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Tails

Terminology is somewhat messy.

The CDF F() = P(X ≤ ) gives probabilities in the lower (left) tail; the
complementary CDF (a.k.a. the survival function)
S() = F̄() = 1 − F() = P(X > ) gives probabilities in the upper (right)
tail.

Remember the lower.tail argument to the p functions.

The tail behavior is what happens for || →∞.

I.e., lower/left tail probability P(X ≤ ) when → −∞, upper/right tail
probability P(X > ) when →∞.

The tails are heavy when the tail probabilities decay slower than
exponentially fast.
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Tails of the normal distribution

One can show that as →∞,

P(N(0,1) > ) = 1 − () =
1
p
2π

∫ ∞


e−t

2/2 dt ∼ e−
2/2.

This goes to zero very rapidly, much faster than exponentially fast, i.e,
e−c|| for some c > 0.

Thus, the normal distribution has very light tails.

E.g.,

R> pnorm(1 : 10, lower.tail = FALSE)

[1] 1.586553e-01 2.275013e-02 1.349898e-03 3.167124e-05 2.866516e-07
[6] 9.865876e-10 1.279813e-12 6.220961e-16 1.128588e-19 7.619853e-24
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Tails of the normal distribution

We can easily illustrate that 1 − () ≈ e−2/2:

We take a sequence of  values and compute the corresponding
1 − () values, ideally on the log-scale for better precision:

R> x <- 1 : 100
R> y <- pnorm(x, lower.tail = FALSE, log.p = TRUE)
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Tails of the normal distribution

Plot log(1 − ()) against :

R> plot(x, y)
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Tails of the normal distribution

Plot log(1 − ()) against 2:

R> plot(x^2, y)
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Tails of the exponential distribution

For the standard exponential distribution, trivially

P(X > ) =
∫ ∞


e−t dt = e−.

As →∞, this goes to zero exponentially fast.

Again, we can illustrate using R as before:

R> x <- 1 : 100
R> y <- pexp(x, lower.tail = FALSE, log.p = TRUE)
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Tails of the exponential distribution

Plot log(P(X > )) against :

R> plot(x, y)
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Heavy tails

Who knows a distribution with upper/right tail heavier than that of the
exponential?

I.e., for which the upper/right tail probability does not go to zero
exponentially fast?

Well, which continuous distributions do you remember? Normal,
exponential, Gamma, Uniform, Student’s t!
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Tails of the t distribution

For Student’s t with n degrees of freedom, the density is

ƒ () =
((n + 1)/2)
p
nπ(n/2)

�

1 +
2

n

�−(n+1)/2

As →∞,

ƒ () ∼ (2)−(n+1)/2 = −(n+1) =
1

n+1
.

Hence,

1 − F() ≈ const
∫ ∞


t−(n+1) dt ∼ −n.
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Tails of the t distribution

This goes to zero polynomially fast, i.e., like a power of 1/.

If we plot 1 − F() against 1/, things will look like a polynomial (for
large ).

To illustrate for n = 3:

R> x <- 1 : 100
R> y <- pt(x, df = 3, lower.tail = FALSE)
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Tails of the t distribution

R> plot(1 / x, y)
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Tails of the t distribution

It is even better to take logs:

1 − F() ≈ const −n ⇒ log(1 − F()) ≈ log(const) − n log()

So plotting log(1 − F()) against log(), things will look like a straight
line with slope −n (for large ).
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Tails of the t distribution

R> plot(log(x), log(y))
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Tails of the t distribution

Fitting a linear regression gives

R> lm(log(y) ~ log(x))

Call:
lm(formula = log(y) ~ log(x))

Coefficients:
(Intercept) log(x)

-0.3911 -2.8758

We know that the slope should be −3: things would get better when
using larger .
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Tails of the t distribution

We can also illustrate things by simulation (this will not work well for the
normal or exponential distributions, as for these one needs very large n
to draw large  values.

Suppose we draw a sample of size n: 1, . . . , n. Clearly,

#{ values ≥ k-th largest  value} = k.

So

1 − F̂(k-th largest value) ≈ k/n

and we can try to approximate the upper tail behavior by plotting
k/n, . . . ,1/n against the (suitably transformed) k largest  values for
suitably chosen k.
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Tails of the t distribution

E.g., using n = 100000 and the upper 2% of the sample:

R> n <- 100000
R> z <- rt(n, df = 3)
R> z <- head(sort(z, decreasing = TRUE), 0.02 * n)
R> y <- seq_along(z) / n
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Tails of the t distribution

Plot the empirical tail probabilities against the reciprocals largest values:

R> plot(1 / z, y)
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Tails of the t distribution

Plot the logs of the empirical tail probabilities against the logs of the
largest values:

R> plot(log(z), log(y))
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Tails of the t distribution

A linear regression for the latter gives

R> lm(log(y) ~ log(z))

Call:
lm(formula = log(y) ~ log(z))

Coefficients:
(Intercept) log(z)

-0.4379 -2.7829

Not too bad.

Slide 21



Heavy-tailed distributions for QFin

We already saw that the tails of the weekly S&P 500 log-returns are
much heavier than that of the normal distribution.

We can also see that they are much heavier than that of the exponential
distribution.

This is actually a very important observation!

Why?
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Heavy-tailed distributions for QFin

■ Mean-variance portfolio theory works best for normally distributed
returns (issue for asset management)

■ In risk management, we need to estimate small/large quantiles (Value
at Risk) and the corresponding conditional expectations (Expected
Shortfall). Assuming normality, we would under-estimate these
(Basel) risk parameters.

■ However, direct estimation may not work well, as empirical
estimation of small/large quantiles can only use few data and hence
has low precision.

■ Suggests using suitable parametric models for the tails.
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Heavy-tailed distributions for QFin

To appropriately model heavy-tailed return distributions:

■ What are good parametric models for heavy tails?

Student’s t is one possibility, but there is a problem: it is symmetric,
and usually the loss and profit tails are not.
There are asymmetric generalizations, but there are also simpler
alternatives: the Pareto and the Generalized Pareto distributions.

■ The normal works well for the center, but not for the tails: how can we
piece things together from separate models for the center and the
left/right tails?
This needs so-called composite distributions.
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Pareto distributions

The Pareto with scale parameter K > 0 and shape parameter α > 0 has
CDF

F() =

¨

1 − (K/)α,  ≥ K,
0,  < K.

Hence, for  ≥ K,

1 − F() = (K/)α

(so exactly proportional to −α).

Note that K clearly is a scale parameter, but also gives the Kut-off where
the support starts, so in some sense the location. Strange.
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Generalized Pareto distributions

The generalized Pareto distribution (GPD) with location parameter μ,
scale parameter σ > 0 and shape parameter ξ has CDF

F() =























1 −
�

1 + ξ
 − μ

σ

�−1/ξ
, ξ ̸= 0,

1 − exp
�

−
 − μ

σ

�

, ξ = 0,

for  ≥ μ if ξ ≥ 0 and μ ≤  ≤ μ − σ/ξ if ξ < 0.

See the homeworks for a bit more on this.

Clearly, μ is a location parameter, and σ is a scale parameter.
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Generalized Pareto distributions

For ξ > 0, as →∞

1 − F() =
�

1 + ξ
 − μ

σ

�−1/ξ
∼ −1/ξ

so 1/ξ corresponds to α (for the Pareto) or n (for Student’s t).

The larger ξ, the heavier the tails.

Remember that as n→∞,
�

1 +
z

n

�n

→ ez.

Replacing n by 1/ξ, as ξ→ 0+ (the plus means “from the right”),

(1 + ξz)1/ξ → ez
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Generalized Pareto distributions

Hence, with z = ( − μ)/σ, as ξ→ 0+,

1 − F() = (1 + ξz)−1/ξ → e−z = e−(−μ)/σ.

This explains the definition of the GPD for ξ = 0.

For ξ = 0, we get the location-scale family generated by the standard
exponential distribution. This (trivially) has light tails.

For connaiseurs: for ξ < 0, the GPD has compact support. Thus, very
light tails.
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Composite distributions

If X has distribution function F and B = (α, β] is an interval, then for
α <  ≤ β,

P(X ≤ | ∈ B) =
P(α < X ≤ )

P(α < X ≤ β)
=
F() − F(α)

F(β) − F(α)
.

This is the conditional distribution function F(|B) of X given X ∈ B.

If X has density ƒ , then this conditional distribution has density

ƒ (|B) =
ƒ ()

F(β) − F(α)
,  ∈ B.
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Composite distributions

If B1, . . . , Bk is a partition of R into disjoint intervals,

P(X ≤ ) =
∑



P(X ∈ B)P(X ≤ |X ∈ B) =
∑

F(|B)

This expresses F as the mixture of the conditional distributions.

This is a special mixture where the components have disjoint support.
These mixtures are called composite distributions.

If X has density ƒ , then

ƒ () =
∑



ƒ (|B).
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Composite distributions

For each , the component distribution (or density) can be obtained as
an arbitrary distribution (or density) conditioned to be in B.

I.e., if we have distributions G1, . . . , Gk and weights 1, . . . ,k, then

F() =
∑



G(|B)

is a composite distribution.

If X ∼ F and Y1 ∼ G1, . . . , Yk ∼ Gk, then the distribution of X conditional
on X ∈ B is the same as the distrubution of Y conditional on Y ∈ B.

(A complicated way of interpreting the above equation.)

Similarly for densities,

ƒ () =
∑



g(|B).
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Composite distributions

In R, composites (and more general mixtures) can be done very
conveniently using package mistr.

This has functions for generating general composites and fitting the
models we need for heavy-tailed financial returns, and then d, p, q and r
functions for composites (and mixtures).
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Composite distributions

To model our weekly S&P 500 log-returns, we need something
heavy-tailed in the left and right tail, and can use the normal in the
center.

One way of doing is taking a composite of three distributions.

I.e., k = 3, and

B1 = (−∞, β1], B2 = (β1, β2], B3 = (β2,∞)

for suitable break points β1 and β2.

If the component distributions have
densities g1, g2 and g3, then the density of the composite is

ƒ () =











1
g1()
G1(β1)

.  ≤ β1,
2

g2()
G2(β2)−G2(β1)

, β1 <  ≤ β2,
3

g3()
1−G3(β2)

,  > β2.
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Composite distributions

Clearly,

F(β1) =1, F(β2) =1 + 2 ⇒2 = F(β2) − F(β1).

When fitting such models to data 1, . . . , n, naturally we take the  to
match the empirical frequencies in the intervals, i.e.,

̂1 = F̂n(β1) =
#{ :  ≤ β1}

n
,

̂2 = F̂n(β2) − F̂n(β1) =
#{ : β1 <  ≤ β2}

n
,

̂3 = 1 − ̂1 − ̂2 =
#{ :  > β2}

n
.
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The PNP model

The simplest such model is taking Pareto distributions for the tails and
the normal for the center.

More precisely,

G1 = negative of Pareto(K1, α1),
G2 = Normal(μ, σ),
G3 = Pareto(K2, α2).

This seems to have parameters

K1, α1, μ, σ, K2, α2 and the breakpoints β1, β2.

Naturally (but see the notes), K1 = −β1 and K2 = β2. If we require the
density to be continuous at β1 and β2, we get 2 more restrictions, for 4
free parameters. In mistr: PNP_fit().
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The GNG model

Alternatively, we could take GPDs for the tails and a normal for the
center.

More precisely,

G1 = negative of GPD(μ1, σ1, ξ1),
G2 = Normal(μ, σ),
G3 = GPD(μ2, σ2, ξ2).

This seems to have parameters

μ1, σ1, ξ1, μ, σ, μ2, σ2, ξ2 and the breakpoints β1, β2.

Again, naturally μ1 = −β1 and μ2 = β2, Again, requiring continuity adds
2 more restrictions, for 6 free parameters. In mistr: GNG_fit().
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Quantiles and PITs

We already know:

Let F be a distribution function and QF be its quantile function.

If U ∼ U0,1, then for the quantile transform X = QF(U) we have

X = QF(U) ∼ F.

(This we proved in class.)

If X ∼ F and F is continuous, then for the probability integral transform
(PIT) U = F(X) we have

U = F(X) ∼ U0,1.

(This we proved in the homeworks.)
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Copulas

Now consider a pair (X, Y) of random variables.

Write FX and FY for their marginal distributions and G for their joint
distribution. I.e.,

FX() = P(X ≤ ), FY(y) = P(Y ≤ y), G(, y) = P(X ≤ , Y ≤ y).

If FX and FY are continuous, we know for the PITs that

U = FX(X) ∼ U0,1, V = FY(Y) ∼ U0,1.

We can ask: what is the joint distribution of U and V? This is the copula
of X and Y (or G).
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Copulas

A (bivariate) copula is the joint CDF of a pair (U,V) with standard
uniform margins.

(This obviously generalizes to d-variate.)

I.e., writing C for the copula,

C(,) = P(U ≤ ,V ≤ ).

Hence, for 0 ≤ , ≤ 1,

C(,0) = 0, C(0, ) = 0, C(,1) = , C(1, ) = .

In particular, C(1,1) = 1.
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Copulas

The simplest copulas are the ones where

■ V = U (comonotonicity copula)

■ V = 1 − U (countermonotonicity copula)
■ U and V are independent (independence copula).

If V = U (perfect positive dependence),

P(U ≤ ,V ≤ ) = P(U ≤ ,U ≤ ) = P(U ≤min(,)) =min(,)

so the comonotonicity copula is

C(,) =min(,), 0 ≤ ,,≤ 1.
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Copulas

If V = 1 − U (perfect negative dependence),

P(U ≤ ,V ≤ ) = P(U ≤ ,1 − U ≤ )
= P(1 −  ≤ U ≤ )

=

¨

 − (1 − ) if  − (1 − ) ≥ 0
0 otherwise

= mx( +  − 1,0)

so the countermonotonicity copula is

C(,) =mx( +  − 1,0), 0 ≤ ,,≤ 1.
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Copulas

Finally, if U and V are independent:

P(U ≤ ,V ≤ ) = P(U ≤ )P(V ≤ ) = ,

so the independence copula is

C(,) = , 0 ≤ ,,≤ 1.

Slide 44



Copulas

All bivariate distributions with continuous margins have corresponding
copulas.

E.g., the bivariate normal distribution has 5 parameters:
μX, σX, μY , σY , ρXY .

The first 4 relate to the margins, so the bivariate normal (or Gauss)
copula has one parameter: ρXY :

C(,) = P
�


�

X − μX
σX

�

≤ ,
�

Y − μY
σY

�

≤ 
�

.
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Copulas

Which copula to use for modeling dependence?

It depends . . .

For risk management we usually need something with (loss) tail
dependence (if large losses co-occur more often than under
independence).

For our Coffee data set, we use package VineCopula which conveniently
selects the “best” copula from a set of candidates.
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Copulas

Sklar’s theorem says: for all joint distributions G there is a copula C
such that

G(, y) = C(FX(), FY(y)).

In the continuous case, C is unique.

In the d-variate case, with

G(1, . . . , d) = P(X1 ≤ 1, . . . , Xd ≤ d)

and

F() = P(X ≤ ), 1 ≤  ≤ d,

we can always do

F(1, . . . , d) = C(F1(1), . . . , Fd(d)).
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Copulas

Suppose we can draw (U,V) from the copula of X and Y.

We can then draw X and Y via the quantile transforms of U and V.

I.e.:

(U,V) ∼ C, X = QFX(U), Y = QFY (V)

To make sure:

P(QFX(U) ≤ ,QFY (V) ≤ y) = P(U ≤ FX(), V ≤ FY(y))
= C(FX(), FY(y))
= G(, y).
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Copulas

Clearly, if FX and FY are invertible:

QFX() = ⇔  = FX(), QFY () = y⇔ = FY(y).

For the copula, we have

C(,) = P(FX(X) ≤ , FY(Y) ≤ ) = P(X ≤ QFX(), Y ≤ QFY ())

and thus

P(X ≤ , Y ≤ y) = C(FX(), FY(y)).

(Sklar’s theorem says that C is unique in this case, and in fact whenever
things are continuous.)
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