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OUTLINE

• Early history

• Prior distributions for proportions

• Estimating binomial and multinomial parameters

• Estimating cell probabilities in contingency tables

• Tests and confidence intervals in two-way tables

• Regression models for categorical responses

Seminar based on survey paper prepared with David Hitchcock,
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1 Early History of Bayesian Categorical

Data Analysis

Bayes (1763) and Laplace (1774) estimate a binomial parameter

using a uniform prior distribution.

Let y denote binomial random variable for n trials and parameter

π, and let p = y/n (ML). Laplace estimate (“law of succession”) is

(y + 1)/(n + 2).

De Morgan (1847) proposed uniform distribution over the simplex

for multinomial probabilities, extension of Laplace estimate.

Perks (1947) considered Dirichlet prior, but actual implementation

seems to be due to Lindley (1964) and Good (1965)

Early critic of Bayesian approach is R. A. Fisher (first to use term

“Bayesian,” in 1950). In Statistical Methods and Scientific

Inference (1956), challenges use of uniform prior, noting uniform

priors on other scales lead to different results.
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Early applications of Bayesian methods to contingency tables

involved smoothing cell counts to improve estimation of cell

probabilities with small samples (I. J. Good).

(ex.: What if the count in a cell is zero?)

• Good (1953) used uniform prior distribution over several

categories in estimating population proportions of animals of

various species.

• Good (1956) used log-normal and gamma priors in estimating

association factors in contingency tables; for a particular cell,

association factor = (probability of cell)/(probability assuming

independence)

• Good (1965) monograph on estimating multinomial

probabilities using Dirichlet prior. Also considered hierarchical

and empirical Bayesian approaches with this model.

(Main statistical assistant in 1941 to Alan Turing)

• Lindley (1964) focused on estimating summary association

measures. Using Dirichlet prior (actually, improper limiting

case) for multinomial probabilities, obtains posterior distribution

of contrasts of log probabilities, such as log odds ratio.
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2 Estimating Binomial and Multinomial

Parameters

2.1 Prior distributions for a binomial parameter

Suppose y distributed binomial(n, π)

Conjugate prior density for π is beta(α, β) density,

g(π) ∝ πα−1(1 − π)β−1 for α > 0, β > 0, 0 < π < 1

for which E(π) = α/(α + β).

Posterior density h(π|y) = f(y|π)g(π)/f(y)

∝ [πy(1−π)n−y][πα−1(1−π)β−1] = πy+α−1(1−π)n−y+β−1

is beta(y + α, n − y + β)

E(π|y) = = (y + α)/(n + α + β)

= w(y/n) + (1 − w)[α/(α + β)],

where w = n/(n + α + β)
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Special cases:

• ML estimator p = y/n results from α = β = 0 (improper).

Posterior distribution improper if y = 0 or n.

Corresponds to uniform prior for log odds,

logit(π) = log[π/(1 − π)].

Haldane (1948) argued taking log(π) roughly uniform for π

near 0

“If we are trying to estimate a mutation rate, ... we might

perhaps guess that such a rate would be about as likely to lie

between 10−5 and 10−6 as between 10−6 and 10−7.”

• Jeffreys prior (scale invariant), proportional to square root of

determinant of Fisher information matrix for parameters of

interest, is beta(.5, .5).
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Logistic-normal prior:

Alternative two-parameter approach specifies N(µ, σ2) prior for

logit(π)

Cornfield (1966): clinical trial application

Strongly promoted by T. Leonard (1972 on, apparently instigated by

D. Lindley)

With N(0, σ2) prior for logit(π), prior density function for π over

0 < π < 1 is logistic normal,

f(π) =
1

√

2(3.14)σ2
exp

{

−
1

2σ2

(

log
π

1 − π

)2} 1

π(1 − π)
.

On π scale, symmetric, unimodal when σ2 ≤ 2 and bimodal when

σ2 > 2, always tapering off toward 0 as π approaches 0 or 1.
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2.2 Bayesian inference about a binomial parameter

Point Estimation:

Bayesian estimators of binomial (or multinomial) parameters not

uniformly better than ML: If π = 0, p = y/n = 0 with probability 1.

Johnson (1971): sample proportion admissible

With loss function (T − π)2/[π(1 − π)], Bayes estimator for

uniform prior distribution is p = y/n.

(For this loss function, risk function constant, so also minimax)

Freedman (1963) showed consistency of Bayes estimators, for

sampling from discrete distributions, showed asymptotic normality

of posterior assuming smoothness of prior.

(Extends binomial results – Bernstein 1934, von Mises 1964)

Diaconis and Freedman (1990): Inequalities for posterior

probability falling close to p as n increases.

Draper and Guttman (1971): Estimating n based on r independent

bin(n, π) observations. (Related capture-recapture literature, e.g.

Madigan and York 1997, accounts for model uncertainty by placing

prior distribution over set of models)
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Interval Estimation and Hypothesis Testing:

Brown, Cai, and Das Gupta (2001, 2002) showed that posterior

distribution with Jeffreys prior yields confidence interval for π with

good frequentist performance. Approximates small-sample

frequentist CI based on inverting two binomial one-sided tests

when use mid-P value.

e.g., for 95% CI, .025 = ( 1
2)P (Y = y|πL) + P (Y > y|πL)

.025 = ( 1
2 )P (Y = y|πU ) + P (Y < y|πU )

For H0: π ≥ π0, Ha: π < π0,

Bayesian P -value = P(π ≥ π0|y).

With Jeffreys prior and π0 = 1/2, Routledge (1994) showed

P (π ≥ 1/2|y) ≈ [(
1

2
)P (Y = y|π = .5)+P (Y < y|π = .5)]
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2.3 Bayesian estimation of multinomial parameters

With c categories, cell counts y = (y1, . . . , yc) have multinomial

dist. with n =
∑

yi, parameters π = (π1, . . . , πc),
∑

πi = 1.

f(y|π) ∝
∏c

i=1 πyi

i

Conjugate density is Dirichlet,

g(π) ∝
c

∏

i=1

παi−1
i for 0 < πi < 1 all i,

∑

i

πi = 1,

with {αi > 0}. E(πi) = αi/K , with K =
∑

αj .

Posterior is Dirichlet({yi + αi}), so

E(πi|y1, . . . , yc) = (yi + αi)/(n + K).
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Let γi = E(πi) = αi/K , pi = yi/n.

E(πi|y) = [n/(n + K)]pi + [K/(n + K)]γi

• Jeffreys prior sets all αi = 0.5.

• Lindley (1964) used improper limiting case {αi = 0}, also

recommended by Novick (1969). Discussion of Novick (1969)

shows lack of consensus about meaning of ‘noninformative’.

• Good (1965) used symmetric Dirichlet αi = K/c, for which

K =
∑

αi called a “flattening constant.”

E(πi|y) = [n/(n + K)]pi + [K/(n + K)](1/c)



12

Logistic-normal prior

Good noted Dirichlet restricted by having relatively few parameters.

Can specify means through choice of {γi} and variances through

the choice of K , but no freedom to alter correlations.

Multivariate normal prior for multinomial logits:

If (X1, . . . , Xc) has multivariate normal distribution, then

P = (P1, . . . , Pc), where Pi = exp(Xi)/
∑c

j=1 exp(Xj),

has logistic normal distribution.

Leonard (1973) proposed this prior for estimating a histogram.

(For ordered categories, natural for probabilities nearer each other

to be more highly correlated, e.g., with autoregressive structure)
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2.4 Hierarchical Bayesian and empirical Bayes

estimates of multinomial parameters

Good (1965, 1967, 1976) adopts hierarchical approach, specifies

second-stage prior for parameters {αi} of Dirichlet prior.

Albert and Gupta (1982) let the prior parameters take certain

structure natural for a contingency table (independence, symmetry)

These approaches gain greater generality at expense of giving up

simple conjugate Dirichlet form for posterior.

Empirical Bayesian approach uses data to determine parameter

values in prior – e.g., use prior density that maximizes marginal

probability of observed data.

Good (1956) – first to use empirical Bayesian approach with

categorical data, estimating parameters in gamma and log-normal

priors for association factors.

Disadvantage: does not account for variability due to substituting

estimates for prior parameters. Hierarchical approach increasingly

preferred.
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3 Estimating Cell Probabilities in

Contingency Tables

3.1 Simultaneous estimation of several binomial

parameters

π1, π2, ...πr (parameters for r × 2 table)

Mostly with hierarchical approach (Leonard 1972)

• Stage 1: Given µ and σ, logit(πi) independent from N(µ, σ2).

• Stage 2: Improper uniform prior for µ over the real line, νλ/σ2

independent of µ and is chi-squared with df = ν, with λ a prior

estimate of σ2 and ν a measure of sureness of prior beliefs.

• For simplicity, suggested limiting case in which log(σ2) has

improper uniform prior.

• Integrating out µ and σ2, two-stage approach corresponds to

multivariate t prior for logits.

• Resulting E[logit(πi|y)] is approximately weighted average

of logit(pi) and weighted average of {logit(pj)}.
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3.2 Empirical Bayesian approaches in two-way

tables

Fienberg and Holland (1970, 1972, 1973):

For Dirichlet(K, γ) prior, estimator of multinomial πij is

[n/(n + K)]pij + [K/(n + K)]γij

• Minimum total mean squared error occurs when

K =
(

1 −
∑

π2
ij

)

/
[

∑

(γij − πij)2
]

.

• Optimal K = K(γ, π) depends on π, so used K(γ,p) with

sample proportion p replacing π.

• Selected {γij} based on fit of simple model, such as

{γij = pi+p+j} (e.g., rather than {γij} identical).
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3.3 Estimating loglinear parameters in two-way

tables

Rather than focusing on estimating probabilities (e.g., multinomial

{πij}), instead focus on association parameters.

Lindley (1964):Used Dirichlet prior distribution (and limiting

improper prior) for multinomial sampling.

Contrasts of log cell probabilities, such as log odds ratio, have

approximate (large-sample) joint normal posterior distribution.

However, normally sensible to model cell probabilities, rather than

treat as exchangeable.
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First Bayesian approach for loglinear models focused on

parameters of saturated model (Leonard 1975). For cell counts

{yij},

log[E(yij)] = λ + λX
i + λY

j + λXY
ij

• Exchangeability within each set of loglinear parameters more

sensible than exchangeability of multinomial probabilities (as

with Dirichlet prior).

• Treated row effects, column effects, and interaction effects as a

priori independent.

• For each, given µ, σ2, first-stage prior takes them independent

and normal with mean µ and variance σ2.

• At the second stage, each normal mean is assumed to have

improper uniform distribution over the real line, and σ2

assumed to have an inverse chi-squared distribution.

• For computational convenience, parameters estimated by joint

posterior modes rather than posterior means.

• Analysis shrinks log counts toward ML fit of independence

model.
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3.4 Extensions to multi-dimensional tables

Knuiman and Speed (1988) generalized Leonard (1975) by taking

multivariate normal prior for all parameters collectively

(rather than univariate normals on individual parameters).

Forster (2004): Conditions for prior distributions such that marginal

inferences equivalent for Poisson and multinomial models.

Parameter governing overall size of cell means (which disappears

after the conditioning that yields the multinomial model) has

improper prior.

Derives necessary and sufficient conditions for posterior to be

proper, and relates to conditions for ML estimates to be finite.
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3.5 Graphical models

Graphical models have conditional independence structure

summarized by graph with vertices for variables and edges

between vertices to represent conditional association

(no edge: conditional indep.).

• Joint cell probabilities expressed in terms of marginal and

conditional probabilities.

• Independent Dirichlet prior distributions for them induce

independent Dirichlet posterior distributions.

• Dawid and Lauritzen (1993) introduce probability distribution

over set of such graphs. Special case includes hyper Dirichlet

distribution that is conjugate for multinomial sampling and

implies certain marginal probabilities have Dirichlet distribution.

• Madigan and Raftery (1994), Madigan and York (1995): Used

this family for model comparison and averaging in constructing

posterior distributions for summary measures

• Giudici (1998): Prior dist. over space of graphical models to

smooth sparse contingency tables (Smoothing maintains

association structure imposed by the graphical models)



20

4 Tests and Confidence Intervals in

Two-Way Tables

4.1 Confidence intervals for association

parameters

With 2 × 2 tables, parameters of usual interest are π1 − π2,

relative risk π1/π2, and odds ratio [π1/(1−π1)]/[π2/(1−π2)].

Most common to assume yi has bin(ni, πi) distribution,

use independent beta(αi, βi) prior for πi, i = 1, 2.

Alternatively, could use correlated prior for (π1, π2), e.g., bivariate

normal for [logit(π1), logit(π2)].
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With independent beta priors, Nurminen and Mutanen (1987) gave

integral expressions for posterior distributions of these measures.

Hashemi, Nandrum and Goldberg (1997) found Bayesian highest

posterior density (HPD) confidence interval for these parameters.

HPD interval lacks invariance under parameter transformation.

If (L, U) a 95% HPD interval using posterior of odds ratio, then 95%

HPD interval using posterior of inverse of odds ratio (relevant if we

reverse identification of groups being compared) is not (1/U, 1/L).
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Alternative 100(1 − α)% “tail interval” consists of values between

α/2 and (1 − α/2) quantiles. (Longer, but invariant)

Agresti and Min (2005) evaluate Bayesian confidence intervals for

association parameters.

• Coverage probabilities vary substantially according to choice of

prior distribution, even for moderate sample sizes

• For good coverage performance (in frequentist sense) over

entire parameter space, best to use quite diffuse priors

(recommend Jeffreys priors)

• Provide R functions for tail confidence intervals for association

measures with independent beta priors

(www.stat.ufl.edu/∼aa/cda/software.html)
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4.2 Tests comparing two independent binomial

samples

Novick and Grizzle (1965) used independent beta priors to find

posterior P (π1 > π2), with application to sequential clinical trials

Altham (1969) discussed Bayesian testing for 2×2 tables. For

multinomial cell counts {yij} and posterior Dirichlet distribution

with {α
′

ij = αij + yij},

P (π11π22/π12π21 < 1|{yij}) =

α
′

21
−1

∑

s=max(α
′

21
−α

′

12
,0)

(

α
′

+1 − 1

s

)(

α
′

+2 − 1

α
′

2+ − 1 − s

)

/

(

α
′

++ − 2

α
′

1+ − 1

)
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• Equals one-sided P-value for Fisher’s exact test with

Ha : π11π22/π12π21 > 1, when α11 = α22 = 0 and

α12 = α21 = 1 (improper)

• i.e., ordinary P-value for Fisher’s exact test corresponds to

Bayesian P-value with conservative prior distribution

• If {αij = γ}, with 0 ≤ γ ≤ 1, Bayesian P -value < Fisher

P -value, and difference between the two no greater than null

probability of observed data

Howard (1998) shows that with Jeffreys beta priors, posterior

P (π1 ≤ π2) approximates one-sided P -value for large-sample z

test using pooled variance
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5 Regression Models for Categorical

Responses

5.1 Binary regression

For binary data {yi}, link function g(·),

g[P (yi = 1)] = x
′

iβ, where {yi, i = 1, . . . , n} independent,

Zellner and Rossi (1984) derive approximate posterior densities

with prior on β improper uniform or multivariate normal.

Wong and Mason (1985): Hierarchical logistic regression modeling,

in multilevel structure.

Probit regression: Computational simplicities in connecting to

underlying normal regression model. See Albert and Chib (1993),

with extensions to ordered multinomial responses.
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Bedrick, Christensen, and Johnson (1996, 1997): Elicit beta priors

on P (yi = 1) at selected values of covariates. These induce prior

on model parameters by one-to-one transformation.

• Easier to formulate priors for P (yi = 1) than for β

• Can apply priors to different link functions, whereas prior

specification for β would depend on link function.

Dey, Ghosh, and Mallick (2000): Edited collection of articles that

provide Bayesian analyses for GLMs.

Chaloner and Larntz (1989): Determining optimal design for

experiments using logistic regression

Zocchi and Atkinson (1999): design for multinomial logistic models
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5.2 Multi-category responses

Ordinal response: Logit and probit models for cumulative

probabilities, such as

logit[P (yi ≤ j)] = αj + x
′

iβ, j = 1, ..., c − 1.

Johnson and Albert (1999): Models motivated by underlying logistic

or normal latent variables.

Nominal response: Multinomial logit and probit models, such as

log[P (yi = j)/P (yi = c)] = αj + x
′

iβj .

Daniels and Gatsonis (1997): Generalize Wong and Mason (1985)

hierarchical approach to analyze variations in utilization of

alternative cardiac procedures in study of Medicare patients who

had suffered myocardial infarction.

Multivariate t prior for regression parameters.
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5.3 Multivariate response extensions and other

GLMs

For multivariate correlated ordinal (or binary) responses, Chib and

Greenberg (1998) consider multivariate probit model.

• Multivariate normal latent random vector defines categories of

observed discrete variables.

• Correlation among categorical responses induced through

covariance matrix for underlying latent variables.

O’Brien and Dunson (2004) formulate multivariate logistic

distribution incorporating correlation parameters and having

marginal logistic distibutions.

Zeger and Karim (1991) fit generalized linear mixed models using

Bayesian framework with priors for fixed and random effects.
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6 Bayesian Computation

For GLMs with canonical link function and normal or conjugate

priors, posterior joint and marginal distributions are log-concave

(O’Hagan and Forster 2004).

Computational methods for approximating posterior distributions by

simulating samples from them include:

• Importance sampling (Zellner and Rossi 1984)

• Markov chain Monte Carlo methods such as Gibbs sampling

(Gelfand and Smith 1990) and Metropolis-Hastings algorithm

(Tierney 1994).

e.g., Epstein and Fienberg (1991) employed Gibbs sampling to

estimate posterior density of cell probabilities (a finite mixture of

Dirichlet densities), not merely posterior means.

For reviews, see Andrieu, Doucet, and Robert (2004), text by

O’Hagan and Forster (2004, Sections 12.42-46)
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7 Final Comments

Now quite a large body of Bayesian literature for CDA.

But, Bayesian inference does not seem to be commonly used yet in

practice for basic categorical data analyses.

• For multi-way contingency table analysis, plethora of

parameters for multinomial models necessitates substantial

prior specification.

• Need to specify and understand prior distributions on GLM

parameters may be daunting, especially for hierarchical

models.

• Approach of eliciting prior distributions on probability scale at

selected values of covariates may be useful, as in Bedrick,

Christensen and Johnson (1996, 1997).

• May partly reflect the absence of Bayesian procedures in the

primary software packages.

Currently Bayesian approaches for categorical data seem to suffer

from not having standard default starting point.


