
key="Circle", color=dark_green, line_width=3,
parametric(2*sin(t),2*cos(t),1, t,0,2*%pi),
surface_hide=true);

(%o6)

Gauss
Plane
Circle

-4 -2 0 2 4 -4
-2

 0
 2

 4

-10
-5
 0
 5

 10

62

5.4 Graphic Options

— Exercises

25. Plot the graph of the density of the standard normal distribution, f (x) = 1√
2π

e−
x2
2 , in the

range [−3, 3]. Label the y axis with density.

26. Plot the graphs of the density of the standard normal distribution, f (x) = 1√
2π

e−
x2
2 , and

the Cauchy distribution, g(x) = 1
π(1+x2)

, in the range [−3, 3]. Use a thick red line for the

Cauchy distribution, and a thin black line for the normal distribution. The lines should be
annotated with Gaussian distribution and Cauchy distribution, respectively. The
vertical axis should be labeled density.

27. Plot the graphs of the power functions xn for n = −2,−1, 0, 1, 2 in the range [0, 2]. Use differ-
ent colors for each function.

28. We are given the set of data points {(.25,−1.03), (.5,−0.63), (.75,−0.28), (1., 0.), (1.25, 0.22),
(1.5, 0.38), (1.75, 0.47)}. Plot these points together with function log(x) in the range [0, 2].
Choose an appropriate range for the vertical axes.

29. Plot the curve t 7→
(

sin(4π t)
cos(4π t)

)
for t ∈ [0, 4]. What do you see and what do you expect?

30. Plot the graph of the binormal distribution, f (x, y) = 1
2π exp

(
− 1

2 (x2 + y2)
)

.

63

6 Linear Algebra

6.1 Vectors

Operator Description

u+v Sum of vectors u and v
u-v Difference of vectors u and v
s*v Multiply vector v with scalar s
u.v Scalar product of vectors u and v (also called dot product or inner product)

Vectors are implemented in Maxima by means of lists, i.e., their elements enclosed in square
brackets [...], see Sect. 2.13. Vector addition and multiplication with a scalar are performed
by operators +, - and *. The scalar product is computed by the dot operator ..

(%i1) [1,0,1]+[1,2,3];

(%o1) [2, 2, 4]

(%i2) [1,0,1]-[1,2,3];

(%o2) [0,−2,−2]

(%i3) 5*[1,2,3];

(%o3) [5, 10, 15]

(%i4) [1,0,1].[1,2,3];

(%o4) 4

Important
Notice that * performs a pointwise multiplication. B
(%i5) [1,2,3]*[1,2,3];

(%o5) [1, 4, 9]

The k-th element of a vector can be retrieved using [k] as the following example shows.

(%i6) x: [1,2,3,4];

(%o6) [1, 2, 3, 4]

(%i7) x[3];

(%o7) 3

Notice that one can also use [k] as an index for any expression and create a vector with symbolic
components.

(%i8) y[3];

(%o8) y3

(%i9) z: [z[1],z[2]];

(%o9) [z1, z2]

65

6 Linear Algebra

6.2 Matrices

Command Description

matrix(row_1,...,row_n) Create a rectangular matrix with rows row_1,. . . ,row_n

Operators Description

A+B Sum of matrices A and B
A-B Difference of matrices A and B
s*A Multiply matrix A with scalar s
A.B Product of matrices A and B
A^^n n-th power of matrix A, i.e., A.A.· · ·.A
A^^(-1) Inverse of matrix A

Matrices are created by means of command matrix which takes the row vectors of the matrix as
its arguments. These must have the same length.

(%i1) A: matrix([1,2],[3,4]);

(%o1)

[
1 2
3 4

]
(%i2) B: matrix([0,1],[2,3]);

(%o2)

[
0 1
2 3

]
(%i3) A+B;

(%o3)

[
1 3
5 7

]
(%i4) 5*A;

(%o4)

[
5 10
15 20

]
(%i5) A.B;

(%o5)

[
4 7
8 15

]
(%i6) A^^2;

(%o6)

[
7 10
15 22

]

Remind that the inverse of A is given by A−1.

(%i7) A^^(-1);

(%o7)

[
−2 1

3
2 − 1

2

]

Important
Notice that * and ^ perform a pointwise multiplication and exponentiation, respectively.B
(%i8) A*B;

(%o8)

[
0 2
6 12

]
(%i9) A^2;

(%o9)

[
1 4
9 16

]

66

6.3 Operations on Matrices

The i-th rows of a matrix A can be retrieved by means of index [i]. Element aij can be retrieved
or replaced using index [i,j].

(%i10) A: matrix([1,2],[3,4]);

(%o10)

[
1 2
3 4

]
(%i11) A[2];

(%o11) [3, 4]

(%i12) A[2,1];

(%o12) 3

(%i13) A[2,1]: 10;

(%o13) 10

(%i14) A;

(%o14)

[
1 2

10 4

]

Important
Vector are usually printed as row vectors. However, Maxima is quite inconsistent when treating B
vectors. Depending on the given expression it is interpreted as row vector or as column vector.

(%i15) A: matrix([1,2],[3,4]);

(%o15)

[
1 2
3 4

]
(%i16) x: [1,2];

(%o16) [1, 2]

(%i17) A.x;

(%o17)

[
5

11

]
(%i18) x.A;

(%o18)
[
7 10

]

6.3 Operations on Matrices

Command Description

diagmatrix(n,x) Diagonal matrix of size n with the diagonal elements x
ident(n) Identity matrix of order n
transpose(A) Transpose of matrix A
invert(A) Inverse of matrix A (same as A^^(-1))
determinant(A) Determinant of matrix A

(Multiples of) identity matrices can be constructed by means of diagmatrix and ident.

(%i1) ident(2);

(%o1)

[
1 0
0 1

]
(%i2) diagmatrix(2,3);

(%o2)

[
3 0
0 3

]

67

6 Linear Algebra

(%i3) A: matrix([1,2],[3,4]);

(%o3)

[
1 2
3 4

]
(%i4) transpose(A);

(%o4)

[
1 3
2 4

]
(%i5) invert(A);

(%o5)

[
−2 1

3
2 − 1

2

]
(%i6) determinant(A);

(%o6) −2

6.4 Rank of a Matrix

Command Description

rank(A) Rank of matrix A, i.e., dimension of the column space of A
nullity(A) Corank of matrix A, i.e., dimension of the null space of A
columnspace(A) Basis for the column space of A
nullspace(A) Basis for the null space of A

Maxima provides commands for computing image and kernel of a matrix.

(%i1) A: matrix([1,2,3],[4,5,6],[7,8,9]);

(%o1)

1 2 3
4 5 6
7 8 9


(%i2) rank(A);

(%o2) 2

(%i3) nullity(A);

(%o3) 1

(%i4) columnspace(A);

(%o4) span

1
4
7

 ,

2
5
8


(%i5) nullspace(A);

(%o5) span

−3
6
3



6.5 Lists (Revised)

Command Description

length(L) Length of list L
first(L) First element of list L
second(L) Second element of a list L
rest(L,n) Returns L with its first n elements removed
last(L) Last element of list L

68

6.6 Linear Equations

In Sect. 2.13 we already have learned about lists enclosed in square brackets [...]. But in fact
lists are the basic building block for LISP and thus for Maxima. Almost all data types, including
functions are lists. So we can extract any elements from this list.

(%i1) first(f(x,y,z));

(%o1) x

(%i2) rest(f(x,y,z));

(%o2) f (y, z)

(%i3) last(f(x,y,z));

(%o3) z

Commands nullspace and columnspace return the bases of the corresponding spaces. The
elements of these bases can be extracted using list operations.

(%i4) A: matrix([1,2,3],[4,5,6],[7,8,9]);

(%o4)

1 2 3
4 5 6
7 8 9


(%i5) CS: columnspace(A);

(%o5) span

1
4
7

 ,

2
5
8


(%i6) first(CS);

(%o6)

1
4
7


(%i7) second(CS);

(%o7)

2
5
8



6.6 Linear Equations

A system of linear equations is a collections of linear equations involving the same set of variables.
A general system of m equations with n unknowns can be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

with x1, . . . , xn are the unkowns, a11, . . . , amn are the coefficients of the linear equalities and b1, . . . , bm
are the constant on the right-hand side. This notations is equivalent to the matrix equation of the
form

A x = b
where A is called the coefficient matrix of this system of linear equations, vector x contains the
unknowns, and vector b contains all the constants:

A =


a11 a12 · · · a1nxn
a21 a22 · · · a2nxn

...
...

. . .
...

am1 am2 · · · amnxn

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 .

69

6 Linear Algebra

Finding solutions of such linear equations is an importing part for many tools. For a quadratic (i.e.
n× n) regular coefficient matrix A one may use its inverse A−1: x = A−1b. For this purpose one
can apply A^^(-1) (see Sect. 6.2) or invert(A) (see Sect. 6.3).

(%i1) A: matrix([1,2,2],[3,3,8],[0,7,4]);

(%o1)

1 2 2
3 3 8
0 7 4


(%i2) b: [-1,-15,2];

(%o2) [−1,−15, 2]

(%i3) A^^(-1).b;

(%o3)
[
1 2 −3

]
Notice that there exist other more efficient methods for solving such linear equations. See the
Maxima manual for such functions.

Command solve offers a general method that works for any number of equations an unknown,
see also Sect. 2.15.

(%i4) eq1: x[1]+2*x[2]+2*x[3]=-1;

(%o4) 2x3 + 2x2 + x1 = −1

(%i5) eq2: 3*x[1]+3*x[2]+8*x[3]=-15;

(%o5) 8x3 + 3x2 + 3x1 = −15

(%i6) eq3: 7*x[2]+4*x[3]=2;

(%o6) 4x3 + 7x2 = 2

(%i7) solve([eq1,eq2,eq3], [x[1],x[2],x[3]]);

(%o7) [[x1 = 1, x2 = 2, x3 = −3]]

solve also can handle under-determined systems of equations as the following example shows.
The symbol %r1 is introduced to represent arbitrary parameters in the solution. A particular solu-
tion can be found by replacing %r1 by some number.

(%i8) solve([eq1,eq2], [x[1],x[2],x[3]]);

(%o8) [[x1 = −10 %r1 + 27
3

, x2 =
2 %r1 + 12

3
, x3 = %r1]]

(%i9) %, %r1=2;

(%o9) [[x1 = −47
3

, x2 =
16
3

, x3 = 2]]

Notice that the set of all solutions of an under-determined systems of equations forms an affine
space which can be described by a particular solution of Ax = b and the nullspace of A (which is
the set of solutions of the homogeneous equation Ax = 0). Its basis can be obtained by command
nullspace, see Sect. 6.4.

(%i10) nullspace(matrix([1,2,2],[3,3,8]));

(%o10) span

 10
−2
−3



70

6.7 Eigenvalues and Eigenvectors

For the sake of completeness we also remark that one can compute the echelon form of a given
matrix.

(%i11) echelon(A);

(%o11)

1 2 2
0 1 − 2

3
0 0 1



6.7 Eigenvalues and Eigenvectors

Command Description

charpoly(A,x) Characteristic polynomial of A
eigenvalues(A) Eigenvalues of matrix A
eigenvectors(A) Eigenvectors of matrix A

Command charpoly(A,x) returns the characteristic polynomial for matrix A with respect to vari-
able x.

(%i1) A: matrix([1,2,1],[1,4,4],[7,3,5]);

(%o1)

1 2 1
1 4 4
7 3 5


(%i2) charpoly(A,x);

(%o2) −7(4− x) + ((4− x)(5− x)− 12)(1− x)− 2(−x− 23) + 3

Eigenvalues can be computed by means of command eigenvalues. It returns a list of two ele-
ments. The first one is the list of eigenvalues while the second element is a list of their correspond-
ing algebraic multiplicities.

(%i3) B: matrix([1,0],[6,6]);

(%o3)

(
1 0
6 6

)
(%i4) eigenvalues(B);

(%o4) [[1, 6], [1, 1]]

(%i5) eigvals: eigenvalues(B)[1];

(%o5) [1, 6]

(%i6) multiplicities: eigenvalues(B)[2];

(%o6) [1, 1]

Command eigenvectors computes both eigenvalues and the eigenvector. It returns a list of
two elements: the result of eigenvalues and a list of the corresponding eigenspaces. Each
eigenspace is represented by a list that contain its basis vectors (“eigenvectors”).

71

6 Linear Algebra

(%i7) es: eigenvectors(B);

(%o7) [[[1, 6], [1, 1]], [[[1,−6
5
]], [[0, 1]]]]

(%i8) eigvals: es[1][1];

(%o8) [1, 6]

(%i9) multiplicities: es[1][2];

(%o9) [1, 1]

(%i10) vectors: es[2];

(%o10) [[[1,−6
5
]], [[0, 1]]]

Notice that multiple eigenvalues are listed only once as the following example shows. In follow-
ing example the algebraic multiplicity of the unique eigenvalue 3 is 2 while the dimension of the
corresponding eigenspace (i.e., its geometric multiplicity) is only 1.

(%i11) C: matrix([3,1],[0,3]);

(%o11)

(
3 1
0 3

)
(%i12) eigenvalues(C);

(%o12) [[3], [2]]

(%i13) eigenvectors(C);

(%o13) [[[3], [2]], [[[1, 0]]]]

In the next example algebraic and geometry multiplicities coincide

(%i14) D: matrix([3,0],[0,3]);

(%o14)

(
3 0
0 3

)
(%i15) eigenvectors(D);

(%o15) [[[3], [2]], [[[1, 0], [0, 1]]]]

Important
Command eigenvalue simply computes the roots of the characteristic polynomial. In the caseB
of symmetric matrices we known that all eigenvalues are real. However, the result may look like
complex numbers. These the imaginary numbers can be removed as described in Sect. 2.16.

72

6.7 Eigenvalues and Eigenvectors

— Exercises

31. Let x =

1
2
3

 and y =

4
5
6

. Compute x + y, x− y, x′y, and 3x.

32. Let A =

1 2 3
4 5 6
7 8 9

 and A =

−1 0 2
−2 1 3
2 4 −1

.

Compute A + B, A − B, 3A, A B, A2, B−1, |A|, and A′. What happens when one tries to
compute A−1?

33. Let A =

1 2 3
4 5 6
7 8 9

 and A =

−1 0 2
−2 1 3
2 4 −1

.

Compute rank and corank of matrices A and B.
Compute null space and columns space of A and B.
Compute the linear combination α1v1 + α2v2 of the base vectors v1 and v2 of the column
space of A.

34. Solve the following systems of equations:

(a)
2 x1 + 3 x2 + 4 x3 = 2

4 x1 + 3 x2 + x3 = 10
x1 + 2 x2 + 4 x3 = 5

(b)
2 x1 + 2 x2 + x3 + 3 x4 = 10
3 x1 + 5 x2 + 2 x3 − x4 = 30

x1 + 2 x2 + x3 − x4 = 12

(c)

2 x1 + 10 x2 + 4 x3 + 9 x4 = 1
x1 + 6 x2 + 5 x3 + 3 x4 = 1

3 x1 + 16 x2 + 9 x3 + 11 x4 = −1
x1 + 5 x2 + 2 x3 + 5 x4 = 2

x2 + 3 x3 = 4

35. Compute all eigenvalues and eigenvectors of A =

(
1 2
3 4

)
. Store the list of eigenvalues in

eigval. Store the eigenvectors to the first and second eigenvalue in v[1] and v[2], repec-
tively.

36. Compute all eigenvalues and eigenvectors of A =

1 2 1
2 1 3
1 3 1

 numerically.

Notice that the matrix is symmetric (and thus all eigenvalues are real).

37. Compute all eigenvalues and eigenvectors of A =

1 0 0
0 1 0
0 0 1

 and B =

1 1 1
0 1 1
0 0 1

.

What are the algebraic and geometric multiplicities of the corresponding eigenvalues?

73

7 Calculus

7.1 Limits

Command Description

limit(expr,x,val) Limit of expression expr when variable x approaches val
limit(expr,x,val,dir) Limit of expr when x approaches val from direction dir

Constant Description

infinity Complex infinity
ind Bounded indefinite result
und Undefined result

Command limit computes the limit of a given expression. It requires an expression, name of the
variable with the limit point to approach. It also computes limits to inf (∞) and minf (−∞), re-
spectively. When computing the limit Maxima assumes that x is real variable. The output can also
be one of ∞,−∞, infinity (complex infinity), ind (indefinite but bounded), or und (undefined).
Notice that infinity is returned when the limit of the absolute value of the expression is positive
infinity, but the limit of the expression itself is neither ∞ nor−∞.

(%i1) limit(sin(x)/x,x,0);

(%o1) 1

(%i2) limit(atan(x),x,minf);

(%o2) −π

2
(%i3) limit(log(x),x,0);

(%o3) in f inity

(%i4) limit(sin(1/x),x,0);

(%o4) ind

(%i5) limit(sin(1/x)/x,x,0);

(%o5) und

Important
Do not mix up result infinity with ∞. The latter is represented by inf in Maxima. B
It is also possible to compute limits from above and below by adding a forth argument. It may have
the respective values plus for limits from above and minus for limits from below.

(%i6) limit(log(x),x,0,plus);

(%o6) −∞

(%i7) limit(x/abs(x),x,0,plus);

(%o7) 1

(%i8) limit(x/abs(x),x,0,minus);

(%o8) −1

(%i9) limit(x/abs(x),x,0);

(%o9) und

75

7 Calculus

7.2 Sums and Products

Command Description

sum(expr,i,i_0,i_1) Sum of the values of expr with index i
product(expr,i,i_0,i_1) Product of the values of expr with index i

Variable Default Description

simpsum false When true, simplification rules for sums are applied
simpproduct false When true, simplification rules for products are applied

Command sum evaluates the sum of the first argument expr where index variable i is substituted
for all values i_0,...,i_i.

(%i1) sum(z(i),i,1,5);

(%o1) z(5) + z(4) + z(3) + z(2) + z(1)

(%i2) sum(z[i],i,1,5);

(%o2) z5 + z4 + z3 + z2 + z1

(%i3) sum(i^3,i,1,10);

(%o3) 3025

Notice that i_1 ≥ i_0 must hold. Otherwise 0 is returned. Upper and lower bound my also be
expressions including minf and inf.

(%i4) sum(z[i],i,1,n);

(%o4)
n

∑
i=1

zi

(%i5) sum(z[i],i,1,inf);

(%o5)
∞

∑
i=1

zi

Maxima tries to compute (simplify) sums when the system variable simpsum is true.

(%i6) sum(1/4^i,i,1,inf);

(%o6)
∞

∑
i=1

1
4i

(%i7) sum(1/4^i,i,1,inf), simpsum;

(%o7)
1
3

(%i8) sum(1/i^2,i,1,inf);

(%o8)
∞

∑
i=1

1
i2

(%i9) sum(1/i^2,i,1,inf), simpsum;

(%o9)
π2

6

76

7.3 Derivatives and Total Differentials

Analogously one can compute products by means of command product.

(%i10) product(i^3,i,1,10);

(%o10) 47784725839872000000

(%i11) product(z(i),i,1,minf);

(%o11)
∞

∏
i=1

z(i)

(%i12) product(x+i*(i+1)/2,i,1,4);

(%o12) (x + 1)(x + 3)(x + 6)(x + 10)

7.3 Derivatives and Total Differentials

Command Description

diff(expr,x) Derivative of expr with respect to x
diff(expr,x,n) n-th derivative of expr with respect to x
diff(expr,x_1,n_1,x_2,n_2,...) Mixed partial derivatives
diff(expr) Total differential of expr
del(x) Represents differential of x

Maxima is capable of computing derivatives. It provides a single command diff for this purpose.
diff(expr,x) differentiates the expression expr with respect to variable x. Optionally, a third
argument may be given for derivatives of higher order. For example expr,x,2 yields the second
derivative of expr with respect to variable x.

(%i1) diff(x^a,x);

(%o1) a xa−1

(%i2) diff(x^a,x,2);

(%o2) (a− 1) a xa−2

Mixed partial derivatives can be computed either by nesting diff calls or listing all variables as
arguments.

(%i3) diff(diff(x^3*y^2,x),y);

(%o3) 6 x2 y

(%i4) diff(x^3*y^2,x,1,y,1);

(%o4) 6 x2 y

(%i5) diff(x^3*y^2,x,2,y,1);

(%o5) 12 x y

Important
Notice that for mixed partial derivatives each variable name must be immediately followed by the B
order of the respective derivative.

When we call diff with only one argument (i.e., without passing any variable names), then Max-
ima computes the total differential of the given expression. The differentials of the variables are
represented by symbol del.

(%i6) diff(sin(y*x));

(%o6) x cos(xy) del(y) + y cos(xy) del(x)

77

7 Calculus

If we prefer dx and dy instead, we have to substitute accordingly as shown in the next example.

(%i7) diff(sin(y*x));

(%o7) x cos(xy) del(y) + y cos(xy) del(x)

(%i8) %, del(x)=dx, del(y)=dy;

(%o8) dx y cos(x y) + dy x cos(x y)

The quote operator ' may be used to prevent Maxima from immediately compute the derivative.

(%i9) 'diff(exp(-x^2),x)=diff(exp(-x^2),x);

(%o9)
d

dx
%e−x2

= −2 x %e−x2

7.4 Dependencies and Chain Rule

Command Description

depends(f,x) Declare functional dependency of f from x

Variable Default Description

derivabbrev false When true, symbolic derivatives are displayed as subscripts
dependencies [] List of functional dependencies

We can also work with symbolic derivatives, i.e., the derivatives some function f . However, any
dependencies of f must be represented explicitly.

(%i1) diff(f(x,y),x);

(%o1)
d

dx
f (x, y)

(%i2) diff(f,x);

(%o2) 0

However, Maxima allows to declare dependencies among variables and diff takes fully care of
this.

(%i3) depends(f,x);

(%o3) [f (x)]

(%i4) diff(f,x);

(%o4)
d

dx
f

By default derivatives are displayed in Leibniz notation d f
dx (which should read ∂ f

∂x in case of partial
derivatives). However, when we set the system variable derivabbrev to true, then symbolic
derivatives are displayed as subscript as in fx.

(%i5) derivabbrev: true$

(%i6) diff(f,x);

(%o6) fx

(%i7) derivabbrev: false$

78

7.4 Dependencies and Chain Rule

Now suppose that x itself depends on some other variable t. The we may compute the derivative
of the compound function f (x(t)) with respect to t by means of the chain rule:

d f (x(t))
dt

=
d

dx
f (x(t))

d
dt

x(t)

We try the following:

(%i8) diff(f(x(t)),t);

(%o8)
d
dt

f (x(t))

However, this does not work. The solution is to declare a dependency of x from t (notice that
already declared f being depend from t).

(%i9) depends(x,t);

(%o9) [x(t)]

(%i10) diff(f,t);

(%o10)

(
d

dx
f
) (

d
dt

x
)

Do not forget to remove the dependencies when you do not need it any more. Noticedependencies
contains a list of all dependencies declared so far. They can be removed using kill

(%i11) dependencies;

(%o11) [f (x), x(t)]

(%i12) kill(f)$

(%i13) dependencies;

(%o13) [x(t)]

Here is a more advanced function. Assume we need the derivatives of f (x(t), t) with respect to x
and t.

(%i14) depends(f,[x,t]);

(%o14) [f (x, t)]

(%i15) depends(x,t);

(%o15) [x(t)]

(%i16) diff(f,x);

(%o16)
d

dx
f

(%i17) diff(f,t);

(%o17)

(
d

dx
f
) (

d
dt

x
)
+

d
dt

f

(%i18) kill(all)$

When computing total derivatives Maxima treats every unknown symbol as variable. However, we
may declare some of these variables as constants using command declare, see Sect 3.6.

79

7 Calculus

(%i19) diff(a*x^2+b*y^2);

(%o19) 2 b y del(y) + 2 a x del(x) + y2 del(b) + x2 del(a)

(%i20) declare([a,b],constant);

(%o20) done

(%i21) diff(a*x^2+b*y^2);

(%o21) 2 b y del(y) + 2 a x del(x)

7.5 Jacobian Matrix and Gradient

Command Description

jacobian(f,x) Jacobian matrix of vector-valued function f with respect to vector x

In Maxima Vector-values functions, i.e., functions from Rn → Rm, are represented by vectors of
(single-values) functions.

(%i1) f(x,y):= [x^2+y^2, x^2-y^2];

(%o1) f (x, y) := [x2 + y2, x2 − y2]

The derivative of such functions is called the Jacobian matrix.

(%i2) jacobian(f(x,y),[x,y]);

(%o2)

[
2 x 2 y
2 x −2 y

]

Here is a more symbolic example.

(%i3) f(x,y):= [f[1](x,y),f[2](x,y)];

(%o3) f (x, y) := [f1(x, y), f2(x, y)]

(%i4) jacobian(f(x,y),[x,y]);

(%o4)

[
d

dx f1(x, y) d
dy f1(x, y)

d
dx f2(x, y) d

dy f2(x, y)

]

The gradient of a single-valued function can be computed as Jacobian. Notice that the function
must be given as a list with one element. The result is a 1× n-matrix.

(%i5) jacobian([x^3+y^2],[x,y]);

(%o5) [3 x2 2 y]

80

7.6 Taylor Series

7.6 Taylor Series

Command Description

taylor(expr,x,a,n) Expands expr in a Taylor series of order n in variable x around a
powerseries(expr,x,a) General form of the power series expansion
niceindices(expr) Rename indices of sums and products in expr

A Taylor series is a representation of a function as an infinite sum of terms calculated from the
values of its derivatives at a single point a.

f (x) =
∞

∑
k=0

dk f
dxk (a) (x− a)k

The n-th order truncated taylor series (also known as the n-th Taylor polynomials) consists of the
first terms up to degree n.

f (x) ≈
n

∑
k=0

dk f
dxk (a) (x− a)k = f (a) + f ′(a) (x− a) +

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n

It can be easily computed by means of command taylor. In the following example we compute
the truncated Taylor series of order 3 of ex with expansion point 0.

(%i1) taylor(exp(x),x,0,3);

(%o1) /T/ 1 + x +
x2

2
+

x3

6
+ . . .

The leading symbol /T/ indicates a Taylor series. The trailing ellipses ... represents truncation.
The resulting expression can be used in further calculations. For this purpose the truncated Tay-
lor series is first transformed into a polynomial that is represented by a rational expression. It is
indicated by symbol /R/.

(%i2) T(x):= ''(taylor(exp(x),x,0,3));

(%o2) /T/ T(x) := 1 + x +
x2

2
+

x3

6
+ . . .

(%i3) T(3);

(%o3) /R/ 13

(%i4) T(y);

(%o4) /R/
y3 + 3 y2 + 6 y + 6

6

Taylor series of functions in two or more variables are obtained by using vectors for x and point a.
Here is a simple example.

(%i5) taylor(exp(x^2+y),[x,y],[0,1],2);

(%o5) /T/ %e + %e (y− 1) +
2%e x2 + %e (y− 1)2

2
+ . . .

Maxima can also handle infinite Taylor series. Command powerseries creates the infinite sum.

81

7 Calculus

(%i6) powerseries(sin(x),x,0);

(%o6)
∞

∑
i1=0

(−1)i1x2i1+1

(2i1 + 1)!

(%i7) niceindices(%);

(%o7)
∞

∑
i=0

(−1)ix2i+1

(2i + 1)!

Maxima automatically uses the indices i1, i2, Command niceindices replaces these to the
more familiar symbols i, j,

7.7 Minima and Maxima of Univariate Functions

Extrema of a univariate function f can be found by the following well-known method:

1. Find the critical points of f , i.e., points x∗ with f ′(x∗) = 0.

2. Compute the second derivative f ′′ and check its sign at these critical points.

– If f ′′(x∗) > 0, then x∗ is a local minimum.

– If f ′′(x∗) < 0, then x∗ is a local maximum.

– If f ′′(x∗) = 0, then we need higher order derivatives at x∗ for a decision.

Assume we have function f (x) = x4 − 3 x2 + 2 and need to compute all local extrema. It is always
a good idea to plot the graph of the function.

(%i1) f(x):= x^4-3*x^2+2;

(%o1) f (x) := x4 − 3 x2 + 2

(%i2) plot2d(f(x), [x,-2,2], [y,-1,3]);

(%o2)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
^

4
-3

*x
^

2
+

2

x

In order to find all critical points we have to compute the first derivative f ′ and find all its roots.

(%i3) fx: diff(f(x),x);

(%o3) 4 x3 − 6 x

(%i4) crit: solve(fx=0,x);

(%o4) [x = −
√

3√
2

, x =

√
3√
2

, x = 0]

82

7.8 Minima and Maxima of Multivariate Functions

Next we have to evaluate the second derivative f ′′ at all these critical points and check the signs of
the results.

(%i5) fxx: diff(f(x),x,2);

(%o5) 12 x2 − 6

(%i6) fxx, crit[1];

(%o6) 12

(%i7) fxx, crit[2];

(%o7) 12

(%i8) fxx, crit[3];

(%o8) −3

Consequently, we have two local minima at x1 = −
√

3√
2

and x2 =
√

3√
2

, and a local maximum at
x3 = 0.

7.8 Minima and Maxima of Multivariate Functions

Command Description

hessian(f,x) Hessian matrix of function f with respect to vector x

Extrema of a multivariate function f can be found by an analogous recipe:

1. Find the critical points of f , i.e., points x∗ with∇ f (x∗) = 0.

2. Compute the Hessian matrix f ′′ and check its definiteness at these critical points.

– If f ′′(x∗) is positive definite, then x∗ is a local minimum.

– If f ′′(x∗) is negative definite, then x∗ is a local maximum.

– If determinant | f ′′(x∗)| = 0, then we need higher order derivatives at x∗ for a decision.

– Otherwise, f ′′(x∗) is indefinite and x∗ is a saddle point.

The Hessian matrix of a function f consists of all second partial derivatives.

f ′′(x1, . . . , xn) =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

. . . ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
. . . ∂2 f

∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

. . . ∂2 f
∂x2

n



Command hessian computes the Hessian matrix for a given function.

(%i1) hessian(x^3+4*x*y+y^2,[x,y]);

(%o1)

[
6 x 4
4 2

]

83

7 Calculus

Here is an example with symbolic derivatives.

(%i2) depends(g,[x,y])$

(%i3) hessian(g,[x,y]);

(%o3)

 d2

dx2 g d2

dx dy g
d2

dx dy g d2

dy2 g


Computing local extrema is much more difficult for functions with two or more variables than for
univariate functions. So consider the following function.

(%i4) f(x,y):=1/6*x^3 - x + 1/4*x*y^2;

(%o4) f (x, y) :=
1
6

x3 − x +
1
4

x y2

Again it is a good idea to plot the graph of the function. (Use the mouse to rotate the graph and get
views from different viewpoints.)

(%i5) plot3d(f(x,y), [x,-2,2], [y,-2.5,2.5]);

(%o5)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1
 0

 1
 2

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

z

x*y^2/4+x^3/6-x

x

y

z

(%i6) contour_plot(f(x,y), [x,-2,2], [y,-2.5,2.5], [legend,false],
[gnuplot_preamble, "set cntrparam levels 12"]);

(%o6)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

 0

 1

 2

y

84

7.8 Minima and Maxima of Multivariate Functions

First we have to find the critical points of f . Thus we compute the gradient of f and have to solve
a system of equations.

(%i7) [fx,fy]: [diff(f(x,y),x), diff(f(x,y),y)];

(%o7) [
y2

4
+

x2

2
− 1,

x y
2
]

(%i8) crit: solve([fx=0,fy=0],[x,y]);

(%o8) [[x = −
√

2, y = 0], [x =
√

2, y = 0], [x = 0, y = 2], [x = 0, y = −2]]

Next we need the Hessian matrix of f .

(%i9) hess: hessian(f(x,y),[x,y]);

(%o9)

[
x y

2y
2

x
2

]

Remind there are two method for estimating the definiteness of a symmetric matrix A. The first
looks at the eigenvalues of the matrix:

• A is positive definite⇔ all eigenvalues of A are positive.

• A is negative definite⇔ all eigenvalues of A are negative.

• A is indefinite⇔ A has positive and negative eigenvalues.

(%i10) H1: ev(hess, crit[1]);

(%o10)

[
−
√

2 0
0 − 1√

2

]
(%i11) eigenvalues(H1);

(%o11) [[− 1√
2

,−
√

2], [1, 1]]

(%i12) H3: ev(hess, crit[3]);

(%o12)

[
0 1
1 0

]
(%i13) eigenvalues(H3);

(%o13) [[−1, 1], [1, 1]]

Hence x1 = (−
√

2, 0)′ is a local maximum and x3 = (0, 2)′ is a saddle point.

The second method makes use of the leading principle minors of a symmetric matrix A. The k-th
leading principle minor of A is the determinant of the left upper k× k submatrix.

Mk =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1k
a21 a22 . . . a2k

...
...

. . .
...

ak1 ak2 . . . akk

∣∣∣∣∣∣∣∣∣
We then have

• A is positive definite⇔ Mk > 0 for all k = 1, . . . n.

• A is negative definite⇔ (−1)k Mk > 0 for all k = 1, . . . n.

• A is indefinite⇔ Mn = |A| 6= 0 but none of the above cases holds.

Notice that for a 2× 2 matrix this reduces to

85

7 Calculus

• A is positive definite⇔ a11 > 0 and |A| > 0.

• A is negative definite⇔ a11 < 0 and |A| > 0.

• A is indefinite⇔ |A| < 0.

(%i14) H2: ev(hess, crit[2]);

(%o14)

[√
2 0

0 1√
2

]
(%i15) [H2[1,1], determinant(H2)];

(%o15) [
√

2, 1]

(%i16) H4: ev(hess, crit[4]);

(%o16)

[
0 −1
−1 0

]
(%i17) [H4[1,1], determinant(H4)];

(%o17) [0,−1]

Hence x2 = (
√

2, 0)′ is a local minimum and x4 = (0,−2)′ is a saddle point.

7.9 Integration

Command Description

integrate(expr,x) Indefinite integral of expr with respect of x
integrate(expr,x,a,b) Definite integral of expr with respect of x with limits a and b
quad_qags(expr,x,a,b) Numerical approximation of integral over a finite interval

Command integrate attempts to symbolically compute the integral of a given expression. Thus
a range of heuristics is employed to handle cases where closed form solutions are known. If one
of these methods succeeds, then the integral is returned. Notice that integrate usually does not
add an integration constant.

(%i1) integrate(sin(x)^3, x);

(%o1)
cos(x)3

3
− cos(x)

(%i2) integrate(x/sqrt(b^2-x^2),x);

(%o2) −
√

b2 − x2

(%i3) integrate(exp(-x^2),x);

(%o3)

√
π er f (x)

2

The last example shows that the integral may contain functions names that are less common. In

this case the so called error function is defined as erf(x) =
2√
π

∫ x

0
e−t2

dt . It plays an important

rôle in statistics. However, there might be even more obscure function that are not used in eco-
nomics.

If integrate does not succeed, then the return value is the noun form of the integral or an ex-
pression containing one or more noun forms. The noun form is displayed with an integral sign.

(%i4) integrate(tan(log(x)),x);

(%o4)
∫

tan(log(x))dx

86

7.9 Integration

integrate may need to know some property of a parameter in the integrand. Thus it will first
consult the assume database (see Sect. 3.6), and, if the variable of interest is not there, integrate
will ask the user. Depending on the question, suitable responses are yes; or no;, or pos;, zero;,
or neg;.

(%i5) integrate(x^a,x);
Is a+1 zero or nonzero? zero;

(%o5) log(x)

We can avoid this question by adding the answer into ourfacts. Notice that we have to useequal
rather then the symbol =. (Do not forget to forget of kill this assumption when it is not needed
any more!)

(%i6) assume(equal(a,-1));

(%o6) [equal(a,−1)]

(%i7) integrate(x^a,x);

(%o7) log(x)

Command integrate also handles definite integrals. However, internally it is using an algorithm
that works independently from that for indefinite integrals. Notice that the integral boundaries
also may be minf and inf.

(%i8) integrate(cos(x)^2*exp(x),x,0,%pi);

(%o8)
3%eπ

5
− 3

5
(%i9) integrate(x^2*exp(-x^2),x,minf,inf);

(%o9)

√
π

2

The QUADPACK package provides a couple of functions for numerical approximations of definite
integrals. We give a simple example with routine quad_qags. It returns a list of four elements:

• an approximation to the integral,

• the estimated absolute error of the approximation,

• the number integrand evaluations,

• an error code which is 0 if no problems were encountered.

(%i10) quad_qags(x^(1/2)*log(1/x),x,0,1);

(%o10) [.4444444444444448, 1.110223024625157 10−15, 315, 0]

Please see the Maxima manual for details.

87

7 Calculus

— Exercises

38. Compute the following limits:

lim
n→∞

n+1
n−1 , lim

n→∞

(
1 + 1

n

)n
, lim

x→0

sin(x)
x , lim

x→0

sin(1
x)

x , lim
x→0

sin
(

1
x

)
, lim

x→0
x sin

(
1
x

)
,

lim
x→0

exp
(

1
x

)
, lim

x→0+
exp

(
1
x

)
, lim

x→0−
exp

(
1
x

)
.

39. Compute the first derivative of f (x) = x5 as the limit of the difference quotient.

40. Compute and simplify
n
∑

k=0
(n

k), where (n
k) denotes the binomial coefficients.

(Use apropos to find a function that computes (n
k).)

41. Compute
n
∑

i=1
(aibn−i+1 − an−i+1bi) for n = 10, 102, 103, 104, 105, 106.

42. Create a polynomial with roots 1, 2, 3, . . . , 999, 1000.
(Compute the product of all linear factor.)

43. Compute all partial derivatives of first and second order of f (x, y) = xα yβ.

44. Compute the total derivative of log(f (x, y)).

45. We are given a function f (x, y, t). Assume that y = y(t) and x = x(y).

Compute d
dt f (x, y, t) and d2

dt2 f (x, y, t). Display the derivatives both in Leibniz notation and as
subscripts.

46. Compute the Jacobian matrix of the function f given by
(f1(x, y), f2(x, y))′ = (exp(−x2 − y2), x2 + y2)′.

47. Compute the Taylor series of
√

1 + x2 about the point a = 0.

48. Compute the Taylor polynomial of order 4 of
√

1 + x2 around the point a = 0.
Plot both the function and the polynomial.

49. Compute the local extrema of f (x) = x2+1
x . Plot the graph of the function.

50. Compute the local extrema of f (x, y) = −x2 + xy + y2.
Plot the graph of the function near its extrema.

51. Compute the local extrema of g(x, y) = 2(y− x2)2 + (1− x)2.
Plot the graph of the function near its extrema.

52. Compute the local extrema of h(x, y) = 1
x ln(x)− y2 + 1.

Plot the graph of the function near its extrema.

53. Compute
∫

x3 sin(−x)dx.

54. Compute
∫ π

0
x3 sin(−x)dx.

55. Compute
∫ 2

1
tan(ln(x))dx numerically. Store the numerical result in variable a.

88

8 Ordinary Differential Equations (ODE)

8.1 Analytic Solutions of Ordinary Differential Equations

Command Description

ode2(eqn,dvar,ivar) Solves ODE of first and second order
ic1(sol,xval,yval) Solves initial value problems of first order
ic2(sol,xval,yval,dval) Solves initial value problems of second order

Constant Description

%c integration constant for first order ODEs
%k1,%k2 integration constants for second order ODEs

System Variable Default Description

method Shows successful solution method

An ordinary differential equation is an equation where the unknown is not a number but a func-
tion. First-order differential equations contain first derivatives and can be written as

y′ = f (x, y) .

Second-order differential equations contain first and second derivatives:

y′′ = f (x, y, y′) .

An example for a first-order derivative is

x2 dy
dx

+ 3yx =
sin(x)

x

There are two ways to represent ordinary differential equations in Maxima. The simplest way is to
represent the derivatives by ’diff(y,x) and ’diff(y,x,2), respectively. The above ordinary
differential equation would then be entered as

(%i1) x^2*'diff(y,x) + 3*y*x = sin(x)/x;

(%o1) x2
(

d
dx

y
)
+ 3yx =

sin(x)
x

Note that the derivative ’diff(y,x) is quoted, to prevent it from being evaluated (to 0). The
second way is to write y(x) explicitly as a function of x. The above equation would then be entered
as

(%i2) x^2*diff(y(x),x) + 3*y(x)*x = sin(x)/x;

(%o2) x2
(

d
dx

y(x)
)
+ 3y(x)x =

sin(x)
x

89

8 Ordinary Differential Equations (ODE)

When we solve such an equation we have to find an appropriate function y(x). Routine ode2
tries to solve first and second-order ODEs. It takes three arguments: an ODE given by eqn, the
dependent variable dvar, and the independent variable ivar. The function tries various integra-
tion methods to find an analytic solution. When successful, it returns either an explicit or implicit
solution for the dependent variable. %c is used to represent the integration constant in the case
of first-order equations. If routine ode2 cannot obtain a solution for whatever reason, it returns
false.

(%i3) ode2(x^2*'diff(y,x) + 3*y*x = sin(x)/x, y, x);

(%o3) y =
%c− cos(x)

x3

Routine ode2 stores information about the method used to solve the differential equations in vari-
able method. The above differential equation has been recognized as a linear ODE.

(%i4) method;

(%o4) linear

In the case where y(x) is given, then the independent variable must be given as function y(x).B
(%i5) ode2(x^2*diff(y(x),x) + 3*y(x)*x = sin(x)/x, y(x), x);

(%o5) y(x) =
%c− cos(x)

x3

Initial value problems of first order can be solved by routine ic1. It takes a general solution to the
equation as found by ode2 as its first argument. The second argument xval gives an initial value
for the independent in the form x=x0 and the third argument yval gives the initial value for the
dependent variable in the form y=y0.

Thus we get the solution of the initial value problem

x2 dy
dx

+ 3yx =
sin(x)

x
, y(π) = 0

in the following way:

(%i6) sol1: ode2(x^2*'diff(y,x) + 3*y*x = sin(x)/x, y, x);

(%o6) y =
%c− cos(x)

x3

(%i7) ic1(sol1, x=%pi, y=0);

(%o7) y = − cos(x) + 1
x3

Similarly we can use ode2 to solve second-order differential equations. In this case the two inte-
gration constants are represented by %k1 and %k2.

(%i8) sol2: ode2('diff(y,x,2) + y*'diff(y,x)^3 = 0, y, x);

(%o8)
y3 + 6 ∗%k1 ∗ y

6
= x + %k2

The corresponding initial value problem can be solved by means of ic2. Compared to ic1 is has
an additional forth argument dval that gives the initial value of the first derivative of the depen-
dent variable with respect to the independent variable in the form diff(y,x)=dy0.

(%i9) ic2(sol2, x=0, y=0, 'diff(y,x)=2);

(%o9)
y3 + 3 ∗ y

6
= x

90

8.2 Linear Systems

8.2 Linear Systems

Command Description

desolve(eqn, y) Solves linear ODE
desolve([eqn_1,...,eqn_n],[y_1,..,y_n]) Solves system of linear ODEs
atvalue(expr,[x_1=a_1,...],c) Assigns value c to expr at point x=a

(Systems) of linear equations can be found by routine desolve. It is important that the func-
tions yi(x) must be given in functional form. The solution of the linear second-order differential B
equation

y′′(x) + y(x) = 2x

can be found as follows:

(%i1) desolve(diff(y(x),x,2)+y(x)=2*x, y(x));

(%o1) y(x) = sin(x)
(

d
dx

y(x)
∣∣∣
x=0
− 2
)
+ y(0) cos(x) + 2 x

If desolve cannot find a solution to the given ODE, then false is returned.

If initial conditions at x = 0 are known, they can be supplied by using atvalue. Notice that the
conditions can only be given at 0, and must be given before the equations are solved. It is recom- B
mended to remove your (global) assignment immediately after solving the initial value problem
as otherwise it may cause obscure error messages or (even worse) wrong results.

(%i2) atvalue(y(x), x=0, 1)$

(%i3) atvalue(diff(y(x),x), x=0, 2)$

(%i4) desolve(diff(y(x),x,2)+y(x)=2*x, y(x));

(%o4) y(x) = cos(x) + 2x

(%i5) kill(y)$

Similarly systems of linear ODEs can be solved.

x′(t) = x(t)− 2y(t)
y′(t) = −x(t) + y(t) (∗)

(%i6) eqn1: diff(x(t),t)=x(t)-2*y(t);

(%o6)
d
dt

x(t) = x(t)− 2y(t)

(%i7) eqn2: diff(y(t),t)=-x(t)+y(t);

(%o7)
d
dt

y(t) = y(t)− x(t)

(%i8) desolve([eqn1,eqn2],[x(t),y(t)]);

(%o8) [x(t) = %et

(
(2(−2y(0)− x(0)) + 2x(0))sinh(

√
2t)

23/2 + x(0)cosh(
√

2t)

)
,

y(t) = %et

(
(2y(0) + 2(−y(0)− x(0)))sinh(

√
2t)

23/2 + y(0)cosh(
√

2t)

)
]

91

8 Ordinary Differential Equations (ODE)

The initial value problem with x(0) = 1 and y(0) = 1 is then solved by

(%i9) atvalue(x(t), t=0, 1)$

(%i10) atvalue(y(t), t=0, 1)$

(%i11) desolve([eqn1,eqn2],[x(t),y(t)]);

(%o11) [x(t) = %et(cosh(
√

2t)−
√

2sinh(
√

2t)),

y(t) = %et(cosh(
√

2t)− sinh(
√

2t)√
2

)]

Routine desolve used the so called Laplace transform to solve the given ODE. Thus the returned
solution may look weird and is hardly useful. This is in particular the case when the coefficients of
the linear differential equations are not constants.

8.3 Direction Fields

Command Description

plotdf(dxdy,[x,y],opts) Plot direction field of a single ODE
plotdf([dxdt,dydt],[x,y],opts) Plot direction field of a set of two autonomous ODEs

Option Default Description

[trajectory_at,x,y] empty Starting point of an integral curve
[direction,dir] both direction of the independent variable to compute an

integral curve (forward, backward, both)
[versus_t,num] 0 If 1, curves are also plot as function of t
[x,x_min,x_max] automatic Range for x-axis
[y,y_min,y_max] automatic Range for y-axis

plotdf creates a plot of a vector field (direction field) of a first-order ODE or a system of two
first-order ODEs. The directions field is a graphical representation of the solutions of an ODE.

8.3.1 Direction Fields of a Single First-Order ODE

To plot the direction field of a single ODE, the ODE must be written in the form

dy
dx

= F(x, y)

and the function F should be given as the first argument forplotdf. The name of the independent
and the dependent variable are given as a list as second argument. If these are called x and y,
respectively, it may be omitted.

When called plotdf opens a new window that contains a the direction plot. The length of the
draw vectors are proportional to the absolute value of the first derivative.

A direction field for the differential equation

y′ = exp(−x) + y

is created by the following Maxima code. Notice that it might be necessary to load packageplotdf
first.

(%i1) load(plotdf)$

(%i2) plotdf(exp(-x)+y)$

92

8.3 Direction Fields

The resulting plot is shown in Fig. 8.1, l.h.s. The menu in the plot window has several options (not
shown in the figure as its appearance heavily depends on computing environment) that allows to
manipulate the plot. Clicking into the direction field on particular point adds a trajectory starting
at that point, see Fig. 8.1, r.h.s. It is possible to draw two or more trajectories with different starting
points. One can also enter staring points by means of option trajectory_at.

(%i3) plotdf(exp(-x)+y, [trajectory_at,2,-0.1])$

Option direction controls the direction of the independent variable that will be followed to
compute an integral curve. Possible values are forward, to make the independent variable in-
crease, backward, to make the independent variable decrease, or both that will lead to an integral
curve that extends in both directions.

It is also possible to plot the integral curve as a function of the independent variable t in a second
plot window. This can be switched on using the appropriate option in the menu of the plot window
or by means of command line option versus_t.

For further options we refer to the corresponding man page.

Figure 8.2 shows the result of the next Maxima command.

(%i4) plotdf(exp(-x)+y, [trajectory_at,2,-0.1], [direction,forward],
[versus_t,1])$

-10 -5 0 5 10

-10

-5

0

5

10

y

x

-10 -5 0 5 10

-10

-5

0

5

10

y

x

Figure 8.1: Direction field without (l.h.s.) and with trajectory (r.h.s.).

8.3.2 Direction Fields of Two Autonomous First-Order ODEs

To plot the direction field of a set of two autonomous ODEs, they must be written in the form

dx
dt

= F(x, y),
dy
dt

= G(x, y)

and the the first argument for plotdf should be a list with the two functions F and G, in that
order; namely, the first expression in the list will be taken to be the time derivative of the variable
represented on the horizontal axis, and the second expression will be the time derivative of the
variable represented on the vertical axis. Those two variables do not have to be x and y, but if they

93

8 Ordinary Differential Equations (ODE)

-10 -5 0 5 10

-10

-5

0

5

10

y

x

x

y

0 1 2 3 4 5 6

-10

-5

0

5

10

t

Figure 8.2: Direction field with trajectory starting at x = 2 and y = −0.1 (l.h.s.) and the plot against
independent variable t (r.h.s.).

are not, then the second argument given to plotdfmust be another list naming the two variables,
first the one on the horizontal axis and then the one on the vertical axis.

Here is the code plotting the directory field for the system (∗) in Sect. 8.2 on p. 91 above; see Fig. 8.3
for the result.

(%i5) plotdf([x-2*y, -x+y], [trajectory_at,1,1], [versus_t,1])$

-10 -5 0 5 10

-10

-5

0

5

10

y

x

x

y

0 1 2 3 4 5 6

-10

-5

0

5

10

t

Figure 8.3: Direction field of two autonomous ODEs with trajectory starting at x = 1 and y = 1
(l.h.s.) and the plot against independent variable t (r.h.s.).

94

8.3 Direction Fields

— Exercises

56. Compute the general solutions of the following ordinary differential equations by means of
routine ode2 as well as the corresponding initial value problems with initial values y(1) = 1.
Determine the methods that are used to solve these ODEs.

(a) y′ − k y
x = 0

(b) x y′ − (1 + y) = 0

(c) y′ = x y

(d) y′ + ey = 0

(e) y′ = y2

(f) y′ =
√

x3 y

57. Compute the general solutions of the following ordinary differential equations by means of
routine ode2 as well as the corresponding initial value problems with the given initial values.
Determine the methods that are used to solve these ODEs.

(a) y′′ + y′ − 2y = 3 with y(0) = y′(0) = 1.

(b) y′′ − 6y′ + 9y = 0 with y(0) = 2 and y′(0) = 0.

(c) y′′ + 2y′ + 17y = 0 with y(0) = 0 and y′(1) = 1.

58. Compute the general solutions of the following ordinary differential equations by means of
routine desolve as well as the corresponding initial value problems with the given initial
values.

(a) x y′ − (1 + y) = 0 with y(0) = 1.

(b) y′′ + y′ − 2y = 3 with y(0) = y′(0) = 1.

(c) y′′ − 6y′ + 9y = 0 with y(0) = 2 and y′(0) = 0.

(d) y′′ + 2y′ + 17y = 0 with y(0) = 0 and y′(1) = 1.

59. Plot the direction fields and some trajectories for the following ordinary differential equa-
tions.

(a) y′ − y
x = 0

(b) x y′ − (1 + y) = 0

(c) y′ = x y

(d) y′ + ey = 0

(e) y′ = y2

(f) y′ =
√

x3 y (Hint: use options x and y.)

60. Plot the direction fields and some trajectories for the following system of ordinary differential
equations. Use plotting range [0, 10]× [0, 10].

x′(t) = x(t)(1− y(t))
y′(t) = −y(t)(1− x(t))

95

9 Economic Examples

9.1 Monopoly

Assume that a local provider has a monopoly over the provision of rock concerts. The firm has
estimated that its market demand curve can be drawn from the following equation

p = 124− 6q .

The marginal revenue (MR) in this case would be MR = 124− 12q.

(%i1) p(q):= 124-6*q;

(%o1) p(q) := 124− 6 q

(%i2) MR(q):= ''(diff(q*p(q),q));

(%o2) MR(q) := 124− 12 q

The firm’s average and marginal cost are constant, in our case let MC = AC = 40. The solution in
the single price case is found by setting MR = MC.

(%i3) MC(q):= 40;

(%o3) MC(q) := 40

(%i4) eq1: MR(q)=MC(q);

(%o4) 124− 12 q = 40

(%i5) q0: ev(q, solve(eq1,q));

(%o5) 7

So we find q̂ = 7. The computation of the optimal price p̂ and the optimal single price monopoly
is then straightforward.

(%i6) p0: p(q0);

(%o6) 82

(%i7) pi(p,q):= p*q-40*q;

(%o7) π (p, q) := p q− 40 q

(%i8) pi(p0,q0);

(%o8) 294

97

9 Economic Examples

(%i9) plot2d([MR(q),p(q),MC(q)],[q,0,11],
[color,green,blue,red], [legend, "MR(q)","p(q)","MC(q)"]);

(%o9)

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

q

MR(q)
P(q)

MC(q)

9.2 Profit Maximization

The notion of optimization of a function is central to economic analysis of rational behaviour.
For example, firms are usually assumed to want to choose an output level that maximises profit
and minimizes the cost. We solve like above an another problem of a monopolist who wants to
maximize his output.

Assume a monopoly faces a demand function given by

p(q) = 50− 1
2

q

and a total cost function of
TC(q) = 2 + 60 q− 8 q2 + q3 .

In order to find the maximum profit output we first need to derive the total revenue function TR
and the total profit function TP in the usual way.

(%i1) p(q):= 50-1/2*q;

(%o1) p(q) := 50− 1
2

q

(%i2) TC(q):= 2+60*q-8*q^2+q^3;

(%o2) TC(q) := 2 + 60 q + (−8) q2 + q3

(%i3) TR(q):= ''(expand(p(q)*q));

(%o3) TR(q) := 50 q− q2

2
(%i4) TP(q):=''(expand(TR(q)-TC(q)));

(%o4) TP(q) := −q3 +
15 q2

2
− 10 q− 2

Since this function is not concave we apply the following method: Compute the candidate points
for the (global) maximum and compare their total profits: the critical points of TP and the bound-
ary points q = 0 (notice that q must satisfy the nonnegativity condition) and q = ∞ (that is,
limq→∞ TP(q)). Notice that all critically points are feasible.

98

9.3 Price Discrimination

(%i5) cp: solve(diff(TP(q),q)=0,q);

(%o5) [q = −
√

105− 15
6

, q =

√
105 + 15

6
]

(%i6) float(cp);

(%o6) [q = 0.792174872340067, q = 4.207825127659932]

(%i7) [TP(0),TP(rhs(cp[1])),TP(rhs(cp[2])),limit(TP(q),q,inf)], numer;

(%o7) [−2,−5.712313244682943, 14.21231324468293,−in f]

Hence we have maximum profit q∗ = 4.2078. By substitution we get maximum profit and optimal
price.

(%i8) q0: rhs(cp[2]), numer;

(%o8) 4.207825127659932

(%i9) TP0: TP(q0);

(%o9) 14.21231324468293

(%i10) p0: p(q0);

(%o10) 47.89608743617003

At last we plot total profit and marginal profit as well as total revenue and total price (the later two
are rescaled for the picture).

(%i11) plot2d([TP(q),diff(TP(q),q),TC(q)/8,TR(q)/8], [q,0,6],
[legend, "TP(q)", "MP(q)", "TC(q)", "TR(q)"]);

(%o11)

-30

-20

-10

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6

q

TP(q)
MP(q)
TC(q)
TR(q)

9.3 Price Discrimination

Assume that a provider sales a good at two different prices

p1(q1) = 20− 2 q1

p2(q2) = 10− q2

and has cost function
C(q1, q2) = (q1 + q2)

2 + 5

99

9 Economic Examples

The provider wants to maximize its profit. One approach is to define two functions p1 and p2.
However, here we want to demonstrate the possibility of vector valued functions in Maxima. Thus
we need a vector q = (q1, q2) and a function p(q) =

(
p1(q1, q2), p2(q1, q2)

)
.

(%i1) q: [q[1], q[2]];

(%o1) [q1, q2]

(%i2) p(q):= [20-2*q[1], 10-q[2]];

(%o2) p(q) := [20− 2 q1, 10− q2]

(%i3) C(q):=(q[1]+q[2])^2+5;

(%o3) C(q) := (q1 + q2)
2 + 5

(%i4) TP(q):=p(q).q-C(q);

(%o4) TP(q) := p(q) · q− C(q)

In order to get the maximal profit we have to compute the stationary points of TP.

(%i5) MP(q):= ''([diff(TP(q),q[1]), diff(TP(q),q[2])]);

(%o5) MP(q) := [−2 (q2 + q1)− 4 q1 + 20,−2 (q2 + q1)− 2 q2 + 10]

(%i6) cq: solve(MP(q), q);

(%o6) [[q2 = 1, q1 = 3]]

May also may check whether the point indeed is a global maximum. Thus we show that TP is
concave by computing all eigenvalues of its Hessian.

(%i7) hessian(TP(q), q);

(%o7)

[
−6 −2
−2 −4

]
(%i8) float(eigenvalues(%));

(%o8) [[−7.23606797749979,−2.76393202250021], [1.0, 1.0]]

Hence we have optimal profit for q∗ = (3, 1).

(%i9) q0: ev(q, cq);

(%o9) [3, 1]

We also can easily verify that marginal revenues and marginal costs coincide.

(%i10) MR(q):= ''([diff((p(q)*q)[1],q[1]), diff((p(q)*q)[2],q[2])]);

(%o10) MR(q) := [20− 4 q1, 10− 2 q2]

(%i11) MC(q):= ''([diff(C(q),q[1]), diff(C(q),q[2])]);

(%o11) MC(q) := [2 (q2 + q1), 2 (q2 + q1)]

(%i12) MR(q0); MC(q0);

(%o12) [8, 8]

(%o13) [8, 8]

100

9.4 Cournot Duopoly

9.4 Cournot Duopoly

In the Cournot duopoly model we have a market with demand function

p(q1, q2) = a− b (q1, q2)

and two providers with respective cost functions

C1(q1) = d1 + c1 q1

C2(q2) = d2 + c2 q2

and profit functions
πi(q1, q2) = p(q1, q2) qi − Ci(qi) , i = 1, 2

If we use vector valued function this can be coded as follows.

(%i1) q: [q[1],q[2]]$

(%i2) p(q):= a-b*(q[1]+q[2]);

(%o2) p(q) := a− b (q1 + q2)

(%i3) c:[c[1],c[2]]$ d:[d[1],d[2]]$

(%i4) C(q):= d+c*q;

(%o4) C(q) := d + c q

(%i5) pi(q):= p(q)*q - C(q);

(%o5) π(q) := p(q) q− C(q)

Each company tries to maxize its profit given the supply of its competitor. Thus we get the so
called reaction function as

(%i6) R: [solve(diff(pi(q)[1],q[1]),q[1])[1],
solve(diff(pi(q)[2],q[2]),q[2])[1]];

(%o6) [q1 = − q2 b− a + c1

2 b
, q2 = − q1 b− a + c2

2 b
]

Thus if each company will react on any change in supply of its opponent we only have equlibrium
if both equalities q1 = − q2 b−a+c1

2 b and q2 = − q1 b−a+c2
2 b hold simultaniously. We then have reached

a so called Nash equlibrium because none of the two companies can change his supply without
decreasing its profit.

(%i7) solve(R,q);

(%o7) [[q1 =
a + c2 − 2 c1

3 b
, q2 =

a− 2 c2 + c1

3 b
]]

9.5 Cobb-Douglas Production Function

The Cobb Douglas function is widely used to represent the relationship of an output to inputs.
The function was proposed by K. Wicksell and tested against statistical evidence by C. Cobb and P.
Douglas. In general the function has the following form

u = c xαyβ

whereby u describes the total production, x ≥ 0 the labor input, y ≥ 0 the capital input and c the
total factor productivity. The exponents α > 0 and β > 0 are the output elasticities of labor and
capital.

101

9 Economic Examples

Here is example of an Cobb-Douglas function plot with α = 1
2 , β = 1

3 and constant c = 3.

(%i1) plot3d(3*x^(1/2)*y^(1/3), [x,0,5], [y,0,5]);

(%o1)

 0
 1

 2
 3

 4
 5 0

 1
 2

 3
 4

 5

 0

 2

 4

 6

 8

 10

 12

z

3*sqrt(x)*y^(1/3)

x

y

z

We can easily check that the Cobb-Douglas function is strictly concave whenever α + β < 1.

(%i2) u(x,y):= c*x^alpha*y^beta;

(%o2) u(x, y) := c xα y beta

(%i3) hess: hessian(u(x,y), [x,y]);

(%o3)

[
(α− 1) α c xα−2 yβ α β c xα−1 yβ−1

α β c xα−1 yβ−1 (β− 1) β c xα yβ−2

]
(%i4) factor(determinant(hess));

(%o4) −α β (β + α− 1) c2 x2 α−2 y2 β−2

Since 0yα, β < 1 and 0 < α + β < 1, we find for x, y > 0 for the leading principal minors:

(α− 1) α c xα−2 yβ < 0
−α β (β + α− 1) c2 x2 α−2 y2 β−2 > 0

and thus u(x, y) is strictly concave.

9.6 Stationary Points and Cobb-Douglas Function

Suppose we need the maximum of the function

f (x, y) = 6 x
1
2 y

1
3 − 3 x− 2 y .

We already have seen in Sect. 9.5 that f is strictly concave, since α + β = 5
6 < 1. Thus it remains to

find stationary points.

102

9.6 Stationary Points and Cobb-Douglas Function

(%i1) f(x,y):= 6*x^(1/2)*y^(1/3)-3*x-2*y;

(%o1) f (x, y) := 6 x1/2 y1/3 − 3 x + (−2) y

(%i2) plot3d(f(x,y), [x,0,3], [y,0,3], [z,0,1]);

(%o2)

 0 0.5 1 1.5 2 2.5 3 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 0.2

 0.4

 0.6

 0.8

 1

z

-2*y+6*sqrt(x)*y^(1/3)-3*x

x

y

z

(%i3) fx: diff(f(x,y), x);

(%o3)
3 y1/3
√

x− 3
(%i4) fy: diff(f(x,y), y);

(%o4)
2
√

x
y2/3 − 2

(%i5) solve([fx=0,fy=0],[x,y]);

(%o5) []

Unfortunately, solve does not find a solution. However, the following trick does the job. We tell
Maxima that both varaibles are positive and solve one equation and substitute into the other one.

(%i6) assume(x>0,y>0);

(%o6) [x > 0, y > 0]

(%i7) solve(fx=0,x);

(%o7) [x = y2/3]

(%i8) yo: solve(ev(fy,%)=0,y);

(%o8) [y = 1]

(%i9) xo: solve(ev(fx,yo)=0,x);

(%o9) [x = 1]

Thus the point (1, 1) maximizes f .

Now let us look at the general function

f (x, y) = c xα yβ − r x− w y

where α + β < 1. Thus f is strictly concave and we only have to find the stationary points of f .
However, if we want to solve both equalities simulatiously, we only get an error message.

103

9 Economic Examples

(%i10) kill(all)$

(%i11) f(x,y):= c*x^a*y^b-r*x-w*y;

(%o11) f (x, y) := c xa yb − r x + (−w) y

(%i12) fx: diff(f(x,y), x);

(%o12) a c xa−1 yb − r

(%i13) fy: diff(f(x,y), y);

(%o13) b c xa yb−1 − w

(%i14) assume(x>0,y>0)$

(%i15) solve([fx=0,fy=0],[x,y]);
algsys: tried and failed to reduce system to a polynomial in one
variable; give up.
-- an error. To debug this try: debugmode(true);

Thus let us try the same trick as above. However, we have to answer some more questions.

(%i16) solve(fx=0,x);
Is a an integer? no;
Is a c r positive, negative, or zero? pos;

(%o16) [x =

(r
a c
) 1

a−1

y
b

a−1
]

(%i17) yo: solve(ev(fy,%)=0,y);
Is (b+a-1)/(a-1) an integer? no;
Is a b c^2 r w positive, negative, or zero? pos;

(%o17) [y =

 w

b c
(

r
a c)

1
a−1

)a


1

b+a−1−
a

b+a−1

]

(%i18) xo: solve(ev(fx,yo)=0,x);
Is a^2 b c^3 r^2 w positive, negative, or zero? pos;

(%o18) [x =



r


 w

b c
(

r
a c)

1
a−1

)a

 1
b+a−1−

a
b+a−1


b

a c



1
a−1

]

It works although the result is not very useful.

9.7 Constraint Optimization

Suppose we have to maximize a Cobb-Douglas production function

Y(K, L) = L2K

under constraint
g(K, L) = K + L = 3.

104

9.7 Constraint Optimization

Such problems can be solved by means of Lagrange multipliers. Thus we have to find the station-
ary points of the Lagrange function

L(K, L, λ) = L2K + λ(3− L− K)

Although we can symbol L for both the Lagrange function L and the variable L (as Maxima distin-
guishes between functions and variables) it is recommended to use different symbols.

(%i1) Y(K,L):= K^2*L;

(%o1) K2 L

(%i2) g(K,l):= K+L;

(%o2) K + L

(%i3) F(K,L,mu):= ''(Y(K,L) + mu*(3-g(K,L)));

(%o3) F(L, K, µ) := K2L + µ(3− K− L)

(%i4) gradF: jacobian([F(K,L,mu)],[K,L,mu])[1];

(%o4) [2 K L− µ, K2 − µ, −L− K + 3]

(%i5) cp: solve(gradF);

(%o5) [[L = 1, K = 2, µ = 4], [L = 3, K = 0, µ = 0]]

Thus we have found two stationary points. For the next step we have to compute the bordered
Hessian of Y(K, L) in order to distinguishe between local maxima and local minima. Unfortu-
nately, yet there is no function that computes the border Hessian and we have to do it ourselves.
Recall that (in our case)

H̄ =

 0 gK gL
gK LKK LKL
gl LLK LLL


(%i6) H: matrix([0, diff(g(K,L),K), diff(g(K,L),L)],

[diff(g(K,L),K), diff(F(K,L,mu),K,2), diff(F(K,L,mu),K,1,L,1)],
[diff(g(K,L),L), diff(F(K,L,mu),L,1,K,1), diff(F(K,L,mu),L,2)]);

(%o6)

0 1 1
1 2 L 2 K
1 2 K 0


(%i7) ev(determinant(H), cp[1]);

(%o7) 6

(%i8) ev(determinant(H), cp[2]);

(%o8) −6

(%i9) cp[1];

(%o9) [L = 1, K = 2, µ = 4]

Hence we have only one local maximum given by L = 1, K = 2 and µ = 4.

Important
Recall that the Maxima code for second order mixed partial derivatives is B
diff(F(K,L), L,1, K,1).

105

Answers to the Exercises

Important
This chapter just lists Maxima code that helps to solve the given problems. By no means these are B
complete answers to all of the exercises. In particular in many cases the Maxima output needs
further interpretation.

Also notice that there is usually more than one approach to solve a problem with Maxima. There
may be much more ways to get a sensible result to the exercises than those listed in this chapter.

1. gr: (1+sqrt(5))/2;

float(gr);

2. gr: (1+sqrt(5))/2; ev(x^2-x-1,x=gr); %, numer;

3. solve(x^2-x-1=0,x);

4. (-1)^(1/3);

solve(x^3=-1,x);

5. ev(bfloat(%pi), fpprec:100);

6. ln: log;

7. log10(x):= float(log(x)/log(10));

log10(1000);

8. heron(a,b,c):= 0.25*sqrt((a^2+b^2+c^2)^2-2*(a^4+b^4+c^4));

9. ? solve;

10. apropos("solve");

11. reset(); kill(all);

12. expand((a+b)^10);

13. factor(a^10-b^10);

factor(a^10+b^10);

14. ratsimp((a^10-b^10)/(a^2-b^2));

15. solve(x^2+2*(sin(alpha)+cos(alpha))*x+sin(2*alpha)+1=0, x);

trigexpand(%); trigsimp(%);

unique(%);

16. sgn(x):= if (x<0) then -1 else if (x=0) then 0 else 1;

sgn(-1); sgn(0); sgn(%pi);

17. assume(alpha>0,beta>0,alpha<1,beta<1,alpha+beta<1);

is(alpha>-1/2);

is(alpha> 1/2);

is(alpha> 1);

forget(alpha>0,beta>0,alpha<1,beta<1,alpha+beta<1);

107

Answers to the Exercises

18. numeric(x,prec):= ev(bfloat(x), fpprec:prec);

numeric(1/%e,30);

19. plot2d(1/sqrt(2*%pi)*exp(-x^2/2),[x,-3,3],[ylabel,"density"]);

20. plot2d([1/sqrt(2*%pi)*exp(-x^2/2), 1/(%pi*(1+x^2))], [x,-3,3],
[legend, "Gaussian distribution", "Cauchy distribution"], [style,
lines, [lines, 5]], [color, black, red], [ylabel,"density"]);

21. plot2d([1/x,1/x^2,1,x,x^2],[x,0,2],[y,0,2]);

22. datalist: [[.25,-1.03], [.5,-0.63], [.75,-0.28], [1.,0.],
[1.25,0.22], [1.5,0.38], [1.75,0.47]];

plot2d([log(x), [discrete, datalist]], [x,0,2], [y,-2,1], [style,
lines, points], [point_type, diamond]);

23. plot2d([parametric, sin(4*%pi*t), cos(4*%pi*t)],
[t,0,4],[nticks,401]);

24. /*a*/ plot3d(1/(2*%pi)*exp(-0.5*(x^2+y^2)), [x,-3,3], [y,-3,3]);

/*b*/ plot3d(1/(2*%pi)*exp(-0.5*(x^2+y^2)), [x,-3,3], [y,-3,3],
[palette,false], [color, blue]);

/*c*/ plot3d(1/(2*%pi)*exp(-0.5*(x^2+y^2)), [x,-3,3], [y,-3,3],
[palette,false], [color, cyan, blue]);

/*d*/ plot3d(1/(2*%pi)*exp(-0.5*(x^2+y^2)), [x,-3,3], [y,-3,3],
[mesh_lines_color,false]);

25. load(draw)$

draw2d(ylabel="density", explicit(1/sqrt(2*%pi)*exp(-x^2/2),
x,-3,3));

26. load(draw)$

draw2d(ylabel="density", key="Gaussian distribution", color=black,
explicit(1/sqrt(2*%pi)*exp(-x^2/2), x,-3,3), key="Cauchy
distribution", color=red, line_width=5, explicit(1/(%pi*(1+x^2)),
x,-3,3));

27. load(draw)$

draw2d(yrange=[0,2], key="1/x", color=blue, explicit(1/x,
x,0,2), key="1/x^2", color=red, explicit(1/x^2, x,0,2), key="1",
color=green, explicit(1, x,0,2), key="x", color=magenta, explicit(x,
x,0,2), key="x^2", color=black, explicit(x^2, x,0,2));

28. load(draw)$

datalist: [[.25,-1.03], [.5,-0.63], [.75,-0.28], [1.,0.],
[1.25,0.22], [1.5,0.38], [1.75,0.47]];

draw2d(yrange=[-2,1], color=blue, explicit(log(x), x,0,2),
color=red, point_type=filled_diamant, point_size=2,
points(datalist));

29. load(draw)$

draw2d(nticks=29, parametric(sin(4*%pi*t),cos(4*%pi*t), t,0,4));

30. load(draw)$

draw3d(explicit(1/(2*%pi)*exp(-0.5*(x^2+y^2)), x,-3,3, y,-3,3));

31. x: [1,2,3]; y: [4,5,6];

x+y; x-y; x.y; 3*x;

108

32. A: matrix([1,2,3],[4,5,6],[7,8,9]);

B: matrix([-1,0,2],[-2,1,3],[2,4,-1]);

A+B; A-B; 3*A; A.B; A^^2; B^^(-1);

determinant(A); transpose(A);

A^^(-1);

33. A: matrix([1,2,3],[4,5,6],[7,8,9]);

B: matrix([-1,0,2],[-2,1,3],[2,4,-1]);

rank(A); rank(B);

nullity(A); nullity(B);

nullspace(A); nullspace(B);

columnspace(A); columnspace(B);

CS: columnspace(A); a1*first(CS)+a2*second(CS);

34. "(a)"

eq1: 2*x[1]+3*x[2]+4*x[3]= 2;

eq2: 4*x[1]+3*x[2]+ x[3]=10;

eq3: x[1]+2*x[2]+4*x[3]= 5;

solve([eq1,eq2,eq3], [x[1],x[2],x[3]]);

"(b)"

eq1: 2*x[1]+2*x[2]+ x[3]+3*x[4]=10;

eq2: 3*x[1]+5*x[2]+2*x[3]- x[4]=30;

eq3: x[1]+2*x[2]+ x[3]- x[4]=12;

solve([eq1,eq2,eq3], [x[1],x[2],x[3],x[4]]);

"(c)"

eq1: 2*x[1]+10*x[2]+4*x[3]+ 9*x[4]= 1;

eq2: x[1]+ 6*x[2]+5*x[3]+ 3*x[4]= 1;

eq3: 2*x[1]+16*x[2]+9*x[3]+11*x[4]=-1;

eq4: x[1]+ 5*x[2]+2*x[3]+ 5*x[4]= 2;

eq5: x[2]+3*x[3] = 4;

solve([eq1,eq2,eq3,eq4,eq5], [x[1],x[2],x[3],x[4]]);

35. A: matrix([1,2],[3,4]);

es: eigenvectors(A);

eigval: es[1][1];

v[1]: es[2][1]; v[2]: es[2][2];

36. A: matrix([1,2,1],[2,1,3],[1,3,1]);

es: eigenvectors(A);

eigvals: float(realpart(es[1][1]));

eigvects: float(realpart(es[2]));

109

Answers to the Exercises

37. A: diagmatrix(3,1);

esA: eigenvectors(A);

numberofeigenvaluesA: length(esA[1][1]);

algebraicmultiplicityA: esA[1][2];

geometricmultiplicityA: length(esA[2][1]);

B: matrix([1,1,1],[0,1,1],[0,0,1]);

esB: eigenvectors(B);

numberofeigenvaluesB: length(esB[1][1]);

algebraicmultiplicityB: esB[1][2];

geometricmultiplicityB: length(esB[2][1]);

38. limit((n+1)/(n-1),n,inf);

limit((1+1/n)^n,n,inf);

limit(sin(x)/x,x,0);

limit(sin(1/x)/x,x,0);

limit(sin(1/x),x,0);

limit(sin(1/x)*x,x,0);

limit(exp(1/x),x,0);

limit(exp(1/x),x,0,plus);

limit(exp(1/x),x,0,minus);

39. limit(((x+h)^5-x^5)/h,h,0);

40. sum(binomial(n,k),k,0,n), simpsum;

41. sum(a[i]*b[n-i+1]-a[n-i+1]*b[i],i,1,n), n:10;

42. product((x-y),y,1,1000);

43. diff(x^alpha*y^beta,x); diff(x^alpha*y^beta,y);

diff(x^alpha*y^beta,x,2); diff(x^alpha*y^beta,y,2);

diff(x^alpha*y^beta,x,1,y,1);

44. diff(log(f(x)));

45. depends(f,[x,y,t]); depends(x,y); depends(y,t);

diff(f,t);

diff(f,t,2);

derivabbrev: true$

diff(f,t);

diff(f,t,2);

46. jacobian([exp(-x^2-y^2), x^2+y^2],[x,y]);

47. powerseries(sqrt(1+x^2),x,0);

48. f(x):= sqrt(1+x^2);

t(x):= ''(taylor(f(x),x,0,4));

plot2d([f(x),t(x)], [x,-1.5,1.5]);

110

49. f(x):= (x^2+1)/x;

fx: diff(f(x),x);

fxx: diff(f(x),x,2);

crit: solve(fx,x);

ev(fxx, crit[1]);

ev(fxx, crit[2]);

plot2d(f(x), [x,-2,2],[y,-5,5]);

50. f(x,y):= -x^2+x*y+y^2;

fx: diff(f(x,y), x);

fy: diff(f(x,y), y);

crit: solve([fx,fy], [x,y]);

H: hessian(f(x,y), [x,y]);

eigenvalues(ev(H,crit[1]));

plot3d(f(x,y), [x,-1,1],[y,-1,1]);

51. g(x,y):= 2*(y-x^2)^2+(1-x)^2;

gx: diff(g(x,y), x);

gy: diff(g(x,y), y);

crit: solve([gx,gy], [x,y]);

H: hessian(g(x,y), [x,y]);

eigenvalues(ev(H,crit)), numer;

plot3d(g(x,y), [x,0.5,1.5],[y,0.5,1.5]);

52. h(x,y):= 1/x*log(x)-y^2+1;

hx: diff(h(x,y), x);

hy: diff(h(x,y), y);

crit: [solve(hx,x), solve(hy,y)];

H: hessian(h(x,y),[x,y]);

eigenvalues(ev(H,crit));

plot3d(h(x,y), [x,1,5],[y,-1,1]);

53. integrate(x^3*sin(-x),x);

54. integrate(x^3*sin(-x),x,0,%pi);

55. qres: quad_qags(tan(log(x)),x,1,2);

a: qres[1];

56. sola: ode2('diff(y,x)-k*y/x=0, y, x); ic1(sola, x=1, y=1); method;

solb: ode2(x*'diff(y,x)-(1+y)=0, y, x); ic1(solb, x=1, y=1); method;

solc: ode2('diff(y,x)=x*y, y, x); ic1(solc, x=1, y=1); method;

sold: ode2('diff(y,x)+%e^y=0, y, x); ic1(sold, x=1, y=1); method;

sole: ode2('diff(y,x)=y^2, y, x); ic1(sole, x=1, y=1); method;

solf: ode2('diff(y,x)=sqrt(x^3*y), y, x); ic1(solf, x=1, y=1);
method;

111

Answers to the Exercises

57. sola: ode2('diff(y,x,2)+'diff(y,x)-2*y=3, y, x); method;

ic2(sola, x=0,y=1,'diff(y,x)=1);

solb: ode2('diff(y,x,2)-6*'diff(y,x)+9*y=0, y, x); method;

ic2(solb, x=0,y=2,'diff(y,x)=0);

solc: ode2('diff(y,x,2)+2*'diff(y,x)+17*y=0, y, x); method;

ic2(solc, x=0,y=0,'diff(y,x)=1);

58. sola: desolve(diff(y(x),x)-(1+y(x))=0, y(x));

atvalue(y(x), x=0, 1); desolve(diff(y(x),x)-(1+y(x))=0, y(x));

kill(y)$

solb: desolve(diff(y(x),x,2)+diff(y(x),x)-2*y(x)=3, y(x));

atvalue(y(x), x=0, 1); atvalue(diff(y(x), x), x=0, 1);

desolve(diff(y(x),x,2)+diff(y(x),x)-2*y(x)=3, y(x));

kill(y)$

solc: desolve(diff(y(x),x,2)-6*diff(y(x),x)+9*y(x)=3, y(x));

atvalue(y(x), x=0, 2); atvalue(diff(y(x),x), x=0, 0);

desolve(diff(y(x),x,2)-6*diff(y(x),x)+9*y(x)=3, y(x));

kill(y)$

sold: desolve(diff(y(x),x,2)+2*diff(y(x),x)+17*y(x)=3, y(x));

atvalue(y(x), x=0, 0); atvalue(diff(y(x),x), x=0, 1);

desolve(diff(y(x),x,2)+2*diff(y(x),x)+17*y(x)=3, y(x));

kill(y)$

59. /*a*/ plotdf(y/x);

/*b*/ plotdf((1+y)/x);

/*c*/ plotdf(y*x);

/*d*/ plotdf(-%e^y);

/*e*/ plotdf(y^2);

/*f*/ plotdf(sqrt(x^3*y),[x,0.001,10],[y,0.001,10]);

60. plotdf([x*(1-y),-y*(1-x)],[x,0,3],[y,0,3]);

112

Index

* (operator), 5, 65, 66
+ (operator), 5, 65, 66
- (operator), 5, 65, 66
. (operator), 65, 66
/ (operator), 5
/*...*/ (other), 18
: (operator), 7
:= (operator), 7
; (operator), 3
< (operator), 26
<= (operator), 26
= (operator), 15, 26
> (operator), 26
>= (operator), 26
? (operator), 9
?? (operator), 9
[...] (operator), 14
(operator), 26
$ (operator), 3
% (operator), 9
%c (constant), 89
%e (constant), 5
%i (constant), 5
%i1 (operator), 3
%k1,%k2 (constant), 89
%o1 (operator), 3, 9
%pi (constant), 5
^ (operator), 5
^^ (operator), 66
"..." (constant), 15
' (operator), 24
'' (operator), 24

abs (function), 6
allroots (function), 15
and (operator), 26
append (function), 14
apropos (function), 9
assume (function), 27
atvalue (function), 91

bfloat (function), 12

charpoly (function), 71
color (option), 40, 46, 60
colorbox (option), 52
columnspace (function), 68

contour (option), 56
contour_levels (option), 56
contour_plot (function), 38
cos (function), 6

declare (function), 27
del (function), 77
delete (function), 14
denom (function), 22
dependencies (variable), 78
depends (function), 78
derivabbrev (variable), 78
desolve (function), 91
determinant (function), 67
diagmatrix (function), 67
diff (function), 77
direction (option), 92
draw (function), 45
draw2d (function), 45
draw3d (function), 45

eigenvalues (function), 71
eigenvectors (function), 71
else (operator), 27
enhanced3d (option), 52, 60
equal (function), 26
ev (function), 10, 29
exp (function), 6
expand (function), 22
explicit (function), 46, 52

factor (function), 22
facts (function), 27
false (constant), 26
file_name (option), 60
first (function), 68
float (function), 12
forget (function), 27
fpprec (variable), 10
fpprintprec (variable), 10
fullratsimp (function), 22
functions (variable), 7

gr2d (function), 45
gr3d (function), 45
grid (option), 39, 59

hessian (function), 83

113

Index

ic1 (function), 89
ic2 (function), 89
ident (function), 67
if (operator), 27
imagpart (function), 17
implicit (function), 48, 54
implicit_plot (function), 36
ind (constant), 75
inf (constant), 5
infinity (constant), 75
integrate (function), 86
invert (function), 67
ip_grid (option), 59
ip_grid_in (option), 59
is (function), 26

jacobian (function), 80

key (option), 51, 58
kill (function), 7

label (function), 58
last (function), 68
legend (option), 38
length (function), 14, 68
lhs (function), 15
limit (function), 75
line_type (option), 60
line_width (option), 60
load (function), 18
log (function), 6

matrix (function), 66
mesh_lines_color (option), 40
method (variable), 89
minf (constant), 5

niceindices (function), 81
not (operator), 26
nticks (option), 34, 39, 48, 59
nullity (function), 68
nullspace (function), 68
num (function), 22
numer (variable), 13

ode2 (function), 89
or (operator), 26

palette (option), 40, 60
parametric (function), 48, 54
parametric_surface (function), 54
plod2d (function), 32, 33, 34, 35
plod3d (function), 36, 37
plotdf (function), 92
point_size (option), 49, 60
point_type (option), 40, 49, 60

points (function), 49, 57
points_joined (option), 49
polarform (function), 17
powerseries (function), 81

quad_qags (function), 86

radcan (function), 22
rank (function), 68
ratexpand (function), 22
ratsimp (function), 22
realpart (function), 17
rectform (function), 17
reset (function), 10
rest (function), 68
rhs (function), 15

second (function), 68
set_display (function), 12
set_draw_defaults (function), 58
simpproduct (variable), 76
simpsum (variable), 76
sin (function), 6
solve (function), 15
sqrt (function), 6
style (option), 33, 39
sum (function), 76
surface_hide (option), 52, 60

t (option), 34
tan (function), 6
taylor (function), 81
terminal (option), 60
then (operator), 27
title (option), 58
trajectory_at (option), 92
transpose (function), 67
trigreduce (function), 22
trigsimp (function), 17, 22
true (constant), 26

und (constant), 75
unknown (constant), 26

values (variable), 7
versus_t (option), 92

x (option), 32, 39, 59, 92
xaxis (option), 59
xlabel (option), 38, 58
xrange (option), 46
xtics (option), 58
xu_grid (option), 59

y (option), 32, 39, 59, 92
yaxis (option), 59

114

Index

ylabel (option), 38, 58
yrange (option), 46
ytics (option), 58
yv_grid (option), 59

z (option), 39, 59
zaxis (option), 59
zlabel (option), 38, 58
ztics (option), 58

115

	Introduction
	Maxima Interfaces
	How to Read this Tutorial

	Basics
	Getting Started
	wxMaxima
	Maxima as a Calculator
	Basic Arithmetic Operators
	Constants
	Functions
	Variables and User Defined Functions
	Use Output for Further Computations
	Help
	System Variables
	Numbers
	Numeric Results
	Lists
	Strings
	Equations
	Complex Numbers
	Loading Packages
	Writing Your Own Package
	LISP

	Symbolic Computation
	Symbolic Calculator
	Expand, Factor, and Simplify
	Verbs and Nouns
	Logical Operators
	Conditional Evaluation
	Assumptions and Facts
	Local Evaluations

	Plotting
	Plots in 2D
	Plots in 3D
	Plot Options

	The Draw Package
	Draw Scenes
	Graphic Objects in 2D
	Graphic Objects in 3D
	Graphic Options

	Linear Algebra
	Vectors
	Matrices
	Operations on Matrices
	Rank of a Matrix
	Lists (Revised)
	Linear Equations
	Eigenvalues and Eigenvectors

	Calculus
	Limits
	Sums and Products
	Derivatives and Total Differentials
	Dependencies and Chain Rule
	Jacobian Matrix and Gradient
	Taylor Series
	Minima and Maxima of Univariate Functions
	Minima and Maxima of Multivariate Functions
	Integration

	Ordinary Differential Equations (ODE)
	Analytic Solutions of Ordinary Differential Equations
	Linear Systems
	Direction Fields

	Economic Examples
	Monopoly
	Profit Maximization
	Price Discrimination
	Cournot Duopoly
	Cobb-Douglas Production Function
	Stationary Points and Cobb-Douglas Function
	Constraint Optimization

	Answers to the Exercises
	Index

