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Outline

� Sums and mixtures

� Stochastic processes

� Monte Carlo estimation
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Mixtures

Suppose that Y is a discrete random variable such that

(X|Y = ) ∼ F.

I.e., conditional on Y = , X has distribution function F.

What is the distribution of X?

We easily find

P(X ≤ ) =
∑



P(X ≤ |Y = )P(Y = ) =
∑



P(Y = )F().

This is the discrete mixture of F1, . . . , Fk with mixture probabilities
(weights) θ1 = P(Y = 1), . . . , θk = P(Y = k).
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Mixtures

The above just write the marginal distribution of X in terms of the
conditional distribution of X given Y and the marginal distribution of Y.

We can do something similar in case Y has a continuous distribution
with density g:

P(X ≤ ) =
∫

P(X ≤ |Y = y)g(y)dy.

This write the CDF of X as a continuous mixture of the conditional
distributions of X given Y, weighted by the marginal density of Y.
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Mixtures

How can we draw from a mixture distribution?

Simple:

� First draw Y from its marginal distribution, giving y.
� Then draw X from its conditional distribution given y.
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Convolutions

Suppose X ∼ F and Y ∼ G are independent.

What is the distribution of Z = X + Y?

If G has density g, we find that

P(X + Y ≤ z) =
∫

P(X + Y ≤ z|Y = y)g(y)dy

=
∫

P(X ≤ z − y|Y = y)g(y)dy

=
∫

F(z − y)g(y)dy.
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Convolutions

If F has density ƒ and everything is fine, the distribution of Z has density

d

dz
P(Z ≤ z) =

∫

ƒ (z − y)g(y)dy =
∫

g(z − ) ƒ ()d.

This is the convolution of the densities ƒ and g.

In general, the CDF of Z is given by the convolution
∫

F(z − y)dG(y) =
∫

G(z − )dF()

with these integrals as explained in the probability course.
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Convolutions

How can we draw from the convolution of two distributions F and G?

Simple:

� Independently draw X ∼ F and Y ∼ G
� Return Z = X + Y.

(Well, that’s what convolutions are.)
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Example

Take X1 ∼ gmm(2,2) and X2 ∼ gmm(2,4) and compare the
distribution of the sum to the discrete mixture with weights 1/2.

E.g., using a sample size of n = 1000:

R> n <- 1000
R> x1 <- rgamma(n, 2, 2)
R> x2 <- rgamma(n, 2, 4)
R> ## Convolution:
R> s <- x1 + x2
R> ## Mixture:
R> u <- runif(n)
R> g <- (u > 0.5)
R> m <- g * x1 + (1 - g) * x2

Note how the mixture is done: if g = 0, we take 2; otherwise, 1.
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Example

Compare:

R> op <- par(mfcol = c(1, 2))
R> hist(s, probability = TRUE)
R> hist(m, probability = TRUE)
R> par(op)
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Note 1

Note that mixtures and convolutions are two fundamentally different
things!

Mixtures are weighted sums (actually, means) of CDFs, whereas
convolutions relate to the CDFs of independent sums of random
variables!
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Note 2

Of course, for discrete mixtures, we can always do

X =
k
∑

=1

(Y = )X, X1 ∼ F1, . . . , Xk ∼ Fk

but that’s actually not very efficient (only need to draw that from the F
where y = .

In R, often can conveniently use the fact the the d-p-q-r functions are
vectorized. E.g., for our example:

R> m2 <- rgamma(n, 2, ifelse(u > 0.5, 2, 4))

Slide 12



Note 2

Of course, for discrete mixtures, we can always do

X =
k
∑

=1

(Y = )X, X1 ∼ F1, . . . , Xk ∼ Fk

but that’s actually not very efficient (only need to draw that from the F
where y = .

In R, often can conveniently use the fact the the d-p-q-r functions are
vectorized. E.g., for our example:

R> m2 <- rgamma(n, 2, ifelse(u > 0.5, 2, 4))

Slide 12



Note 2

R> qqplot(m, m2)
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Outline

� Sums and mixtures

� Stochastic processes

� Monte Carlo estimation
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Introduction

For QFin, we also need to be able to simulate continuous time stochastic
processes, i.e., families of random variables (X(t)) indexed by a
continuous time parameter t.

Of course, the most important such process is the Wiener process
(Brownian motion): but that’s not so easy, so will be discussed in later
courses.

Here, we discuss the (homogeneous) Poisson process (and in the
homeworks, compound Poisson processes).
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Renewal processes

Suppose we have light bulbs with random (technical) life times ρ.

At t = 0, we start using the first light bulb, which lasts time ρ1.

At t = ρ1, light bulb 1 stops working, and we replace it by light bulb 2,
which lasts time ρ2, i.e., until ρ1 + ρ2.

At t = ρ1 + ρ2, light bulb 2 stops working, and we replace it by light bulb
3, which lasts time ρ3, i.e., until ρ1 + ρ2 + ρ3.

At t = ρ1 + · · · + ρn, light bulb n stops working, and we replace it by light
bulb n + 1, which lasts time ρn+1, i.e., until ρ1 + · · · + ρn+1.

What is the number N(t) of replacements we need to make up to time t?
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Renewal processes

Write τ0 = 0 and

τn = ρ1 + · · · + ρn

for the time when we replace light bulb n.

Clearly,

N(t) =































0, τ0 ≤ t < τ1,
1, τ1 ≤ t < τ2,
...

...
n, τn ≤ t < τn+1,
...

...
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Renewal processes

Equivalently,

N(t) =
∑

n
(τn ≤ t)

(N(t) is the number of replacements up to t), and

N(t) ≥ n⇔ τn ≤ t

(there were at least n replacements up to t if and only if the time of
replacement n is not after t).

If the ρ are i.i.d., we call the discrete-time sequence (τn, n = 0,1, . . .) or
equivalently, the continuous-time process (N(t), t ≥ 0) a renewal
process.
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Renewal processes

Graphical illustration:
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Renewal processes

Of course, there is nothing specific to light bulbs or renewals in the
above.

Consider a sequence of events, with event n at time τn.

Write τ0 = 0, and ρn = τn − τn−1 for the time between event n − 1 and
event n.

Then if the (ρn) are i.i.d., the (τn, n = 0,1, . . .) or the equivalent (event)
counting process (N(t) =

∑

n (τn ≤ t), t ≥ 0) is a renewal process.
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Poisson process

As a special case, if the (ρn) are i.i.d. exponentially distributed with rate
parameter λ, (τn) or (N(t)) is a Poisson process with rate parameter λ.

But why is it called a “Poisson” process?

One can show: if λ is the rate parameter of the ρn, then

� The number of events/points in a set is Poisson with rate equal to λ
times the size of the set.

� The numbers of events/points in non-overlapping sets are
independent of each other.

For starters, read “set” as “interval”.

In particular,

N(t) ∼ Poisson(λt).

Slide 21



Poisson process

As a special case, if the (ρn) are i.i.d. exponentially distributed with rate
parameter λ, (τn) or (N(t)) is a Poisson process with rate parameter λ.

But why is it called a “Poisson” process?

One can show: if λ is the rate parameter of the ρn, then

� The number of events/points in a set is Poisson with rate equal to λ
times the size of the set.

� The numbers of events/points in non-overlapping sets are
independent of each other.

For starters, read “set” as “interval”.

In particular,

N(t) ∼ Poisson(λt).

Slide 21



Poisson process

As a special case, if the (ρn) are i.i.d. exponentially distributed with rate
parameter λ, (τn) or (N(t)) is a Poisson process with rate parameter λ.

But why is it called a “Poisson” process?

One can show: if λ is the rate parameter of the ρn, then

� The number of events/points in a set is Poisson with rate equal to λ
times the size of the set.

� The numbers of events/points in non-overlapping sets are
independent of each other.

For starters, read “set” as “interval”.

In particular,

N(t) ∼ Poisson(λt).

Slide 21



Poisson process

As a special case, if the (ρn) are i.i.d. exponentially distributed with rate
parameter λ, (τn) or (N(t)) is a Poisson process with rate parameter λ.

But why is it called a “Poisson” process?

One can show: if λ is the rate parameter of the ρn, then

� The number of events/points in a set is Poisson with rate equal to λ
times the size of the set.

� The numbers of events/points in non-overlapping sets are
independent of each other.

For starters, read “set” as “interval”.

In particular,

N(t) ∼ Poisson(λt).

Slide 21



Poisson process

As a special case, if the (ρn) are i.i.d. exponentially distributed with rate
parameter λ, (τn) or (N(t)) is a Poisson process with rate parameter λ.

But why is it called a “Poisson” process?

One can show: if λ is the rate parameter of the ρn, then

� The number of events/points in a set is Poisson with rate equal to λ
times the size of the set.

� The numbers of events/points in non-overlapping sets are
independent of each other.

For starters, read “set” as “interval”.

In particular,

N(t) ∼ Poisson(λt).
Slide 21



Simulating a Poisson process A

Suppose we want to simulate the (times of the) first n events of a
Poisson process with rate λ.

This is easy: we need to simulate i.i.d. ρ ∼ exponentil(λ), and then
compute the cumulative sums of these:

R> rppA <- function(n, lambda) {
+ cumsum(rexp(n, lambda))
+ }
R> (x <- rppA(20, 1.5))

[1] 0.267819 1.368932 1.630125 1.957936 2.382470 2.546440
[7] 3.864321 4.121348 5.719247 5.822406 6.742708 6.866921

[13] 6.978267 7.298553 7.677173 8.026610 9.159534 9.693273
[19] 11.488227 11.865750
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Simulating a Poisson process B

Suppose we want to simulate the events of a Poisson process with rate
λ up to time t.

This is not so straightforward, as we don’t know n.

We could try to iteratively draw a single ρn until τn > t, but that’s
perhaps not very efficient. Is there a better way?

Well, we already know that N(t) ∼ Poisson(λt).

One can show: given N(t) = n, the points τ1, . . . , τn are distributed as an
ordered sample of size n from the uniform distribution on [0, t]!
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Simulating a Poisson process B

Thus, we can do:

R> rppB <- function(t, lambda) {
+ sort(runif(rpois(1, t * lambda), max = t))
+ }

E.g.,

R> (x <- rppB(10, 1.5))

[1] 0.01409716 0.72473996 1.08543110 2.24573281 2.59902724 3.02953019
[7] 3.35133575 5.48057882 5.56310538 6.14135012 7.01132067 7.42835590

[13] 7.70294162 7.93157549 8.49079620 9.04964288

Slide 24



Simulating a Poisson process B

To visualize, simple variant:

R> plot(c(0, x, 10), c(0, seq_along(x), length(x)),
+ type = "s", xlab = "t", ylab = "N(t)")
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Outline

� Sums and mixtures

� Stochastic processes

� Monte Carlo estimation
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Basic idea

Suppose we want to (approximately) compute an integral of the form

θ =
∫

g() ƒ ()d

where ƒ is a density function.

Clearly, if X ∼ ƒ ,

E(g(X)) =
∫

g() ƒ ()d = θ

and we know from the Law of Large numbers that if n is large and
X1, . . . , Xn are drawn i.i.d. from ƒ ,

1

n

n
∑

=1

g(X) ≈ E(g(X)) = θ.
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MC estimation

This suggests we could estimate θ via the following Monte Carlo
method:

� Draw an i.i.d. sample 1, . . . , n from ƒ .

� Approximate θ by

θ̂ =
1

n

n
∑

=1

g().
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MC estimation

How well can this work?

If X1, . . . , Xn are i.i.d. from ƒ ,

E(θ̂) = E

�

1

n

n
∑

=1

g(X)

�

=
1

n

n
∑

=1

E(g(X)) = θ

and (using independence!),

vr(θ̂) = vr

�

1

n

n
∑

=1

g(X)

�

=
1

n2

n
∑

=1

vr(g(X)) =
vr(g(X))

n
.
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MC estimation

So the standard error of the MC estimate is

sd(θ̂) =
sd(g(X))
p
n

.

Qualitatively, this scales like 1/
p
n.

So to improve the precision by a factor of 10, we need to increase the
sample size by a factor of 100!

Of course, we do not know sd(g(X)), but we can estimate it from the MC
sample (using the sample sd). This gives the estimated precision

Ósd(θ̂) =
sd(g(1), . . . , g(n))

p
n

.
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Example 1

Compute (approximate)

θ =
∫ 1

0
e− d

via MC estimation. (Of course, we know that θ = 1 − e−1.)

For MC estimation, we need to write

θ =
∫ 1

0
e− d =

∫

g() ƒ ()d

for some density ƒ .

If we take g() = e−, we get ƒ () = 1 for 0 <  < 1. I.e., we need to
sample from the standard uniform!
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Example 1

We can thus do

R> n <- 1234
R> x <- runif(n)
R> theta_hat <- mean(exp(-x))
R> c(theta_hat, 1 - exp(-1))

[1] 0.6306469 0.6321206

and estimate the standard error as

R> sd(exp(-x)) / sqrt(n)

[1] 0.005215123

Slide 32



Example 1

Was this the only possible way to get MC estimates for θ?

We could also write

θ =
∫ 1

0
e− d =

∫

(0,1)()e− d.

Now g() = (0,1)() and ƒ is the density of the standard exponential
distribution!

Which approach do you expect to work better?
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Example 1

E.g.,

R> x <- rexp(n)
R> theta_hat <- mean(x <= 1)
R> c(theta_hat, 1 - exp(-1))

[1] 0.6345219 0.6321206

with an estimated standard error of

R> sd(x <= 1) / sqrt(n)

[1] 0.01371426

This seems to be much worse!
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Example 1

What does this example show?

� For a given θ, there may be several ways to write it as θ = E(g(X)),
X ∼ ƒ .

� Better MC estimates have smaller standard errors sd(g(X)), X ∼ ƒ .
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Importance sampling

Equivalently, suppose we want to compute/approximate

θ =
∫

g()d.

For arbitrary ƒ , we can do

θ =
∫

g()

ƒ ()
ƒ ()d

and hence estimate θ via

θ̂ =
1

n

n
∑

=1

g()

ƒ ()
, 1, . . . , n i.i.d. ∼ ƒ .
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Importance sampling

By suitably choosing ƒ , we can reduce the variance/sd of the MC
estimate: importance sampling.

What is the best ƒ we can find?

Need to choose ƒ to minimize

vr
�

g(X)

ƒ (X)

�

=
∫ �

g()

ƒ ()
− θ

�2

ƒ ()d

=
∫

�

g()2

ƒ ()
− 2θg() + θ2ƒ ()

�

d

=
∫

g()2

ƒ ()
d − θ2.
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Importance sampling

Write

 =
∫

|g()|d, g0() = |g()|/ .

Then θ0 =
∫

g0()d = 1,

∫

g()2

ƒ ()
d =

∫

(g0() · )2

ƒ ()
d = 2

∫

g0()2

ƒ ()
d.

and from the above computation with g0 instead of g,

∫

g0()2

ƒ ()
d = 1 +

∫ �

g0()

ƒ ()
− 1

�2

ƒ ()d.
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Importance sampling

Clearly,

∫ �

g0()

ƒ ()
− 1

�2

ƒ ()d

is minimal for ƒ = g0, and hence the same is true for

∫

g()2

ƒ ()
d.
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Importance sampling

We have thus proved: optimal variance reduction in importance sample
is achieved for

ƒ () =
|g()|

∫

|g()|d
,

i.e., by sampling proportionally to |g()|.

(Provided of course that
∫

|g()|d <∞.)

Slide 40



Importance sampling

We have thus proved: optimal variance reduction in importance sample
is achieved for

ƒ () =
|g()|

∫

|g()|d
,

i.e., by sampling proportionally to |g()|.

(Provided of course that
∫

|g()|d <∞.)

Slide 40



Example 2

For  > 0, compute (approximate)

() =
∫ 

−∞

1
p
2π

e−t
2/2dt =

θ
p
2π
+
1

2
, θ =

∫ 

0
e−t

2/2dt

via MC estimation.

The obvious idea is using g(t) = e−t
2/2 and ƒ uniform on (0, ).

Alternatively, substituting y = t/,

θ =
∫ 

0
e−t

2/2dt =
∫ 1

0
e−(y)

2/2dy.

So we could also draw from the standard uniform, and use the same
sample to do MC estimation for several !
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Example 2

A possible implementation of this idea:

R> mypnorm <- function(x, n = 10000) {
+ u <- runif(n)
+ p <- numeric(length(x))
+ for(i in seq_along(x)) {
+ g <- x[i] * exp(-(u * x[i])^2 / 2)
+ p[i] <- mean(g) / sqrt(2 * pi) + 0.5
+ }
+ p
+ }
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Example 2

This gives e.g.

R> x <- seq(.1, 2.5, length.out = 10)
R> (p <- mypnorm(x))

[1] 0.5398272 0.6430338 0.7365815 0.8155038 0.8774419 0.9226071
[7] 0.9531367 0.9721733 0.9830047 0.9884799

R> p - pnorm(x)

[1] -6.672781e-07 -3.231938e-05 -1.605042e-04 -4.360894e-04
[5] -8.856296e-04 -1.511640e-03 -2.297791e-03 -3.215848e-03
[9] -4.231838e-03 -5.310464e-03
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Antithetic variables

As everyone knows,

vr(X + Y) = vr(X) + vr(Y) + 2cov(X, Y)

So maybe we could reduce the variance of MC estimates even more if
we used pairs of negatively correlated random variables from the same
distribution?

Well, yes, but how could we get such pairs?

Remember the quantile transform method X = Q(U). We could also use
Y = Q(1 − U), and U and 1 − U are negatively correlated.

Maybe the same is true for X and Y?
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Antithetic variables

One can show: if g = g(1, . . . , k) is monotone, then

g(Q(U1), . . . , Q(Uk)), g(Q(1 − U1), . . . , Q(1 − Uk))

are negatively correlated.

For MC estimation: if we can draw from ƒ via its quantile function,
generate n/2 replicates each X and Y using the same U1, . . . , Uk, and
use

θ̂ =
2

n

n/2
∑

=1

X + Y
2

.

This requires nk/2 instead of nk uniform variates, and reduces
estimation variance by using antithetic variables.
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Antithetic variables

To illustrate, continue MC estimation of ().

We had

θ = EU(e−(U)
2/2),

for U standard uniform.

When restricting to  > 0, g() = e−()
2/2 is monotone.

Hence, we can use

X = e−(U)
2/2, Y = e−((1−U))

2/2.
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Antithetic variables

We provide a function which has a flag for toggling the use of anithetic
sampling

R> mypnorm2 <- function(x, n = 10000, antithetic = TRUE) {
+ u <- runif(n / 2)
+ v <- if(!antithetic) runif(n / 2) else 1 - u
+ u <- c(u, v)
+ p <- numeric(length(x))
+ for(i in seq_along(x)) {
+ g <- x[i] * exp(-(u * x[i])^2 / 2)
+ p[i] <- mean(g) / sqrt(2 * pi) + 0.5
+ }
+ p
+ }

and perform the following MC experiment:
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Antithetic variables

R> x <- seq(.1, 2.5, length.out = 10)
R> Phi <- pnorm(x)
R> set.seed(123)
R> system.time(p1 <- mypnorm2(x, antithetic = FALSE))

user system elapsed
0.013 0.000 0.013

R> set.seed(123)
R> system.time(p2 <- mypnorm2(x))

user system elapsed
0.002 0.000 0.002

So clearly, the antithetic variant is faster. It is also more precise:
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Antithetic variables

R> print(round(cbind(x, Delta1 = p1 - Phi, Delta2 = p2 - Phi), 5))

x Delta1 Delta2
[1,] 0.10000 0.00000 0e+00
[2,] 0.36667 0.00003 0e+00
[3,] 0.63333 0.00016 1e-05
[4,] 0.90000 0.00041 3e-05
[5,] 1.16667 0.00077 4e-05
[6,] 1.43333 0.00119 5e-05
[7,] 1.70000 0.00158 5e-05
[8,] 1.96667 0.00190 3e-05
[9,] 2.23333 0.00209 -2e-05

[10,] 2.50000 0.00215 -9e-05

Graphically:
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Antithetic variables

R> plot(p1 - Phi, p2 - Phi)
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