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Motivation

QFin is very much about financial decision making under uncertainty,
with uncertainty modeled probabilistically.

� What are “random numbers”?

� What are good sources of random numbers?
� In particular, where do computers get random numbers from?
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Uniform random numbers

Interestingly, the “random numbers” obtained from computers are
typically generated by deterministic recursions.

What is somewhat “random” then is the seed using for starting the
recursion: but that can be set for reproducibility.

Technically, one uses the term pseudorandom numbers.

These are really perfectly deterministic, but work well enough for “real”
random numbers.
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Uniform random numbers

Uniform (on the unit interval) pseudorandom numbers can be simulated
using multiplicative congruential random number generators which use
recursions

n = bn−1 (mod m), n = n/m

for suitable initial seed 0.

Clearly,

�  = 0 “absorbs”

� The generated sequence will be periodic
� The best we can get is period of m− 1 (giving all remainders from 1 to
m − 1)
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Uniform random numbers

To illustrate:

R> myrng <- function(n, m, b, x) {
+ u <- numeric(n)
+ for(i in 1 : n) {
+ x <- (b * x) %% m
+ u[i] <- x / m
+ }
+ u
+ }
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Uniform random numbers

BnM Example 5.1:

R> myrng(7, 7, 3, 2)

[1] 0.8571429 0.5714286 0.7142857 0.1428571 0.4285714 0.2857143
[7] 0.8571429

BnM example for bad:

R> myrng(5, 29241, 171, 3)

[1] 0.01754386 0.00000000 0.00000000 0.00000000 0.00000000
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Uniform random numbers

BnM Example 5.2:

R> myrng(50, 30269, 171, 27218)

[1] 0.76385080 0.61848756 0.76137302 0.19478675 0.30853348 0.75922561
[7] 0.82757937 0.51607255 0.24840596 0.47741914 0.63867323 0.21312234

[13] 0.44391952 0.91023820 0.65073177 0.27513297 0.04773861 0.16330239
[19] 0.92470845 0.12514454 0.39971588 0.35141564 0.09207440 0.74472232
[25] 0.34751726 0.42545178 0.75225478 0.63556774 0.68208398 0.63636063
[31] 0.81766824 0.82126929 0.43704780 0.73517460 0.71485678 0.24051009
[37] 0.12722587 0.75562457 0.21180085 0.21794575 0.26872378 0.95176583
[43] 0.75195745 0.58472364 0.98774324 0.90409330 0.59995375 0.59209092
[49] 0.24754700 0.33053619
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Uniform random numbers

Illustrating the “randomness”:

R> u <- myrng(1000, 30269, 171, 27218)
R> plot(u[-length(u)], u[-1])
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Uniform random numbers

R has several built-in (pseudo) random number generators. E.g.,
method “Knuth-TAOCP-2002” uses the recursion

n = (n−100 − n−37) (mod 230)

which has a period around 2129.

To get a sample of uniform (peudo) random numbers: runif().
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Uniform random numbers

Illustrating the “randomness” again:

R> u <- runif(1000)
R> plot(u[-length(u)], u[-1])
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Uniform distribution

The (continuous) uniform distribution on the interval from  to b has
density

ƒniform(,b)() =

¨ 1
b− ,  <  < b,

0, otherwise.

Often denoted by U(, b) or U,b or U,b.

It has two parameters:

�  is the minimum (inf) of its support,
� b is the maximum (sup) of its support.

If  = 0 and b = 1, we have the standard uniform distribution.
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Uniform distribution

In R, the parameters are called min and max.

There are four (“dpqr”) functions for the uniform distribution:

� dunif() gives the density function

� punif() gives the probability function (cumulative distribution
function)

� qunif() gives the quantile function (the “inverse” of the CDF, more
later)

� runif() generates random deviates

For many common probability functions, R provides the above 4
functions, using the d-p-q-r naming scheme.
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Uniform distribution

The 4 functions for the uniform distribution have arguments

dunif(x, min = 0, max = 1, log = FALSE)
punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
runif(n, min = 0, max = 1)

These have “surprising” additional arguments:

� log = TRUE says give log-densities (can be better numerically)

� lower.tail = TRUE takes probabilities as p = P(X ≤ ); otherwise,
P(X > ) (i.e., the complementary probabilities 1 − p).

� log.p = TRUE says use/give log-probabilities (can be better
numerically)
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Normal distribution

The normal distribution has density

1
p
2πσ

exp

�

−
( − μ)2

2σ2

�

where μ is the mean and σ2 the variance, and hence σ the sd (standard
deviation).

For μ = 0 and σ = 1 we get the standard normal distribution.
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Normal distribution

In R,

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

Note that this uses parameters mean (μ) and sd (σ) (but not the variance
σ2 as we commonly do in probability)!

Why?
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Normal distribution

R parametrizes the normal family as the location-scale family generated
by the standard normal.

We all know:

X is normal with mean μ and sd σ⇔Z =
X − μ

σ
is standard normal.

I.e.,

P(X ≤ ) = P
�

Z ≤
 − μ

σ

�

= 
� − μ

σ

�

where  is the CDF of the standard normal distribution.

Slide 18



Normal distribution

R parametrizes the normal family as the location-scale family generated
by the standard normal.

We all know:

X is normal with mean μ and sd σ⇔Z =
X − μ

σ
is standard normal.

I.e.,

P(X ≤ ) = P
�

Z ≤
 − μ

σ

�

= 
� − μ

σ

�

where  is the CDF of the standard normal distribution.

Slide 18



Normal distribution

For the densities:

d

d
P(X ≤ ) = ′

� − μ

σ

� 1

σ
=
1

σ
ϕ
� − μ

σ

�

where ϕ is the density of the standard normal distribution.

There is nothing special about the standard normal here: whenever the
numeric random variable Z has CDF F and density ƒ , the location-scale
family generated by this distribution has CDFs and densities

F
� − μ

σ

�

,
1

σ
ƒ
� − μ

σ

�

.

Slide 19



Normal distribution

For the densities:

d

d
P(X ≤ ) = ′

� − μ

σ

� 1

σ
=
1

σ
ϕ
� − μ

σ

�

where ϕ is the density of the standard normal distribution.

There is nothing special about the standard normal here: whenever the
numeric random variable Z has CDF F and density ƒ , the location-scale
family generated by this distribution has CDFs and densities

F
� − μ

σ

�

,
1

σ
ƒ
� − μ

σ

�

.

Slide 19



Rate and scale

The reciprocal value of scale is rate.

Somewhat confusingly, for the exponential distribution R takes the
“usual” parametrization with rate parameter λ, i.e., densities

ƒexponentil(λ)() =

¨

λe−λ,  > 0,
0, otherwise.

Clearly, σ = 1/λ would be the corresponding scale parameter.

As a “compromise”, for the gamma distribution (which includes the
exponential distribution as a special case), one can use both rate or
scale!
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Discrete distributions

The most common discrete distributions are

� The binomial distribution with parameters n (size) and p (prob), with
density (probability mass function)

ƒbinomil(n,p)() =

¨�n
p

�

p(1 − p)n−,  ∈ {0, . . . , n},
0, otherwise

In R, dbinom() etc.

� The Poisson distribution with parameter λ, with density

ƒPoisson(λ)() =

¨

λ

! e
−λ,  ∈ 0,1,2, . . . ,

0, otherwise

In R, dpois() etc.
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Discrete distributions

These densities are not with respect to Lebesgue measure (hence giving
integrals) but with respect to counting measure on the integers (hence
giving sums).

More in probability theory!
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Sampling from values

Using sample(), we can sample given values with or without
replacement:

sample(x, size, replace = FALSE, prob = NULL)

E.g., to generate a random permutation of the numbers from 1 to 10:

R> sample(1 : 10, 10)

[1] 4 1 7 8 9 10 5 3 6 2

E.g., to randomly draw 13 numbers from 1 : 7 with replacement:

R> sample(1 : 7, 13, replace = TRUE)

[1] 7 5 5 5 4 2 3 7 3 1 5 6 6
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Simulation experiments

Once we can draw (pseudo) random numbers, we can perform
simulation experiments.

E.g., we know from probability theory that if X1, X2, . . . are
i.i.d. (independent identically distributed) ∼ F (with distribution function
F), then by the law of large numbers,

1

n

n
∑

=1

g(X)→ E(g(X)) =
∫

g()dF().

We can use this to determine E(g(X)) by Monte Carlo simulation: more
on this next week.
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Simulation experiments

For now, let us illustrate the central limit theorem.

E.g., if X is binomial with parameters m and p and

Z =
X −mp

p

mp(1 − p)
,

then Z is approximately standard normal when m gets large.

How can we illustrate via a simulation experiment?

� Generate a sample Z1, . . . , Zn from the distribution of Z.
� Investigate the empirical distribution of the sample, and compare it to

reference distribution.

This needs n large for the approximating the underlying distribution by
the empirical distribution.
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Simulation experiments

To generate a sample of size n from the standardized binomial with
parameters m and p, i.e.,

Z =
X −mp

p

mp(1 − p)
, X ∼ binomil(m,p),

we can do

R> simbin <- function(n, m, p) {
+ (rbinom(n, size = m, prob = p) - m * p) / sqrt(m * p * (1 - p))
+ }

E.g.,

R> z <- simbin(1000, 200, 0.4)
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Simulation experiments

How can we now investigate the empirical distribution?

Usual answer:
histogram.

R> hist(z)

Histogram of z
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Simulation experiments

But does this look “normal”?

One would need to compare against the reference density (ϕ).

One could do so by doing the histogram on the probability scale and
superimposing the density of the standard normal.
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Simulation experiments

R> hist(z, probability = TRUE); curve(dnorm, -3, 3, add = TRUE)

Histogram of z
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Simulation experiments

But for comparing distributions it is much better to do a
quantile-quantile (QQ plot)!

If the distributions are the same, the QQ plot will be close to the first
median.

If the distributions are the same modulo a location-scale transformation,
the QQ plot will be close to a straight line.

Why?
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Simulation experiments

Suppose

G() = F
� − μ

σ

�

, F(zα) = α.

Then

G() = α⇔ F
� − μ

σ

�

= α⇔
 − μ

σ
= zα⇔  = μ + σzα.

(As we know for the normal distribution.)

So the quantile functions QF and QG of F and G satisfy

QG(α) = μ + σQF(α)

and plotting (QF(α), QG(α)) gives a straight line!
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Simulation experiments

R> qqnorm(z); qqline(z)
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Simulation experiments

If we integrate the QQ plot into the simulation, we can create nice
movies illustrating the CLT, i.e., how the approximation becomes better
when increasing m:

R> simbin <- function(n, m, p) {
+ z <- ((rbinom(n, size = m, prob = p) - m * p) /
+ sqrt(m * p * (1 - p)))
+ qqnorm(z, ylim = c(-4, 4), main = paste("QQ-plot, m =", m))
+ qqline(z)
+ }

Slide 33



Simulation experiments

A simple movie:

R> for(m in seq(1, 100, 3)) {
+ simbin(1000, m, 0.4)
+ Sys.sleep(1)
+ }
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Simulation experiments

Everyone knows that for large m, the binomial distribution can be
approximated by the normal distribution.

What is much less known is that for large λ, the Poisson distribution can
also be approximated by the normal distribution:

If If X is Poisson with parameter λ and

Z =
X − λ
p
λ
,

then Z is approximately standard normal as λ gets large.
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Simulation experiments

To illustrate, we can use

R> simpois <- function(n, lambda) {
+ z <- (rpois(n, lambda = lambda) - lambda) / sqrt(lambda)
+ qqnorm(z, ylim = c(-4, 4), main = "QQ-plot")
+ qqline(z)
+ mtext(bquote(lambda == .(lambda),), 3)
+ }

E.g., for λ = 150:
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Simulation experiments

R> simpois(1000, 150)
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Simulation experiments

A simple movie:

R> for(lambda in seq(1, 100, 3)) {
+ simpois(1000, lambda)
+ Sys.sleep(1)
+ }
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Outline

� Motivation

� Basics

� Inverse transform method

� Acceptance-rejection method
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Introduction

How can we simulate from distributions which R does not already
implement?

(And how does R actually implement these simulations?)

The two most important methods for sampling from a distribution are

� the inverse transform method
� the acceptance-rejection method
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Quantiles

What precisely is a quantile?

Ideally, if F is a distribution function, then the α-quantile α = F−1(α)
solves

F() = α.

However,

� The solution may not be unique (F could be flat in some interval)
� The solution may not even exist!

Remember: if F is a CDF, it is right-continuous with left limits!
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Quantiles

The CDF of the standard normal is continuous and increasing, so

() = α

has a unique solution for all 0 < α < 1:
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Quantiles

R> p <- 0.7; plot(pnorm, -5, 5); abline(h = p); abline(v = qnorm(p))
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Quantiles

The binomial with parameters m and p has its support in {0, . . . ,m}. So
the CDF has jumps at these points, and is flat otherwise.

The equation

pbinom(,m,p) = α

only has a solution for

α ∈ {pbinom(0,m, p),pbinom(1,m, p), . . . ,pbinom(m,m,p)}.

To illustrate for m = 4 and p = 0.4:
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Quantiles

R> plot(function(x) pbinom(x, 4, 0.4), -2, 6)
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Quantiles

This is actually a bit silly in context as we don’t see the jumps. Can we
do better?

We can create a step function s which does

s() =











y0,  < 1,

y,  <  < +1,1 ≤  < n,

yn,  > n.

(and specify whether we want right or left continuous).
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Quantiles

E.g.,

R> p <- seq(-2, 6)
R> q <- c(0, pbinom(p, size = 4, p = 0.4))
R> s <- stepfun(p, q, right = TRUE)

With this:
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Quantiles

R> plot(s, vertical = FALSE)
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Quantiles

Voilà! (Well, only plotting at the support would have been even better.)

Ok, so we can now see the jumps, but what should we do about the
quantiles?

E.g., for α = 0.7, we see that

F(1) = pbinom(1,4,0.4) = 0.4752 < 0.7,
F(2) = pbinom(2,4,0.4) = 0.8208 > 0.7

so should we take 1 or 2? (Or perhaps the solution using the linear
interpolation of F(1) and F(2)?)

The common convention is to use the smallest  such that F() ≥ α.
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Quantiles

Formally: if F is a distribution function, its quantile function is defined as

QF() = F−1() = inf{ : F() ≥ }.

Note that this is not necessarily the inverse function commonly denoted
by F−1! As discussed . . .

Hence, to make the distinction clear, one sometimes writes F← or (my
preference) QF.

Hence in our case, the 0.7 quantile must be 2:

R> qbinom(0.7, 4, 0.4)

[1] 2
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Quantile transform method

Now let F be a CDF, QF its quantile function, and U be a standard
uniform random variable: U ∼ U0,1.

By the definition of the quantile function,

QF(U) ≤ ⇔U ≤ F().

Hence, as U is standard uniform,

P(QF(U) ≤ ) = P(U ≤ F()) = F()

I.e., the quantile transform QF(U) has distribution (function) F!
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Quantile transform method

This nice mathematical theorem forms the basis of the quantile
transform method:

To draw X ∼ F, take X = QF(U) with U ∼ U0,1.

This looks nice and very general, but is useful only if we can efficiently
compute the quantile function QF!

Of course, we can always use repeated bisection, but that may not be
efficient enough.
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Quantile transform method: Example 1

Suppose we want to draw from the distribution with density

ƒ () = 32, 0 <  < 1.

(This is a Beta distribution.)

Then for 0 ≤  ≤ 1, the corresponding CDF F is

F() =
∫ 

0
ƒ (t)dt = 3.

and the QF is determined via

F() = 3 = ⇒  = QF() = 1/3.

Thus, if U is standard uniform, U1/3 ∼ F.
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Quantile transform method: Example 1

To illustrate, generate a sample, draw its (probability) histogram, and
add the true density:

R> n <- 1000
R> x <- runif(n) ^ (1/3)
R> hist(x, probability = TRUE)
R> y <- seq(0, 1, .01)
R> lines(y, 3 * y ^ 2)
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Quantile transform method: Example 1
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Quantile transform method: Example 2

The exponential distribution with rate parameter λ has

ƒ (t) = λe−λt, F(t) = 1 − e−λt, t ≥ 0.

For the quantile function, we get

1 − e−λt = ⇒  = QF() = − log(1 − )/λ.

Thus, if U is standard uniform, − log(1 − U)/λ ∼ exponentil(λ).

In fact, 1 − U is standard uniform too. So we can simplify to
− log(U)/λ ∼ exponentil(λ).
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Quantile transform method: Example 2

To illustrate, generate a sample, and do a QQ plot against the
exponential distribution.

R> rate <- 2
R> n <- 1000
R> x <- -log(runif(n)) / rate
R> y <- qexp(ppoints(n), rate = rate)
R> qqplot(x, y)
R> qqline(x, distribution = function(p) qexp(p, rate = rate))
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Quantile transform method: Example 2
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Quantile transform method: Example 3

The simplest (non-trivial) discrete distribution is the Bernoulli
distribution:

P(X = 1) = p, P(X = 0) = q = 1 − p.

(Of course, this is a binomial distribution with size 1.)

This has CDF

F() =











0,  < 0,
1 − p, 0 ≤  < 1,
1  ≥ 1.

Hence the quantile function is

QF() =

¨

1,  > 1 − p,
0, otherwise.
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Quantile transform method: Example 3

Thus, if U is standard uniform, then (U > 1 − p) has a Bernoulli
distribution with parameter p.

But

U > 1 − p⇔ 1 − U < p.

So we can simplify to (U < p).

Which is what we would presumably have used in the first place,
without knowing the quantile transform method.
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Quantile transform method: Example 4

Suppose we run a Bernoulli experiment until the first success. What is
the distribution of the number X of failures before the first success?

We have

P(X = n) = P(n failures, then success) = P(failure)nP(success) = qnp

This is the geometric distribution with parameter p.

(This is the parametrization used by R as well: one can also count the
number of experiments needed for the first success.)

How can we use the quantile transform method to draw from the
geometric distribution?
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Quantile transform method: Example 4

In general, how can we find the quantile function for a discrete
distribution?

Suppose that the support of the distribution is 1 < 2 < · · · (possibly
countably infinite, as for the geometric of Poission).

Then

F() = F(),  ≤  < +1.

Clearly,

F(−1) <  ≤ F()⇔QF() = .

Why? F(−1) <  and F() ≥ , and we’re looking for smallest  such
that F() ≥ !
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Quantile transform method: Example 4

For the geometric distribution (and  a non-negative integer),

F() =

∑

=0

pq = p
1 − q+1

1 − q
= 1 − q+1.

For the quantile function, we thus get

QF() =  ⇔ 1 − q <  ≤ 1 − q+1

⇔ q > 1 −  ≥ q+1

⇔  <
log(1 − )

log(q)
≤  + 1
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Quantile transform method: Example 4

Now

 < ξ ≤  + 1 ⇔ ξ − 1 ≤  < ξ

⇔  = ceiling(ξ − 1) = ceiling(ξ) − 1.

Hence, we found:

QF() = ceiling
�

log(1 − )

log(q)

�

− 1.

And thus: if U is standard uniform,

ceiling
�

log(1 − U)

log(1 − p)

�

− 1 ∼ geometric(p).
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Motivation

Suppose we want to sample from the distribution with density

ƒ () = 6(1 − ), 0 <  < 1.

We can still easily compute

F() =
∫ 

0
ƒ (t)dt = 6

�

t2

2
−
t3

3

�

�

�

�

�

�



t=0

= 32 − 23, 0 ≤  ≤ 1

but solving F() =  gives a cubic equation, which is not so
“straightforward” to solve.

Can we draw from F without determining QF?
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Acceptance-rejection method

The acceptance-rejection method allows the following:

We want to draw X ∼ ƒ and know to draw Y ∼ g, where ƒ (t) ≤ cg(t) for
all t.

We can do this as follows: for each random variate required,

1. Draw y from g

2. Draw  from U0,1
3. If  < ƒ (y)/(cg(y)) accept and deliver  = y; otherwise, reject y and

restart.

Why does this work? Sorry in advanced for the awful notation.
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We want to draw X ∼ ƒ and know to draw Y ∼ g, where ƒ (t) ≤ cg(t) for
all t.

We can do this as follows: for each random variate required,

1. Draw y from g

2. Draw  from U0,1
3. If  < ƒ (y)/(cg(y)) accept and deliver  = y; otherwise, reject y and

restart.

Why does this work? Sorry in advanced for the awful notation.
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Acceptance-rejection method

First,

P(ccept|y) = P
�

U <
ƒ (y)

cg(y)

�

=
ƒ (y)

cg(y)
.

Don’t worry if g(y) = 0: we cannot really draw such y.

Hence, using a variant of the theorem of total probability,

P(ccept) =
∫

P(ccept|y)dG(y) =
∫

ƒ (y)

cg(y)
g(y)dy =

1

c
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Acceptance-rejection method

To see that X has the right distribution:

P(X = |ccept) =
P(Y = ,ccept)

P(ccept)

=
P(ccept|)P(Y = )

P(ccept)

=

ƒ ()

cg()
g()

1

c
= ƒ ()

WOW!
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Acceptance-rejection method

So we see that this method really works!

We also see that the probability of accepting is 1/c. Clearly, we want this
to be as large as possible, and hence c should be as small as possible.

As ƒ and g are densities,

ƒ (t) ≤ cg(t) for all t⇒
∫

ƒ (t)dt ≤
∫

cg(t)dt⇒ 1 ≤ c.

Every try accepts with probability p = 1/c, so the number of rejects has
a geometric distribution with parameter p.

On average, the number of tries needed is thus

1 + E(geometric(p)) = 1 +
∞
∑

=0

pq = 1 +
q

p
=
p + q

p
=
1

p
= c.
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Acceptance-rejection method

In case you really want to know: for |q| < 1,

∞
∑

=0

q =
1

1 − q
.

Differentiate, interchanging summation and differentiation on the LHS:

∞
∑

=0

q−1 =
1

(1 − q)2

Now multiply by pq:

∞
∑

=0

pq = pq
1

(1 − q)2
=
q

p
.

Slide 71



Acceptance-rejection method

In case you really want to know: for |q| < 1,

∞
∑

=0

q =
1

1 − q
.

Differentiate, interchanging summation and differentiation on the LHS:

∞
∑

=0

q−1 =
1

(1 − q)2

Now multiply by pq:

∞
∑

=0

pq = pq
1

(1 − q)2
=
q

p
.

Slide 71



Acceptance-rejection method

In case you really want to know: for |q| < 1,

∞
∑

=0

q =
1

1 − q
.

Differentiate, interchanging summation and differentiation on the LHS:

∞
∑

=0

q−1 =
1

(1 − q)2

Now multiply by pq:

∞
∑

=0

pq = pq
1

(1 − q)2
=
q

p
.

Slide 71



Acceptance-rejection method: Example

Suppose we want to sample from the distribution with density

ƒ () = 6(1 − ), 0 <  < 1.

This is actually a Beta distribution, which generally has density

ƒ () =
α−1(1 − )β−1

B(α, β)
, 0 <  < 1,

where

B(α, β) =
(α)(β)

(α + β)

is the Beta function. We see that in our case, α = β = 2.
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Acceptance-rejection method: Example

How can we use use acceptance-rejection to draw from ƒ?

We need a density g on (0,1) we know to draw from.

You get three guesses . . .

Ok, that was too easy. Clearly, we can take the standard uniform.

What about c? Well, for 0 <  < 1

ƒ ()

g()
=
6(1 − )

1
= 6(1 − ) ≤ 6

so we could take c = 6, and accept if

ƒ (y)

cg(y)
=
6y(1 − y)

6
= y(1 − y) > .
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Acceptance-rejection method: Example

Let us write an acceptance-rejection sampler for ƒ which hard-wires
c = 6 (not so good) but counts the number of tries (good).
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Acceptance-rejection method: Example

R> myrbeta22 <- function(n) {
+ k <- 0
+ j <- 0
+ x <- numeric(n)
+ while(k < n) {
+ u <- runif(1)
+ j <- j + 1
+ y <- runif(1) # random variate from g
+ if(y * (1 - y) > u) {
+ k <- k + 1
+ x[k] <- y
+ }
+ }
+ list(x = x, num_of_iterations = j)
+ }
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Acceptance-rejection method: Example

Then to generate a sample of size n = 1000:

R> res <- myrbeta22(1000)
R> res$num_of_iterations

[1] 6063

We see that the number of iterations/tries is close to the expected value

n × c = 1000 × 6 = 6000.

Of course, using c = 6 is really silly!
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Acceptance-rejection method: Example

We need that for 0 <  < 1,

ƒ ()

g()
= 6(1 − ) ≤ c

and

mx
0≤≤1

6(1 − ) = 6(1 − )|=1/2 =
6

4
=
3

2

So any c ≥ 3/2 will work, and c = 3/2 is “best possible”.

Using the best possible c, the average number of iterations/tries would
go down to

n ×
3

2
= 1000 ×

3

2
= 1500!
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Acceptance-rejection method: Example

To illustrate that our sampler “works”, first using histograms:

R> hist(res$x, probability = TRUE)
R> x <- seq(0, 1, by = 0.001)
R> lines(x, dbeta(x, 2, 2))
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Acceptance-rejection method: Example

Histogram of res$x

res$x
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Acceptance-rejection method: Example

Or (better), using QQ plots:

R> qqplot(res$x, qbeta(x, 2, 2))
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