
Statistics 1 Unit 1:
Numerical Linear Alge-
bra

Kurt Hornik

December 2, 2021

Outline

■ Matrix basics

■ Matrix decompositions and linear systems

Slide 2

Outline

■ Matrix basics
■ Matrix basics

■ Subscripting

■ Matrix operations

■ Tasks

■ Matrix decompositions and linear systems

Slide 3

Matrix basics

Matrices and arrays are represented as “structures”: vectors (can
therefore also be character or list) with a dim and optionally a dimnames
attribute.

Creation via matrix(), rbind() and cbind(); diag() for creating
diagonal matrices.

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that elements are filled by columns by default (“column major
ordering”): one can fill by rows using byrow = TRUE.

Slide 4

Matrix basics

Matrices and arrays are represented as “structures”: vectors (can
therefore also be character or list) with a dim and optionally a dimnames
attribute.

Creation via matrix(), rbind() and cbind(); diag() for creating
diagonal matrices.

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that elements are filled by columns by default (“column major
ordering”): one can fill by rows using byrow = TRUE.

Slide 4

Matrix basics

Matrices and arrays are represented as “structures”: vectors (can
therefore also be character or list) with a dim and optionally a dimnames
attribute.

Creation via matrix(), rbind() and cbind(); diag() for creating
diagonal matrices.

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that elements are filled by columns by default (“column major
ordering”): one can fill by rows using byrow = TRUE.

Slide 4

Matrix basics

Can get the dimensions via dim():

R> dim(m)

[1] 2 3

Can get the elements via c():

R> c(m)

[1] 1 2 3 4 5 6

Slide 5

Matrix basics

Can get the dimensions via dim():

R> dim(m)

[1] 2 3

Can get the elements via c():

R> c(m)

[1] 1 2 3 4 5 6

Slide 5

Matrix basics

Can also manipulation dimensions via dim() (connaisseurs: dim getter
and dim setter):

R> dim(m) <- c(3, 2)
R> m

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Or even: “matrix, go away”:

R> dim(m) <- NULL
R> m

[1] 1 2 3 4 5 6

Slide 6

Matrix basics

Can also manipulation dimensions via dim() (connaisseurs: dim getter
and dim setter):

R> dim(m) <- c(3, 2)
R> m

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Or even: “matrix, go away”:

R> dim(m) <- NULL
R> m

[1] 1 2 3 4 5 6

Slide 6

Matrix basics

rbind() combines its arguments by rows:

R> ## Turn a sequence into a "row vector":
R> rbind(c(1, 3, 5))

[,1] [,2] [,3]
[1,] 1 3 5

R> ## Create a matrix from its rows:
R> rbind(c(1, 3, 5), c(2, 4, 6))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Slide 7

Matrix basics

cbind() combines its arguments by columns:

R> ## Turn a sequence into a "column vector":
R> cbind(c(1, 2))

[,1]
[1,] 1
[2,] 2

R> ## Create a matrix from its columns:
R> cbind(c(1, 2), c(3, 4), c(5, 6))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Slide 8

Matrix basics

diag() creates diagonal matrices (or extracts diagonals):

R> diag(1 : 3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

R> ## Unit matrix:
R> diag(1, nrow = 3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

(Or use diag(rep(1, 3)).)
Slide 9

Matrix basics

Basic matrix functions:

■ c() extracts the elements
■ dim() getter/setter for the dim attribute
■ nrow() and ncol() for getting the number of rows or columns
■ dimnames() getter/setter for the dimnames attribute
■ rownames() and colnames() getters and setters for the row and

column names

Slide 10

Matrix basics

R> m <- matrix(1 : 6, 2, 3)
R> dimnames(m) <- list(c("R1", "R2"), c("C1", "C2", "C3"))
R> m

C1 C2 C3
R1 1 3 5
R2 2 4 6

Can also give the dimnames in the dimnames argument to matrix().

R> dimnames(m)

[[1]]
[1] "R1" "R2"

[[2]]
[1] "C1" "C2" "C3"

Slide 11

Matrix basics

R> rownames(m) <- letters[1 : 2]
R> colnames(m) <- NULL
R> m

[,1] [,2] [,3]
a 1 3 5
b 2 4 6

Note:

R> dimnames(m)

[[1]]
[1] "a" "b"

[[2]]
NULL

Slide 12

Outline

■ Matrix basics
■ Matrix basics

■ Subscripting

■ Matrix operations

■ Tasks

■ Matrix decompositions and linear systems

Slide 13

Subscripting

■ Extract sub-matrices by subscripting rows and columns using vectors
of integers or logicals or characters (if the matrix has the appropriate
dimnames) (“2-argument subscripting”).
Note that by default this drops dimensions if possible.

■ Extract elements by subscripting with a single vector of integers or
logicals, or a 2-column index matrix.

Slide 14

Subscripting

■ Extract sub-matrices by subscripting rows and columns using vectors
of integers or logicals or characters (if the matrix has the appropriate
dimnames) (“2-argument subscripting”).
Note that by default this drops dimensions if possible.

■ Extract elements by subscripting with a single vector of integers or
logicals, or a 2-column index matrix.

Slide 14

2-argument subscripting

R> (m <- matrix(1 : 6, 2, 3))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

R> m[1, 2 : 3]

[1] 3 5

R> m[-1, 2 : 3, drop = FALSE]

[,1] [,2]
[1,] 4 6

R> m[2, 2]

[1] 4

Slide 15

1-argument subscripting

R> (m <- matrix(1 : 4, 2, 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> m[c(1, 4)]

[1] 1 4

R> m[-3]

[1] 1 2 4

Slide 16

1-argument subscripting

R> ## Extract even elements, variant 1:
R> i <- ((m %% 2) == 0)
R> m[i]

[1] 2 4

R> ## Alternatively, use an index matrix:
R> i <- which((m %% 2) == 0, arr.ind = TRUE)
R> i

row col
[1,] 2 1
[2,] 2 2

R> m[i]

[1] 2 4

Slide 17

Subscripting

diag() can also be used for extracting the diagonal of a matrix.

lower.tri() and upper.tri() can be employed for extracting the
lower and upper triangular parts of a matrix:

R> m <- matrix(1 : 9, 3, 3)
R> m

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

R> ## Extract diagonal elements.
R> diag(m)

[1] 1 5 9

Slide 18

Subscripting

R> ## Extract elements below the main diagonal.
R> m[lower.tri(m)]

[1] 2 3 6

R> ## Extract elements not above the main diagonal.
R> m[lower.tri(m, diag = TRUE)]

[1] 1 2 3 5 6 9

R> ## Extract elements above the main diagonal.
R> m[upper.tri(m)]

[1] 4 7 8

Slide 19

Subscripting

How does this work?

R> lower.tri(m)

[,1] [,2] [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE FALSE FALSE
[3,] TRUE TRUE FALSE

R> lower.tri(m, diag = TRUE)

[,1] [,2] [,3]
[1,] TRUE FALSE FALSE
[2,] TRUE TRUE FALSE
[3,] TRUE TRUE TRUE

Simply uses 1-argument subscripting.

Slide 20

Subscripting

In fact, one can “do it yourself” using row() and col():

R> row(m)

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3

R> col(m)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 2 3
[3,] 1 2 3

Slide 21

Subscripting

R> ## Elements below the main diagonal:
R> row(m) > col(m)

[,1] [,2] [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE FALSE FALSE
[3,] TRUE TRUE FALSE

R> ## elements not above the main diagonal:
R> row(m) >= col(m)

[,1] [,2] [,3]
[1,] TRUE FALSE FALSE
[2,] TRUE TRUE FALSE
[3,] TRUE TRUE TRUE

Slide 22

Subscripting

Using row() and col(), we can also split a matrix into its rows or
columns:

R> m <- matrix(1 : 6, 2, 3)
R> split(m, row(m))

$`1`
[1] 1 3 5

$`2`
[1] 2 4 6

Slide 23

Subscripting

How can we get the matrix back from the list of its row vectors?

Formally: suppose we have an m × n matrix m with row vectors
r1, . . . , rm. We know that

m = rbind(r1, . . . , rm)

but what if we have the row vectors in a list?

Want “call rbind with the list (of row vectors) as its arguments”.

Have do.call() for this.

Slide 24

Subscripting

How can we get the matrix back from the list of its row vectors?

Formally: suppose we have an m × n matrix m with row vectors
r1, . . . , rm. We know that

m = rbind(r1, . . . , rm)

but what if we have the row vectors in a list?

Want “call rbind with the list (of row vectors) as its arguments”.

Have do.call() for this.

Slide 24

Subscripting

R> m <- matrix(1 : 6, 2, 3)
R> (r <- split(m, row(m)))

$`1`
[1] 1 3 5

$`2`
[1] 2 4 6

R> do.call(rbind, r)

[,1] [,2] [,3]
1 1 3 5
2 2 4 6

Slide 25

Outline

■ Matrix basics
■ Matrix basics

■ Subscripting

■ Matrix operations

■ Tasks

■ Matrix decompositions and linear systems

Slide 26

Basics

t() does transposition:

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

R> t(m)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

Slide 27

Basics

The basic arithmetic and logical operations on matrices work
element-wise, preserving dimensions where possible.

I.e., operate on the underlying sequences of values, and hence recycle
“as necessary” (as discussed).

In particular, A * B is the element-wise product of A and B (“Hadamard
product”)!

Slide 28

Basics

The basic arithmetic and logical operations on matrices work
element-wise, preserving dimensions where possible.

I.e., operate on the underlying sequences of values, and hence recycle
“as necessary” (as discussed).

In particular, A * B is the element-wise product of A and B (“Hadamard
product”)!

Slide 28

Basics

The basic arithmetic and logical operations on matrices work
element-wise, preserving dimensions where possible.

I.e., operate on the underlying sequences of values, and hence recycle
“as necessary” (as discussed).

In particular, A * B is the element-wise product of A and B (“Hadamard
product”)!

Slide 28

Basics

R> (A <- matrix(1 : 4, 2, 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> (B <- matrix(5 : 8, 2, 2))

[,1] [,2]
[1,] 5 7
[2,] 6 8

Slide 29

Basics

These are “as expected”:

R> ## Multiplication by a scalar:
R> 2 * A

[,1] [,2]
[1,] 2 6
[2,] 4 8

R> ## Element-wise subtraction:
R> A - B

[,1] [,2]
[1,] -4 -4
[2,] -4 -4

Slide 30

Basics

These are surprising when first encountered:

R> A - 2

[,1] [,2]
[1,] -1 1
[2,] 0 2

R> A / B

[,1] [,2]
[1,] 0.2000000 0.4285714
[2,] 0.3333333 0.5000000

Slide 31

Basics

And also matrix/vector operations do not work as expected:

R> x <- c(2, 3)
R> B * x

[,1] [,2]
[1,] 10 14
[2,] 18 24

R> ## Compare to:
R> c(B) * x

[1] 10 18 14 24

Slide 32

Basics

To get the usual matrix product, use %*%.

R> A %*% B

[,1] [,2]
[1,] 23 31
[2,] 34 46

R> B %*% x

[,1]
[1,] 31
[2,] 36

Note that the latter nicely turns x into a column vector.

Slide 33

Matrix products

We have already seen that in addition to the usual matrix product, there
is the element-wise Hadamard product A ⊙ B:

If A = [αj] and B = [βj] have the same dimensions,

[A ⊙ B] j = αjβj.

There is also the Kronecker product A⊗ B which takes the products of all
pairs of elements of A and B, arranged suitably.

This works for matrices of arbitrary sizes.

Slide 34

Matrix products

We have already seen that in addition to the usual matrix product, there
is the element-wise Hadamard product A ⊙ B:

If A = [αj] and B = [βj] have the same dimensions,

[A ⊙ B] j = αjβj.

There is also the Kronecker product A⊗ B which takes the products of all
pairs of elements of A and B, arranged suitably.

This works for matrices of arbitrary sizes.

Slide 34

Matrix products

If A = [αj], the Kronecker product of A and B is defined as

A ⊗ B =





α11B · · · α1nB
...

. . .
...

αm1B · · · αmnB





For example:

R> kronecker(A, B)

[,1] [,2] [,3] [,4]
[1,] 5 7 15 21
[2,] 6 8 18 24
[3,] 10 14 20 28
[4,] 12 16 24 32

Slide 35

Matrix products

These Kronecker products are very useful for multivariate analysis.

They have the following fundamental properties:

(A⊗ B)′ = A′ ⊗ B′, (A⊗ B)(C⊗ D) = AC⊗ BD, (A⊗ B)−1 = A−1 ⊗ B−1

If we write vec(A) for the (column) vector obtained by stacking the
columns of the matrix A one underneath the other:

vec(A) = [′
1
, . . . , ′

n
]′, A = [1, . . . , n]

(remember that ′ denotes transpose), then

vec(ABC) = (C′ ⊗ A)vec(B).

Slide 36

Cross products

Let A = [1, . . . , n] have columns  and B = [b1, . . . , bn] have columns
bj.

Then A′ has rows ′
1
, . . . , ′

n
, and hence the (, j) element of the matrix

product A′B is ′

bj, the inner product of the -th column of A and the j-th

column of B:

[A′B] j = ′

bj.

This is called the cross-product of A and B. In R, crossprod().

Clearly, crossprod(A, B) is the same as t(A) %*% B, but computed
more efficiently.

There is also tcrossprod(A, B) for AB′.

Slide 37

apply() and sweep()

apply() applies functions over array margins: in the simplest case, to
the rows or columns of a matrix.

sweep() sweeps out array/matrix summaries.

E.g.,

R> (A <- matrix(1 : 9, 3, 3))

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Slide 38

apply() and sweep()

R> ## Row sums:
R> apply(A, 1, sum)

[1] 12 15 18

R> ## Col sums:
R> apply(A, 2, sum)

[1] 6 15 24

apply() “always” works, but for some cases there are faster variants:

■ rowSums()/colSums() for row and col sums,
■ rowMeans()/colMeans() for row and col means.

Slide 39

apply() and sweep()

Now suppose we want to center the rows of a matrix. We can do

R> sweep(A, 1, rowMeans(A))

[,1] [,2] [,3]
[1,] -3 0 3
[2,] -3 0 3
[3,] -3 0 3

Indeed,

R> rowMeans(sweep(A, 1, rowMeans(A)))

[1] 0 0 0

has centered rows.

Slide 40

apply() and sweep()

How does this work? Formally, if A = [αj] and  = [ξ], we want to
compute the matrix with entries

αj − ξ.

There is nothing special about differences (it is used by sweep() by
default). In general, sweeping out row summaries  computes the
matrix with entries

ƒ (αj, ξ).

Similarly, if y = [ηj], sweeping out col summaries y computes the matrix
with entries

ƒ (αj, ηj).

Slide 41

apply() and sweep()

How does this work? Formally, if A = [αj] and  = [ξ], we want to
compute the matrix with entries

αj − ξ.

There is nothing special about differences (it is used by sweep() by
default). In general, sweeping out row summaries  computes the
matrix with entries

ƒ (αj, ξ).

Similarly, if y = [ηj], sweeping out col summaries y computes the matrix
with entries

ƒ (αj, ηj).

Slide 41

Outline

■ Matrix basics
■ Matrix basics

■ Subscripting

■ Matrix operations

■ Tasks

■ Matrix decompositions and linear systems

Slide 42

Task 1: Multiply the rows of a matrix by a
vector

If A = [αj] is m× n and  = [] is m× 1 (or simply a sequence of length
m), we want to compute the m × n matrix with entries

αj.

Mathematically, we can do

rmlt(A,) = dig()A.

Check: write δj for the Kronecker δ:

δj =

¨

1,  = j

0,  ̸= j.

Slide 43

Task 1: Multiply the rows of a matrix by a
vector

If A = [αj] is m× n and  = [] is m× 1 (or simply a sequence of length
m), we want to compute the m × n matrix with entries

αj.

Mathematically, we can do

rmlt(A,) = dig()A.

Check: write δj for the Kronecker δ:

δj =

¨

1,  = j

0,  ̸= j.

Slide 43

Task 1: Multiply the rows of a matrix by a
vector

Then dig() = [δj] and hence

[dig()A] j =
∑

k

[dig()] kαkj =
∑

k

δkαkj = αj.

So we could compute as diag(v) %*% A, but is this smart?

No! If A is m × n, needs m2 extra storage for dig() and (basic
counting) mn times m multiplications and m − 1 additions (most of
these no-ops).

But the task clearly only needs mn multiplications!

How can we do better?

Slide 44

Task 1: Multiply the rows of a matrix by a
vector

Then dig() = [δj] and hence

[dig()A] j =
∑

k

[dig()] kαkj =
∑

k

δkαkj = αj.

So we could compute as diag(v) %*% A, but is this smart?

No! If A is m × n, needs m2 extra storage for dig() and (basic
counting) mn times m multiplications and m − 1 additions (most of
these no-ops).

But the task clearly only needs mn multiplications!

How can we do better?

Slide 44

Task 1: Multiply the rows of a matrix by a
vector

Then dig() = [δj] and hence

[dig()A] j =
∑

k

[dig()] kαkj =
∑

k

δkαkj = αj.

So we could compute as diag(v) %*% A, but is this smart?

No! If A is m × n, needs m2 extra storage for dig() and (basic
counting) mn times m multiplications and m − 1 additions (most of
these no-ops).

But the task clearly only needs mn multiplications!

How can we do better?

Slide 44

Task 1: Multiply the rows of a matrix by a
vector

We know we need to compute the matrix with entries

αj

so that’s a row sweep with the multiplication function:

R> rmult <- function(A, v) sweep(A, 1, v, `*`)

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> v <- c(2, 3)
R> rmult(A, v)

[,1] [,2]
[1,] 2 6
[2,] 6 12

Slide 45

Task 1: Multiply the rows of a matrix by a
vector

For connaisseurs: we can also simply do

R> A * v

[,1] [,2]
[1,] 2 6
[2,] 6 12

Why? A is stored in column major order:

α11, α21, . . . , αm1, . . . , α1n, α2n, . . . , αmn,

recycling  gives

1, 2, . . . , m, . . . , 1, 2, . . . , m

so element-wise multiplication works “as desired”.
Slide 46

Task 2: Multiply the cols of a matrix by a
vector

If A = [αj] is m × n and  = [j] is n × 1 (or simply a sequence of length
n), we want to compute the m × n matrix with entries

αjj.

Mathematically, we can do

cmlt(A,) = Adig ().

Check:

[Adig()] j =
∑

k

αk[dig()]kj =
∑

k

αkkδkj = αjj.

Slide 47

Task 2: Multiply the cols of a matrix by a
vector

Now everyone can venture: we could compute as A %*% diag(v), but
this is a bad idea. Instead, we should do a col sweep with the
multiplication function:

R> cmult <- function(A, v) sweep(A, 2, v, `*`)

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> v <- c(2, 3)
R> cmult(A, v)

[,1] [,2]
[1,] 2 9
[2,] 4 12

Slide 48

Task 2: Multiply the cols of a matrix by a
vector

Now everyone can venture: we could compute as A %*% diag(v), but
this is a bad idea. Instead, we should do a col sweep with the
multiplication function:

R> cmult <- function(A, v) sweep(A, 2, v, `*`)

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> v <- c(2, 3)
R> cmult(A, v)

[,1] [,2]
[1,] 2 9
[2,] 4 12

Slide 48

Task 2: Multiply the cols of a matrix by a
vector

Connaisseurs will now wonder: is there a more direct way without
sweeping?

Well, A is stored as

α11, α21, . . . , αm1, . . . , α1n, α2n, . . . , αmn,

but now we need

1, 1, . . . , 1, . . . , n, n, . . . , n

with each j repeated m times.

So we could do A * rep(v, each = nrow(A))!

Slide 49

Task 3: Trace of the crossprod

The trace of a square matrix A = [αj] is the sum of its diagonal
elements:

trce(A) =
∑



α.

We could implement the trace of the crossprod as
sum(diag(crossprod(A))), but can we do better?

Well, we have:

trce(A′A) =
∑



[A′A]  =
∑



∑

k

[A′] k[A]k =
∑



∑

k

α2
k
,

hence we can do:

R> trace_of_crossprod <- function(A) sum(A ^ 2)

Slide 50

Task 3: Trace of the crossprod

The trace of a square matrix A = [αj] is the sum of its diagonal
elements:

trce(A) =
∑



α.

We could implement the trace of the crossprod as
sum(diag(crossprod(A))), but can we do better? Well, we have:

trce(A′A) =
∑



[A′A]  =
∑



∑

k

[A′] k[A]k =
∑



∑

k

α2
k
,

hence we can do:

R> trace_of_crossprod <- function(A) sum(A ^ 2)

Slide 50

Task 4: Vandermonde matrix and deter-
minant

The Vandermonde matrix of a sequence ξ1, . . . , ξn is

V(ξ1, . . . , ξn) =











1 ξ1 ξ2
1
· · · ξn−1

1
1 ξ2 ξ2

2
· · · ξn−12

...
...

...
. . .

...
1 ξn ξ2

n
· · · ξn−1

n











I.e.,

[V(ξ1, . . . , ξn)] j = ξ
j−1
 .

Write functions to compute the Vandermonde matrix and its
determinant.

Slide 51

Task 4: Vandermonde matrix and deter-
minant

How can we compute the matrix with entries ξ
j−1
 ? Write

ξ
j−1
 = pow(ξ, j − 1)

(of course, in R pow is written as ‘^’).

Remember our good old friend outer(): for  = [ξ] and y = [ηj],

[oter(, y, ƒ)] j = ƒ (ξ, ηj).

So easily,

R> Vandermonde <- function(x) outer(x, seq_along(x) - 1, `^`)

Slide 52

Task 4: Vandermonde matrix and deter-
minant

How can we compute the matrix with entries ξ
j−1
 ? Write

ξ
j−1
 = pow(ξ, j − 1)

(of course, in R pow is written as ‘^’).

Remember our good old friend outer(): for  = [ξ] and y = [ηj],

[oter(, y, ƒ)] j = ƒ (ξ, ηj).

So easily,

R> Vandermonde <- function(x) outer(x, seq_along(x) - 1, `^`)

Slide 52

Task 4: Vandermonde matrix and deter-
minant

R> Vandermonde(1 : 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 2 4 8 16
[3,] 1 3 9 27 81
[4,] 1 4 16 64 256
[5,] 1 5 25 125 625

How can we compute the determinant? Simple way:

R> det(Vandermonde(1 : 5))

[1] 288

Slide 53

Task 4: Vandermonde matrix and deter-
minant

R> Vandermonde(1 : 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 2 4 8 16
[3,] 1 3 9 27 81
[4,] 1 4 16 64 256
[5,] 1 5 25 125 625

How can we compute the determinant? Simple way:

R> det(Vandermonde(1 : 5))

[1] 288

Slide 53

Task 4: Vandermonde matrix and deter-
minant

For connaisseurs: verify first that

det(V(ξ1, . . . , ξn)) =
∏

1≤<j≤n
(ξ − ξj).

So we can do

R> Vandermonde_det <- function(x) {
+ diffs <- outer(x, x, `-`)
+ prod(diffs[upper.tri(diffs)])
+ }

Check:

R> Vandermonde_det(1 : 5)

[1] 288
Slide 54

Outline

■ Matrix basics

■ Matrix decompositions and linear systems

Slide 55

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 56

Introduction

As everyone knows from kindergarden: the n × n linear system A = b
has a unique solution iff A is invertible, in which case the unique solution
is given by  = A−1b.

In R, we can get the inverse using solve().

(Strange, not inv()? There must be a reason . . .).

Slide 57

Introduction

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> (A_inv <- solve(A))

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

R> A %*% A_inv

[,1] [,2]
[1,] 1 0
[2,] 0 1

Slide 58

Introduction

So formally, we could solve the linear system A = b via literally
translating  = A−1b as

solve(A) %*% b

but do not do this!

Instead, one should use one of

solve(A, b)
qr.solve(A, b)

In the following, we illustrate why. More precisely, we review the basic
matrix decompositions and how to use these for solving linear systems.

Slide 59

Introduction

To illustrate matters, we use the linear system

H6 = b

where

b = [1,2,3,4,5,6]′

and H6 is the 6 × 6 Hilbert matrix

H6 = [1/( + j − 1)]1≤,j≤6.

Slide 60

Introduction

R> b <- 1 : 6
R> H <- 1 / (outer(b, b, `+`) - 1)
R> H

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000 0.16666667
[2,] 0.5000000 0.3333333 0.2500000 0.2000000 0.1666667 0.14285714
[3,] 0.3333333 0.2500000 0.2000000 0.1666667 0.1428571 0.12500000
[4,] 0.2500000 0.2000000 0.1666667 0.1428571 0.1250000 0.11111111
[5,] 0.2000000 0.1666667 0.1428571 0.1250000 0.1111111 0.10000000
[6,] 0.1666667 0.1428571 0.1250000 0.1111111 0.1000000 0.09090909

Slide 61

Introduction

Compute the inverse:

R> H_inv <- solve(H)
R> H_inv

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 36 -630 3360 -7560 7560 -2772
[2,] -630 14700 -88200 211680 -220500 83160
[3,] 3360 -88200 564480 -1411200 1512000 -582120
[4,] -7560 211680 -1411200 3628800 -3969000 1552320
[5,] 7560 -220500 1512000 -3969000 4410000 -1746360
[6,] -2772 83160 -582120 1552320 -1746360 698544

Check whether it does a reasonable job:

Slide 62

Introduction

R> H_inv %*% H

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -1.062403e-10 -9.003998e-11 -7.804601e-11
[2,] 2.764864e-10 1.000000e+00 1.909939e-10 1.655280e-10
[3,] -1.455192e-10 -5.820766e-11 1.000000e+00 -8.003553e-11
[4,] 1.746230e-10 1.164153e-10 5.820766e-11 1.000000e+00
[5,] 2.328306e-10 2.910383e-11 8.731149e-11 8.731149e-11
[6,] -5.820766e-11 0.000000e+00 0.000000e+00 -4.365575e-11

[,5] [,6]
[1,] -6.889422e-11 -6.178880e-11
[2,] 1.418812e-10 1.246008e-10
[3,] -4.365575e-11 -4.365575e-11
[4,] 2.910383e-11 5.820766e-11
[5,] 1.000000e+00 8.731149e-11
[6,] -4.365575e-11 1.000000e+00

Slide 63

Introduction

R> max(abs((H_inv %*% H) - diag(6)))

[1] 2.764864e-10

Hmm. Only up to 10 digits for a 6 × 6 matrix? This is not really
impressive.

Slide 64

Introduction

Now compute “solutions” of H6 = b using the 3 indicated methods:

R> x1 <- c(H_inv %*% b)
R> ## (Use c() to obtain a dim-less vector.)
R> x2 <- solve(H, b)
R> x3 <- qr.solve(H, b)

Slide 65

Introduction

How close are these?

R> x1 - x2

[1] -2.787147e-09 5.567017e-09 -9.094947e-10 1.804437e-09
[5] 4.365575e-10 -2.473826e-10

R> max(abs(x1 - x2))

[1] 5.567017e-09

and compactly:

R> dist(rbind(x1, x2, x3), "maximum")

x1 x2
x2 5.567017e-09
x3 1.414525e-05 1.414568e-05

Slide 66

Introduction

But how “good” are the solutions?

R> b1 <- H %*% x1
R> b2 <- H %*% x2
R> b3 <- H %*% x3

Inspect the difference to b:

R> cbind(b1, b2, b3) - b

[,1] [,2] [,3]
[1,] 1.909939e-10 0.000000e+00 -3.637979e-12
[2,] 6.311893e-10 3.637979e-12 -5.456968e-12
[3,] 6.111804e-10 1.818989e-12 1.818989e-12
[4,] 5.511538e-10 0.000000e+00 -5.456968e-12
[5,] 4.893081e-10 1.818989e-12 -1.818989e-12
[6,] 4.383764e-10 2.728484e-12 -3.637979e-12

Slide 67

Introduction

Inspect the maximal differences:

R> apply(abs(cbind(b1, b2, b3) - b), 2, max)

[1] 6.311893e-10 3.637979e-12 5.456968e-12

So in some sense, solutions 2 and 3 are “better”, although they are
“rather different”. Strange.

Slide 68

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 69

LU decomposition

The LU decomposition of a quadratic matrix A is

A = LU

where L is lower and U is upper triangular.

Not all square matrices have such a decomposition.

Why useful? Consider the linear system

A = LU = b.

This can be solved as

Ly = b, U = y.

Slide 70

LU decomposition

The LU decomposition of a quadratic matrix A is

A = LU

where L is lower and U is upper triangular.

Not all square matrices have such a decomposition.

Why useful? Consider the linear system

A = LU = b.

This can be solved as

Ly = b, U = y.

Slide 70

LU decomposition

So

 = U−1y = U−1L−1b

as of course

A−1 = (LU)−1 = U−1L−1.

How can we solve

Ly = b, U = y?

Slide 71

LU decomposition

As L is lower triangular, Ly = b can be written as









11
21 22
...

...
. . .

n1 n2 · · · nn

















η1
η2
...
ηn









=









β1
β2
...
βn









.

Clearly, we can solve this forward: obtain η1 from the first eqn, then η2
from the second, and so on.

In R, we could do

y <- forwardsolve(L, b)

Slide 72

LU decomposition

As U is upper triangular, U = y can be written as









11 12 · · · 1n
22 · · · 2n

. . .
...

nn

















ξ1
ξ2
...
ξn









=









η1
η2
...
ηn









.

Clearly, we can solve this backward: obtain ξn from the last eqn, then
ηn−1 from the last but one, and so on.

In R, we could do

x <- backsolve(U, y)

Slide 73

LU decomposition

In fact, the above also shows: if L (R) is a regular lower (upper)
triangular matrix, its inverse L−1 (R−1) is lower (upper) triangular.

If we do full Gauss elimination:

A| → U|L

we compute the LU decomposition.

Interestingly, although we’ve learned to always do this by hand, one
never does this using the computer, as computing the LU decomposition
(when it exists) is numerically unstable.

In case R there is no function to compute the LU decomposition.

Slide 74

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 75

QR decomposition

The QR decomposition of a quadratic matrix A is

A = QR

where Q is orthogonal and R is upper triangular.

The inverse of A can be computed as

A−1 = (QR)−1 = R−1Q−1 = R−1Q′

(remember the inverse of an orthogonal matrix is its transpose!).

Slide 76

QR decomposition

The linear system A = QR = b can be solved via the QR decomposition
as

Qy = b, R = y

via

y = Q′b,  = bcksolve(R, y).

Slide 77

QR decomposition I

In R, we can compute the QR decomposition via qr(), which returns
something “strange”.

R> (H_qr <- qr(H))

$qr
[,1] [,2] [,3] [,4] [,5]

[1,] -1.2212243 -0.7018717 -0.504470316 -0.3969691267 -3.284337e-01
[2,] 0.4094252 -0.1384670 -0.151130170 -0.1443643562 -1.340082e-01
[3,] 0.2729501 0.5029231 -0.009561613 -0.0151932381 -1.813029e-02
[4,] 0.2047126 0.4674665 0.419825664 0.0004802815 9.942382e-04
[5,] 0.1637701 0.4221195 0.595589435 -0.3630074314 1.733898e-05
[6,] 0.1364751 0.3804247 0.680569302 -0.8985477890 3.663121e-01

[,6]
[1,] -2.806128e-01
[2,] -1.236690e-01
[3,] -1.953170e-02
Slide 78

QR decomposition II

[4,] 1.419101e-03
[5,] 4.403070e-05
[6,] 3.986241e-07

$rank
[1] 6

$qraux
[1] 1.818850e+00 1.453471e+00 1.076453e+00 1.246653e+00 1.930492e+00
[6] 3.986070e-07

$pivot
[1] 1 2 3 4 5 6

attr(,"class")
[1] "qr"

Slide 79

QR decomposition

The upper triangle contains the R of the decomposition and the lower
triangle contains information on the Q of the decomposition, stored in
compact form.

The Q and R can be retrieved using qr.Q() and qr.R(), respectively.

R> Q <- qr.Q(H_qr)
R> R <- qr.R(H_qr)

We can then verify that Q is orthogonal and R is upper triangular:

Slide 80

QR decomposition

R> crossprod(Q)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 7.632783e-17 2.775558e-17 -2.775558e-17
[2,] 7.632783e-17 1.000000e+00 1.387779e-16 2.775558e-17
[3,] 2.775558e-17 1.387779e-16 1.000000e+00 -1.110223e-16
[4,] -2.775558e-17 2.775558e-17 -1.110223e-16 1.000000e+00
[5,] 0.000000e+00 -5.551115e-17 -8.326673e-17 -1.665335e-16
[6,] 6.938894e-18 1.387779e-17 0.000000e+00 1.110223e-16

[,5] [,6]
[1,] 0.000000e+00 6.938894e-18
[2,] -5.551115e-17 1.387779e-17
[3,] -8.326673e-17 0.000000e+00
[4,] -1.665335e-16 1.110223e-16
[5,] 1.000000e+00 2.775558e-17
[6,] 2.775558e-17 1.000000e+00

Slide 81

QR decomposition

R> R

[,1] [,2] [,3] [,4] [,5]
[1,] -1.221224 -0.7018717 -0.504470316 -0.3969691267 -3.284337e-01
[2,] 0.000000 -0.1384670 -0.151130170 -0.1443643562 -1.340082e-01
[3,] 0.000000 0.0000000 -0.009561613 -0.0151932381 -1.813029e-02
[4,] 0.000000 0.0000000 0.000000000 0.0004802815 9.942382e-04
[5,] 0.000000 0.0000000 0.000000000 0.0000000000 1.733898e-05
[6,] 0.000000 0.0000000 0.000000000 0.0000000000 0.000000e+00

[,6]
[1,] -2.806128e-01
[2,] -1.236690e-01
[3,] -1.953170e-02
[4,] 1.419101e-03
[5,] 4.403070e-05
[6,] 3.986241e-07

Slide 82

QR decomposition

How well can we recover H6 from its QR decomposition?

R> max(abs((Q %*% R) - H))

[1] 2.220446e-16

(not bad).

Slide 83

QR decomposition

To solve H6 = b using the QR decomposition “by hand”, we can do

R> x3a <- c(backsolve(R, crossprod(Q, b)))
R> ## Compare to result of qr.solve():
R> x3a - x3

[1] 2.904699e-11 -1.182343e-10 6.839400e-10 -1.746230e-09
[5] 1.833541e-09 -6.839400e-10

It is more correct to compute Q′b in one step:

R> x3a <- c(backsolve(R, qr.qty(H_qr, b)))
R> ## Compare to result of qr.solve():
R> x3a - x3

[1] 0 0 0 0 0 0

So this is what qr.solve() does.
Slide 84

QR decomposition

How can we find the (absolute value) of the determinant of a matrix
from its QR decomposition?

Clearly.

det(A) = det(Q)det(R)

where det(Q) = ±1 and det(R) is the product of the diagonal elements
of R.

Hence, |det(A)| is

prod(dig(R))

which is rather close to zero (so H6 is close to singular)!

Slide 85

QR decomposition

How can we find the (absolute value) of the determinant of a matrix
from its QR decomposition?

Clearly.

det(A) = det(Q)det(R)

where det(Q) = ±1 and det(R) is the product of the diagonal elements
of R.

Hence, |det(A)| is

prod(dig(R))

which is rather close to zero (so H6 is close to singular)!

Slide 85

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 86

Singular value decomposition (SVD)

The SVD of a quadratic matrix is

A = UDV′,

where U and V are orthogonal and D = dig(σ1, . . . , σn) is diagonal with
non-negative entries.

Note 1: the SVD also works for rectangular m × n matrices. In this cases
D is “rectangular diagonal”.

Note 2: the SVD also works for complex matrices. In this case U and V
are unitary.

Note 3: If A has rank r, there is also the compact SVD A = UrDrV′r , where
Ur is m × r, Dr is r × r diagonal, and Vr is n × r, with U′

r
Ur = V′

r
Vr = r.

Slide 87

Singular value decomposition (SVD)

The SVD of a quadratic matrix is

A = UDV′,

where U and V are orthogonal and D = dig(σ1, . . . , σn) is diagonal with
non-negative entries.

Note 1: the SVD also works for rectangular m × n matrices. In this cases
D is “rectangular diagonal”.

Note 2: the SVD also works for complex matrices. In this case U and V
are unitary.

Note 3: If A has rank r, there is also the compact SVD A = UrDrV′r , where
Ur is m × r, Dr is r × r diagonal, and Vr is n × r, with U′

r
Ur = V′

r
Vr = r.

Slide 87

Singular value decomposition (SVD)

Let us first understand the SVD.

As U′U = , we have

A′A = (UDV′)′UDV′ = VDU′UDV′ = VD2V′

where D2 = D ·D = dig(σ2
1
, . . . , σ2

n
).

Thus,

A′AV = VD2V′V = VD2.

Slide 88

Singular value decomposition (SVD)

Write j for the j-th column of V. Then

A′AV = A′A[1, . . . , n] = [A′A1, . . . , A′An]

and

VD2 = [1, . . . , n] dig(σ21 , . . . , σ
2
n
) = [σ2

1
1, . . . , σ

2
n
n].

Putting together, for all j

A′Aj = σ2
j
j.

I.e., the columns j of V are the eigenvectors of A′A, and the singular
values σ2

j
the corresponding eigenvalues.

Slide 89

Singular value decomposition (SVD)

Write j for the j-th column of V. Then

A′AV = A′A[1, . . . , n] = [A′A1, . . . , A′An]

and

VD2 = [1, . . . , n] dig(σ21 , . . . , σ
2
n
) = [σ2

1
1, . . . , σ

2
n
n].

Putting together, for all j

A′Aj = σ2
j
j.

I.e., the columns j of V are the eigenvectors of A′A, and the singular
values σ2

j
the corresponding eigenvalues.

Slide 89

Singular value decomposition (SVD)

Similarly,

AA′ = UDV′(UDV′)′ = UDV′VDU′ = UD2U′

so that

AA′U = UD2U′U = UD2.

Thus, writing j for the j-th column of U, we have

AA′j = σ2
j
j

so that the j are the eigenvectors of AA′ and the σ2
j

the corresponding

eigenvalues.

Slide 90

Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.

If D is diagonal,  7→ D performs coordinate scaling.

Hence, if A has SVD UDV′,

 7→ A = UDV′

factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.

Slide 91

Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.

If D is diagonal,  7→ D performs coordinate scaling.

Hence, if A has SVD UDV′,

 7→ A = UDV′

factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.

Slide 91

Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.

If D is diagonal,  7→ D performs coordinate scaling.

Hence, if A has SVD UDV′,

 7→ A = UDV′

factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.

Slide 91

Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.

If D is diagonal,  7→ D performs coordinate scaling.

Hence, if A has SVD UDV′,

 7→ A = UDV′

factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.

Slide 91

Singular value decomposition (SVD)

In R, we can compute the SVD via svd(), which returns things “as
expected”:

R> H_svd <- svd(H)
R> typeof(H_svd)

[1] "list"

R> length(H_svd)

[1] 3

R> names(H_svd)

[1] "d" "u" "v"

Slide 92

Singular value decomposition (SVD) I

R> H_svd

$d
[1] 1.618900e+00 2.423609e-01 1.632152e-02 6.157484e-04 1.257076e-05
[6] 1.082799e-07

$u
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]
[1,] -0.001248194

Slide 93

Singular value decomposition (SVD) II

[2,] 0.035606643
[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453

$v
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]
[1,] -0.001248194
[2,] 0.035606643
Slide 94

Singular value decomposition (SVD) III

[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453

Slide 95

Singular value decomposition (SVD)

Extract the elements of the SVD:

R> U <- H_svd$u
R> s <- H_svd$d
R> V <- H_svd$v

Verify that U and V are orthogonal:

Slide 96

Singular value decomposition (SVD)

R> crossprod(U)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -8.326673e-17 8.326673e-17 0.000000e+00
[2,] -8.326673e-17 1.000000e+00 -2.775558e-17 0.000000e+00
[3,] 8.326673e-17 -2.775558e-17 1.000000e+00 -1.665335e-16
[4,] 0.000000e+00 0.000000e+00 -1.665335e-16 1.000000e+00
[5,] -1.387779e-17 8.326673e-17 2.498002e-16 1.665335e-16
[6,] 2.081668e-17 4.163336e-17 -5.551115e-17 5.551115e-17

[,5] [,6]
[1,] -1.387779e-17 2.081668e-17
[2,] 8.326673e-17 4.163336e-17
[3,] 2.498002e-16 -5.551115e-17
[4,] 1.665335e-16 5.551115e-17
[5,] 1.000000e+00 -4.163336e-17
[6,] -4.163336e-17 1.000000e+00

Slide 97

Singular value decomposition (SVD)

R> crossprod(V)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 2.914335e-16 -2.914335e-16 1.387779e-17
[2,] 2.914335e-16 1.000000e+00 -2.775558e-16 -1.110223e-16
[3,] -2.914335e-16 -2.775558e-16 1.000000e+00 -1.110223e-16
[4,] 1.387779e-17 -1.110223e-16 -1.110223e-16 1.000000e+00
[5,] 1.387779e-17 -2.775558e-17 -1.665335e-16 8.326673e-17
[6,] 6.938894e-18 1.387779e-17 2.775558e-17 -2.220446e-16

[,5] [,6]
[1,] 1.387779e-17 6.938894e-18
[2,] -2.775558e-17 1.387779e-17
[3,] -1.665335e-16 2.775558e-17
[4,] 8.326673e-17 -2.220446e-16
[5,] 1.000000e+00 1.387779e-17
[6,] 1.387779e-17 1.000000e+00

Slide 98

Singular value decomposition (SVD)

More compactly,

R> max(abs(crossprod(U) - diag(6)))

[1] 5.551115e-16

R> max(abs(crossprod(V) - diag(6)))

[1] 1.110223e-15

Slide 99

Singular value decomposition (SVD)

How well can H6 be recovered from its SVD?

Note that

Udig(s)V′ = cmlt(U, s) · V′ = tcrossprod(cmlt(U, s), V).

Numerically,

R> max(abs(tcrossprod(cmult(U, s), V) - H))

[1] 2.220446e-16

which is quite impressive!

Slide 100

Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101

Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101

Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101

Singular value decomposition (SVD)

To solve H6 = b via the SVD, we can thus do

R> x4 <- cmult(V, 1 / s) %*% crossprod(U, b)
R> b4 <- H %*% x4
R> b4 - b

[,1]
[1,] 1.091394e-11
[2,] 5.456968e-12
[3,] 5.456968e-12
[4,] 5.456968e-12
[5,] 3.637979e-12
[6,] -1.818989e-12

Again, very impressive.

Slide 102

Singular value decomposition (SVD)

Finally, clearly

det(A) = det(U)det(D)det(V′) = ± det(D) = ±
∏

j

σj.

In our case, this gives |det(H6)| as

R> prod(s)

[1] 5.3673e-18

(again, very small).

Slide 103

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 104

Eigendecomposition

The eigendecomposition (or spectral decomposition) of a symmetric
square matrix A is

A = UDU′

where U is orthogonal and D = dig(δ1, . . . , δn) is diagonal.

Then

AU = UDU′U = UD

so writing j for the j-the column of U,

Aj = δjj.

I.e., the j are the eigenvectors of A, and the δj the corresponding
eigenvalues.

Slide 105

Eigendecomposition

The eigendecomposition (or spectral decomposition) of a symmetric
square matrix A is

A = UDU′

where U is orthogonal and D = dig(δ1, . . . , δn) is diagonal. Then

AU = UDU′U = UD

so writing j for the j-the column of U,

Aj = δjj.

I.e., the j are the eigenvectors of A, and the δj the corresponding
eigenvalues.

Slide 105

Eigendecomposition

The eigendecomposition (or spectral decomposition) of a symmetric
square matrix A is

A = UDU′

where U is orthogonal and D = dig(δ1, . . . , δn) is diagonal. Then

AU = UDU′U = UD

so writing j for the j-the column of U,

Aj = δjj.

I.e., the j are the eigenvectors of A, and the δj the corresponding
eigenvalues.

Slide 105

Eigendecomposition

Note that the eigendecomposition can only work for symmetric A:

(UDU′)′ = (U′)′D′U′ = UDU′.

Note that for symmetric matrices, the eigendecomposition is “like the
SVD”, but not quite the same: taking V = U no longer allows to fix the
signs of the elements in the diagonal matrix!

Slide 106

Eigendecomposition

Geometric interpretation: if A has eigendecomposition A = UDU′, then

 7→ UDU′

perform rotation (by U′), scaling, and inverse rotation.

Clearly,

A2 = UDU′UDU′ = UD2U′

and generally,

Ak = UDkU′

where Dk = dig(δk
1
, . . . , δk

n
).

Slide 107

Eigendecomposition

Geometric interpretation: if A has eigendecomposition A = UDU′, then

 7→ UDU′

perform rotation (by U′), scaling, and inverse rotation.

Clearly,

A2 = UDU′UDU′ = UD2U′

and generally,

Ak = UDkU′

where Dk = dig(δk
1
, . . . , δk

n
).

Slide 107

Eigendecomposition

In R, we can compute the eigendecomposition via eigen(), which again
returns things “as expected”:

R> H_eigen <- eigen(H)
R> typeof(H_eigen)

[1] "list"

R> length(H_eigen)

[1] 2

R> names(H_eigen)

[1] "values" "vectors"

Slide 108

Eigendecomposition I

R> H_eigen

eigen() decomposition
$values
[1] 1.618900e+00 2.423609e-01 1.632152e-02 6.157484e-04 1.257076e-05
[6] 1.082799e-07

$vectors
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]

Slide 109

Eigendecomposition II

[1,] -0.001248194
[2,] 0.035606643
[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453

Slide 110

Eigendecomposition

Extract the elements of the eigendecomposition:

R> U <- H_eigen$vectors
R> d <- H_eigen$values

Verify that U is orthogonal:

R> max(abs(crossprod(U) - diag(6)))

[1] 4.996004e-16

Slide 111

Eigendecomposition

How well can H6 be recovered from its eigendecomposition?

As before,

R> max(abs(tcrossprod(cmult(U, d), U) - H))

[1] 6.661338e-16

Slide 112

Eigendecomposition

If A is regular with eigendecomposition A = UDU′, its inverse is given by

A−1 = (UDU′)−1 = (U′)−1D−1U−1 = UD−1U′

where D−1 = dig(1/δ1, . . . ,1/δn).

Geometrically: rotate, invert the scaling, rotate back.

Slide 113

Eigendecomposition

As for the SVD, we can thus solve via eigendecomposition as

R> x5 <- cmult(U, 1 / d) %*% crossprod(U, b)
R> b5 <- H %*% x5
R> b5 - b

[,1]
[1,] -3.637979e-12
[2,] 3.637979e-12
[3,] -3.637979e-12
[4,] 1.818989e-12
[5,] -1.818989e-12
[6,] 0.000000e+00

(Of course, we get the same as for the SVD.)

Slide 114

Eigendecomposition

Finally, clearly

det(A) = det(U)det(D)det(U′) = det(D) =
∏

j

δj

In our case, this gives det(H6) as

R> prod(d)

[1] 5.3673e-18

Did we already point out that this rather small?

Slide 115

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 116

Choleski decomposition

The Choleski decomposition of a non-negative definite symmetric
square matrix A is

A = LL′

where L is lower triangular.

Equivalently (as used by R),

A = R′R

where R is upper triangular.

Note: named after the French military officer and mathematician
André-Louis Cholesky (Wikipedia writes a ‘y’ at the end, the R docs write
‘i’).

Slide 117

Choleski decomposition

Note that the Choleski decomposition can only work for non-negative
definite symmetric matrices:

A = R′R⇒ A′ = (R′R)′ = R′(R′)′ = R′R = A

and

′A = ′R′R = (R)′(R) = ∥R∥2
2
≥ 0.

Slide 118

Choleski decomposition

In R, we can compute the Choleski decomposition/factor using chol():

R> (R <- chol(H))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0.5000000 0.3333333 0.25000000 0.200000000 0.166666667
[2,] 0 0.2886751 0.2886751 0.25980762 0.230940108 0.206196525
[3,] 0 0.0000000 0.0745356 0.11180340 0.127775313 0.133099284
[4,] 0 0.0000000 0.0000000 0.01889822 0.037796447 0.052495066
[5,] 0 0.0000000 0.0000000 0.00000000 0.004761905 0.011904762
[6,] 0 0.0000000 0.0000000 0.00000000 0.000000000 0.001196474

Slide 119

Choleski decomposition

How well can we recover H6 from its Choleski factor?

R> crossprod(R) - H

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 0 0 0 0 0
[5,] 0 0 0 0 0 0
[6,] 0 0 0 0 0 0

Slide 120

Choleski decomposition

The linear system A = R′R = b can be solved via the Choleski
decomposition as

R′y = b, R = y

via

bcksolve(R, forwrdsolve(R′, b)).

Slide 121

Choleski decomposition

To solve H6 = b via the Choleski decomposition, we can thus do

R> x6 <- backsolve(R, forwardsolve(t(R), b))
R> b6 <- H %*% x6
R> b6 - b

[,1]
[1,] 1.818989e-12
[2,] 1.091394e-11
[3,] 5.456968e-12
[4,] 1.818989e-12
[5,] -1.818989e-12
[6,] 2.728484e-12

Slide 122

Choleski decomposition

Finally, what about the determinant?

det(A) = det(R′R) = det(R′)det(R) = det(R)2 = (prod(dig(R)))2.

In our case, this gives det(H6) as

R> prod(diag(R)) ^ 2

[1] 5.3673e-18

Slide 123

Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 124

Summary

The solutions we obtained were rather different:

R> dist(t(cbind(x1, x2, x3, x4, x5, x6)), "maximum")

x1 x2 x3
x2 5.567017e-09
x3 1.414525e-05 1.414568e-05

1.146636e-05 1.146679e-05 2.678891e-06
2.000082e-05 2.000039e-05 3.414607e-05 3.146718e-05

x6 8.379517e-06 8.379080e-06 2.252476e-05 1.984587e-05 1.162131e-05

Slide 125

Summary

Qualitatively, the “straightforward” translation of A−1b works worst:

R> apply(abs(cbind(b1, b2, b3, b4, b5, b6) - b), 2, max)

[1] 6.311893e-10 3.637979e-12 5.456968e-12 1.091394e-11 3.637979e-12
[6] 1.091394e-11

Interestingly, for a simple 6 × 6 system with apparently an all-integer
solution the solutions are “not too good”:

R> X <- cbind(x1, x2, x3, x4, x5, x6)
R> apply(abs(X - round(X)), 2, max)

x1 x2 x3
2.104789e-05 2.104833e-05 6.902643e-06 9.581534e-06 4.104871e-05

x6
2.942741e-05

Slide 126

Summary

How come?

Well, we repeatedly showed that det(H6) ≈ 10−18. So, in some sense, H6

is “close to singular”, which has consequences.

Intuitively, the closer the det is to zero, the closer to singular.

Mathematically, what matters (most) is how “well-conditioned” a linear
system is, which can be measured by its condition number.

See the homeworks.

Slide 127

Summary

How come?

Well, we repeatedly showed that det(H6) ≈ 10−18. So, in some sense, H6

is “close to singular”, which has consequences.

Intuitively, the closer the det is to zero, the closer to singular.

Mathematically, what matters (most) is how “well-conditioned” a linear
system is, which can be measured by its condition number.

See the homeworks.

Slide 127

	Matrix basics
	Matrix basics
	Subscripting
	Matrix operations
	Tasks

	Matrix decompositions and linear systems
	Introduction
	LU decomposition
	QR decomposition
	Singular value decomposition (SVD)
	Eigendecomposition
	Choleski decomposition
	Summary

