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Matrix basics

Matrices and arrays are represented as “structures”: vectors (can
therefore also be character or list) with a dim and optionally a dimnames
attribute.

Creation via matrix(), rbind() and cbind(); diag() for creating
diagonal matrices.

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that elements are filled by columns by default (“column major
ordering”): one can fill by rows using byrow = TRUE.
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Matrix basics

Can get the dimensions via dim():

R> dim(m)

[1] 2 3

Can get the elements via c():

R> c(m)

[1] 1 2 3 4 5 6
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Matrix basics

Can also manipulation dimensions via dim() (connaisseurs: dim getter
and dim setter):

R> dim(m) <- c(3, 2)
R> m

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Or even: “matrix, go away”:

R> dim(m) <- NULL
R> m

[1] 1 2 3 4 5 6
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Matrix basics

rbind() combines its arguments by rows:

R> ## Turn a sequence into a "row vector":
R> rbind(c(1, 3, 5))

[,1] [,2] [,3]
[1,] 1 3 5

R> ## Create a matrix from its rows:
R> rbind(c(1, 3, 5), c(2, 4, 6))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
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Matrix basics

cbind() combines its arguments by columns:

R> ## Turn a sequence into a "column vector":
R> cbind(c(1, 2))

[,1]
[1,] 1
[2,] 2

R> ## Create a matrix from its columns:
R> cbind(c(1, 2), c(3, 4), c(5, 6))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
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Matrix basics

diag() creates diagonal matrices (or extracts diagonals):

R> diag(1 : 3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

R> ## Unit matrix:
R> diag(1, nrow = 3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

(Or use diag(rep(1, 3)).)
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Matrix basics

Basic matrix functions:

■ c() extracts the elements
■ dim() getter/setter for the dim attribute
■ nrow() and ncol() for getting the number of rows or columns
■ dimnames() getter/setter for the dimnames attribute
■ rownames() and colnames() getters and setters for the row and

column names
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Matrix basics

R> m <- matrix(1 : 6, 2, 3)
R> dimnames(m) <- list(c("R1", "R2"), c("C1", "C2", "C3"))
R> m

C1 C2 C3
R1 1 3 5
R2 2 4 6

Can also give the dimnames in the dimnames argument to matrix().

R> dimnames(m)

[[1]]
[1] "R1" "R2"

[[2]]
[1] "C1" "C2" "C3"
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Matrix basics

R> rownames(m) <- letters[1 : 2]
R> colnames(m) <- NULL
R> m

[,1] [,2] [,3]
a 1 3 5
b 2 4 6

Note:

R> dimnames(m)

[[1]]
[1] "a" "b"

[[2]]
NULL
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Subscripting

■ Extract sub-matrices by subscripting rows and columns using vectors
of integers or logicals or characters (if the matrix has the appropriate
dimnames) (“2-argument subscripting”).
Note that by default this drops dimensions if possible.

■ Extract elements by subscripting with a single vector of integers or
logicals, or a 2-column index matrix.
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2-argument subscripting

R> (m <- matrix(1 : 6, 2, 3))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

R> m[1, 2 : 3]

[1] 3 5

R> m[-1, 2 : 3, drop = FALSE]

[,1] [,2]
[1,] 4 6

R> m[2, 2]

[1] 4
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1-argument subscripting

R> (m <- matrix(1 : 4, 2, 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> m[c(1, 4)]

[1] 1 4

R> m[-3]

[1] 1 2 4
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1-argument subscripting

R> ## Extract even elements, variant 1:
R> i <- ((m %% 2) == 0)
R> m[i]

[1] 2 4

R> ## Alternatively, use an index matrix:
R> i <- which((m %% 2) == 0, arr.ind = TRUE)
R> i

row col
[1,] 2 1
[2,] 2 2

R> m[i]

[1] 2 4

Slide 17



Subscripting

diag() can also be used for extracting the diagonal of a matrix.

lower.tri() and upper.tri() can be employed for extracting the
lower and upper triangular parts of a matrix:

R> m <- matrix(1 : 9, 3, 3)
R> m

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

R> ## Extract diagonal elements.
R> diag(m)

[1] 1 5 9
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Subscripting

R> ## Extract elements below the main diagonal.
R> m[lower.tri(m)]

[1] 2 3 6

R> ## Extract elements not above the main diagonal.
R> m[lower.tri(m, diag = TRUE)]

[1] 1 2 3 5 6 9

R> ## Extract elements above the main diagonal.
R> m[upper.tri(m)]

[1] 4 7 8
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Subscripting

How does this work?

R> lower.tri(m)

[,1] [,2] [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE FALSE FALSE
[3,] TRUE TRUE FALSE

R> lower.tri(m, diag = TRUE)

[,1] [,2] [,3]
[1,] TRUE FALSE FALSE
[2,] TRUE TRUE FALSE
[3,] TRUE TRUE TRUE

Simply uses 1-argument subscripting.
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Subscripting

In fact, one can “do it yourself” using row() and col():

R> row(m)

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3

R> col(m)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 2 3
[3,] 1 2 3
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Subscripting

R> ## Elements below the main diagonal:
R> row(m) > col(m)

[,1] [,2] [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE FALSE FALSE
[3,] TRUE TRUE FALSE

R> ## elements not above the main diagonal:
R> row(m) >= col(m)

[,1] [,2] [,3]
[1,] TRUE FALSE FALSE
[2,] TRUE TRUE FALSE
[3,] TRUE TRUE TRUE
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Subscripting

Using row() and col(), we can also split a matrix into its rows or
columns:

R> m <- matrix(1 : 6, 2, 3)
R> split(m, row(m))

$`1`
[1] 1 3 5

$`2`
[1] 2 4 6
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Subscripting

How can we get the matrix back from the list of its row vectors?

Formally: suppose we have an m × n matrix m with row vectors
r1, . . . , rm. We know that

m = rbind(r1, . . . , rm)

but what if we have the row vectors in a list?

Want “call rbind with the list (of row vectors) as its arguments”.

Have do.call() for this.
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Subscripting

R> m <- matrix(1 : 6, 2, 3)
R> (r <- split(m, row(m)))

$`1`
[1] 1 3 5

$`2`
[1] 2 4 6

R> do.call(rbind, r)

[,1] [,2] [,3]
1 1 3 5
2 2 4 6
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Basics

t() does transposition:

R> m <- matrix(1 : 6, 2, 3)
R> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

R> t(m)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
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Basics

The basic arithmetic and logical operations on matrices work
element-wise, preserving dimensions where possible.

I.e., operate on the underlying sequences of values, and hence recycle
“as necessary” (as discussed).

In particular, A * B is the element-wise product of A and B (“Hadamard
product”)!
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Basics

R> (A <- matrix(1 : 4, 2, 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> (B <- matrix(5 : 8, 2, 2))

[,1] [,2]
[1,] 5 7
[2,] 6 8
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Basics

These are “as expected”:

R> ## Multiplication by a scalar:
R> 2 * A

[,1] [,2]
[1,] 2 6
[2,] 4 8

R> ## Element-wise subtraction:
R> A - B

[,1] [,2]
[1,] -4 -4
[2,] -4 -4
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Basics

These are surprising when first encountered:

R> A - 2

[,1] [,2]
[1,] -1 1
[2,] 0 2

R> A / B

[,1] [,2]
[1,] 0.2000000 0.4285714
[2,] 0.3333333 0.5000000
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Basics

And also matrix/vector operations do not work as expected:

R> x <- c(2, 3)
R> B * x

[,1] [,2]
[1,] 10 14
[2,] 18 24

R> ## Compare to:
R> c(B) * x

[1] 10 18 14 24
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Basics

To get the usual matrix product, use %*%.

R> A %*% B

[,1] [,2]
[1,] 23 31
[2,] 34 46

R> B %*% x

[,1]
[1,] 31
[2,] 36

Note that the latter nicely turns x into a column vector.
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Matrix products

We have already seen that in addition to the usual matrix product, there
is the element-wise Hadamard product A ⊙ B:

If A = [αj] and B = [βj] have the same dimensions,

[A ⊙ B] j = αjβj.

There is also the Kronecker product A⊗ B which takes the products of all
pairs of elements of A and B, arranged suitably.

This works for matrices of arbitrary sizes.
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Matrix products

If A = [αj], the Kronecker product of A and B is defined as

A ⊗ B =





α11B · · · α1nB
...

. . .
...

αm1B · · · αmnB





For example:

R> kronecker(A, B)

[,1] [,2] [,3] [,4]
[1,] 5 7 15 21
[2,] 6 8 18 24
[3,] 10 14 20 28
[4,] 12 16 24 32
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Matrix products

These Kronecker products are very useful for multivariate analysis.

They have the following fundamental properties:

(A⊗ B)′ = A′ ⊗ B′, (A⊗ B)(C⊗ D) = AC⊗ BD, (A⊗ B)−1 = A−1 ⊗ B−1

If we write vec(A) for the (column) vector obtained by stacking the
columns of the matrix A one underneath the other:

vec(A) = [′
1
, . . . , ′

n
]′, A = [1, . . . , n]

(remember that ′ denotes transpose), then

vec(ABC) = (C′ ⊗ A)vec(B).
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Cross products

Let A = [1, . . . , n] have columns  and B = [b1, . . . , bn] have columns
bj.

Then A′ has rows ′
1
, . . . , ′

n
, and hence the (, j) element of the matrix

product A′B is ′

bj, the inner product of the -th column of A and the j-th

column of B:

[A′B] j = ′

bj.

This is called the cross-product of A and B. In R, crossprod().

Clearly, crossprod(A, B) is the same as t(A) %*% B, but computed
more efficiently.

There is also tcrossprod(A, B) for AB′.
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apply() and sweep()

apply() applies functions over array margins: in the simplest case, to
the rows or columns of a matrix.

sweep() sweeps out array/matrix summaries.

E.g.,

R> (A <- matrix(1 : 9, 3, 3))

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
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apply() and sweep()

R> ## Row sums:
R> apply(A, 1, sum)

[1] 12 15 18

R> ## Col sums:
R> apply(A, 2, sum)

[1] 6 15 24

apply() “always” works, but for some cases there are faster variants:

■ rowSums()/colSums() for row and col sums,
■ rowMeans()/colMeans() for row and col means.
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apply() and sweep()

Now suppose we want to center the rows of a matrix. We can do

R> sweep(A, 1, rowMeans(A))

[,1] [,2] [,3]
[1,] -3 0 3
[2,] -3 0 3
[3,] -3 0 3

Indeed,

R> rowMeans( sweep(A, 1, rowMeans(A)) )

[1] 0 0 0

has centered rows.
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apply() and sweep()

How does this work? Formally, if A = [αj] and  = [ξ], we want to
compute the matrix with entries

αj − ξ.

There is nothing special about differences (it is used by sweep() by
default). In general, sweeping out row summaries  computes the
matrix with entries

ƒ (αj, ξ).

Similarly, if y = [ηj], sweeping out col summaries y computes the matrix
with entries

ƒ (αj, ηj).
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Task 1: Multiply the rows of a matrix by a
vector

If A = [αj] is m× n and  = [] is m× 1 (or simply a sequence of length
m), we want to compute the m × n matrix with entries

αj.

Mathematically, we can do

rmlt(A,) = dig()A.

Check: write δj for the Kronecker δ:

δj =

¨

1,  = j

0,  ̸= j.
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Task 1: Multiply the rows of a matrix by a
vector

Then dig() = [δj] and hence

[dig()A] j =
∑

k

[dig()] kαkj =
∑

k

δkαkj = αj.

So we could compute as diag(v) %*% A, but is this smart?

No! If A is m × n, needs m2 extra storage for dig() and (basic
counting) mn times m multiplications and m − 1 additions (most of
these no-ops).

But the task clearly only needs mn multiplications!

How can we do better?
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Task 1: Multiply the rows of a matrix by a
vector

We know we need to compute the matrix with entries

αj

so that’s a row sweep with the multiplication function:

R> rmult <- function(A, v) sweep(A, 1, v, `*`)

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> v <- c(2, 3)
R> rmult(A, v)

[,1] [,2]
[1,] 2 6
[2,] 6 12
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Task 1: Multiply the rows of a matrix by a
vector

For connaisseurs: we can also simply do

R> A * v

[,1] [,2]
[1,] 2 6
[2,] 6 12

Why? A is stored in column major order:

α11, α21, . . . , αm1, . . . , α1n, α2n, . . . , αmn,

recycling  gives

1, 2, . . . , m, . . . , 1, 2, . . . , m

so element-wise multiplication works “as desired”.
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Task 2: Multiply the cols of a matrix by a
vector

If A = [αj] is m × n and  = [j] is n × 1 (or simply a sequence of length
n), we want to compute the m × n matrix with entries

αjj.

Mathematically, we can do

cmlt(A,) = Adig ().

Check:

[Adig()] j =
∑

k

αk[dig()]kj =
∑

k

αkkδkj = αjj.
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Task 2: Multiply the cols of a matrix by a
vector

Now everyone can venture: we could compute as A %*% diag(v), but
this is a bad idea. Instead, we should do a col sweep with the
multiplication function:

R> cmult <- function(A, v) sweep(A, 2, v, `*`)

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> v <- c(2, 3)
R> cmult(A, v)

[,1] [,2]
[1,] 2 9
[2,] 4 12
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Task 2: Multiply the cols of a matrix by a
vector

Connaisseurs will now wonder: is there a more direct way without
sweeping?

Well, A is stored as

α11, α21, . . . , αm1, . . . , α1n, α2n, . . . , αmn,

but now we need

1, 1, . . . , 1, . . . , n, n, . . . , n

with each j repeated m times.

So we could do A * rep(v, each = nrow(A))!
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Task 3: Trace of the crossprod

The trace of a square matrix A = [αj] is the sum of its diagonal
elements:

trce(A) =
∑



α.

We could implement the trace of the crossprod as
sum(diag(crossprod(A))), but can we do better?

Well, we have:

trce(A′A) =
∑



[A′A]  =
∑



∑

k

[A′] k[A]k =
∑



∑

k

α2
k
,

hence we can do:

R> trace_of_crossprod <- function(A) sum(A ^ 2)
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Task 4: Vandermonde matrix and deter-
minant

The Vandermonde matrix of a sequence ξ1, . . . , ξn is

V(ξ1, . . . , ξn) =











1 ξ1 ξ2
1
· · · ξn−1

1
1 ξ2 ξ2

2
· · · ξn−12

...
...

...
. . .

...
1 ξn ξ2

n
· · · ξn−1

n











I.e.,

[V(ξ1, . . . , ξn)] j = ξ
j−1
 .

Write functions to compute the Vandermonde matrix and its
determinant.
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Task 4: Vandermonde matrix and deter-
minant

How can we compute the matrix with entries ξ
j−1
 ? Write

ξ
j−1
 = pow(ξ, j − 1)

(of course, in R pow is written as ‘^’).

Remember our good old friend outer(): for  = [ξ] and y = [ηj],

[oter(, y, ƒ )] j = ƒ (ξ, ηj).

So easily,

R> Vandermonde <- function(x) outer(x, seq_along(x) - 1, `^`)
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Task 4: Vandermonde matrix and deter-
minant

R> Vandermonde(1 : 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 2 4 8 16
[3,] 1 3 9 27 81
[4,] 1 4 16 64 256
[5,] 1 5 25 125 625

How can we compute the determinant? Simple way:

R> det(Vandermonde(1 : 5))

[1] 288
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minant

R> Vandermonde(1 : 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 2 4 8 16
[3,] 1 3 9 27 81
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Task 4: Vandermonde matrix and deter-
minant

For connaisseurs: verify first that

det(V(ξ1, . . . , ξn)) =
∏

1≤<j≤n
(ξ − ξj).

So we can do

R> Vandermonde_det <- function(x) {
+ diffs <- outer(x, x, `-`)
+ prod(diffs[upper.tri(diffs)])
+ }

Check:

R> Vandermonde_det(1 : 5)

[1] 288
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Introduction

As everyone knows from kindergarden: the n × n linear system A = b
has a unique solution iff A is invertible, in which case the unique solution
is given by  = A−1b.

In R, we can get the inverse using solve().

(Strange, not inv()? There must be a reason . . . ).
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Introduction

E.g.,

R> A <- matrix(1 : 4, 2, 2)
R> (A_inv <- solve(A))

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

R> A %*% A_inv

[,1] [,2]
[1,] 1 0
[2,] 0 1
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Introduction

So formally, we could solve the linear system A = b via literally
translating  = A−1b as

solve(A) %*% b

but do not do this!

Instead, one should use one of

solve(A, b)
qr.solve(A, b)

In the following, we illustrate why. More precisely, we review the basic
matrix decompositions and how to use these for solving linear systems.
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Introduction

To illustrate matters, we use the linear system

H6 = b

where

b = [1,2,3,4,5,6]′

and H6 is the 6 × 6 Hilbert matrix

H6 = [1/( + j − 1)]1≤,j≤6.
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Introduction

R> b <- 1 : 6
R> H <- 1 / (outer(b, b, `+`) - 1)
R> H

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000 0.16666667
[2,] 0.5000000 0.3333333 0.2500000 0.2000000 0.1666667 0.14285714
[3,] 0.3333333 0.2500000 0.2000000 0.1666667 0.1428571 0.12500000
[4,] 0.2500000 0.2000000 0.1666667 0.1428571 0.1250000 0.11111111
[5,] 0.2000000 0.1666667 0.1428571 0.1250000 0.1111111 0.10000000
[6,] 0.1666667 0.1428571 0.1250000 0.1111111 0.1000000 0.09090909
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Introduction

Compute the inverse:

R> H_inv <- solve(H)
R> H_inv

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 36 -630 3360 -7560 7560 -2772
[2,] -630 14700 -88200 211680 -220500 83160
[3,] 3360 -88200 564480 -1411200 1512000 -582120
[4,] -7560 211680 -1411200 3628800 -3969000 1552320
[5,] 7560 -220500 1512000 -3969000 4410000 -1746360
[6,] -2772 83160 -582120 1552320 -1746360 698544

Check whether it does a reasonable job:
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R> H_inv %*% H

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -1.062403e-10 -9.003998e-11 -7.804601e-11
[2,] 2.764864e-10 1.000000e+00 1.909939e-10 1.655280e-10
[3,] -1.455192e-10 -5.820766e-11 1.000000e+00 -8.003553e-11
[4,] 1.746230e-10 1.164153e-10 5.820766e-11 1.000000e+00
[5,] 2.328306e-10 2.910383e-11 8.731149e-11 8.731149e-11
[6,] -5.820766e-11 0.000000e+00 0.000000e+00 -4.365575e-11

[,5] [,6]
[1,] -6.889422e-11 -6.178880e-11
[2,] 1.418812e-10 1.246008e-10
[3,] -4.365575e-11 -4.365575e-11
[4,] 2.910383e-11 5.820766e-11
[5,] 1.000000e+00 8.731149e-11
[6,] -4.365575e-11 1.000000e+00
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Introduction

R> max(abs((H_inv %*% H) - diag(6)))

[1] 2.764864e-10

Hmm. Only up to 10 digits for a 6 × 6 matrix? This is not really
impressive.
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Introduction

Now compute “solutions” of H6 = b using the 3 indicated methods:

R> x1 <- c(H_inv %*% b)
R> ## (Use c() to obtain a dim-less vector.)
R> x2 <- solve(H, b)
R> x3 <- qr.solve(H, b)
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How close are these?

R> x1 - x2

[1] -2.787147e-09 5.567017e-09 -9.094947e-10 1.804437e-09
[5] 4.365575e-10 -2.473826e-10

R> max(abs(x1 - x2))

[1] 5.567017e-09

and compactly:

R> dist(rbind(x1, x2, x3), "maximum")

x1 x2
x2 5.567017e-09
x3 1.414525e-05 1.414568e-05
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But how “good” are the solutions?

R> b1 <- H %*% x1
R> b2 <- H %*% x2
R> b3 <- H %*% x3

Inspect the difference to b:

R> cbind(b1, b2, b3) - b

[,1] [,2] [,3]
[1,] 1.909939e-10 0.000000e+00 -3.637979e-12
[2,] 6.311893e-10 3.637979e-12 -5.456968e-12
[3,] 6.111804e-10 1.818989e-12 1.818989e-12
[4,] 5.511538e-10 0.000000e+00 -5.456968e-12
[5,] 4.893081e-10 1.818989e-12 -1.818989e-12
[6,] 4.383764e-10 2.728484e-12 -3.637979e-12
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Inspect the maximal differences:

R> apply(abs(cbind(b1, b2, b3) - b), 2, max)

[1] 6.311893e-10 3.637979e-12 5.456968e-12

So in some sense, solutions 2 and 3 are “better”, although they are
“rather different”. Strange.
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LU decomposition

The LU decomposition of a quadratic matrix A is

A = LU

where L is lower and U is upper triangular.

Not all square matrices have such a decomposition.

Why useful? Consider the linear system

A = LU = b.

This can be solved as

Ly = b, U = y.
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LU decomposition

The LU decomposition of a quadratic matrix A is

A = LU

where L is lower and U is upper triangular.

Not all square matrices have such a decomposition.

Why useful? Consider the linear system

A = LU = b.

This can be solved as

Ly = b, U = y.
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LU decomposition

So

 = U−1y = U−1L−1b

as of course

A−1 = (LU)−1 = U−1L−1.

How can we solve

Ly = b, U = y?
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LU decomposition

As L is lower triangular, Ly = b can be written as









11
21 22
...

...
. . .

n1 n2 · · · nn

















η1
η2
...
ηn









=









β1
β2
...
βn









.

Clearly, we can solve this forward: obtain η1 from the first eqn, then η2
from the second, and so on.

In R, we could do

y <- forwardsolve(L, b)
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LU decomposition

As U is upper triangular, U = y can be written as









11 12 · · · 1n
22 · · · 2n

. . .
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nn
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ξ2
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ξn









=
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η2
...
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.

Clearly, we can solve this backward: obtain ξn from the last eqn, then
ηn−1 from the last but one, and so on.

In R, we could do

x <- backsolve(U, y)
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LU decomposition

In fact, the above also shows: if L (R) is a regular lower (upper)
triangular matrix, its inverse L−1 (R−1) is lower (upper) triangular.

If we do full Gauss elimination:

A| → U|L

we compute the LU decomposition.

Interestingly, although we’ve learned to always do this by hand, one
never does this using the computer, as computing the LU decomposition
(when it exists) is numerically unstable.

In case R there is no function to compute the LU decomposition.
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QR decomposition

The QR decomposition of a quadratic matrix A is

A = QR

where Q is orthogonal and R is upper triangular.

The inverse of A can be computed as

A−1 = (QR)−1 = R−1Q−1 = R−1Q′

(remember the inverse of an orthogonal matrix is its transpose!).

Slide 76



QR decomposition

The linear system A = QR = b can be solved via the QR decomposition
as

Qy = b, R = y

via

y = Q′b,  = bcksolve(R, y).
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QR decomposition I

In R, we can compute the QR decomposition via qr(), which returns
something “strange”.

R> (H_qr <- qr(H))

$qr
[,1] [,2] [,3] [,4] [,5]

[1,] -1.2212243 -0.7018717 -0.504470316 -0.3969691267 -3.284337e-01
[2,] 0.4094252 -0.1384670 -0.151130170 -0.1443643562 -1.340082e-01
[3,] 0.2729501 0.5029231 -0.009561613 -0.0151932381 -1.813029e-02
[4,] 0.2047126 0.4674665 0.419825664 0.0004802815 9.942382e-04
[5,] 0.1637701 0.4221195 0.595589435 -0.3630074314 1.733898e-05
[6,] 0.1364751 0.3804247 0.680569302 -0.8985477890 3.663121e-01

[,6]
[1,] -2.806128e-01
[2,] -1.236690e-01
[3,] -1.953170e-02
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QR decomposition II

[4,] 1.419101e-03
[5,] 4.403070e-05
[6,] 3.986241e-07

$rank
[1] 6

$qraux
[1] 1.818850e+00 1.453471e+00 1.076453e+00 1.246653e+00 1.930492e+00
[6] 3.986070e-07

$pivot
[1] 1 2 3 4 5 6

attr(,"class")
[1] "qr"
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QR decomposition

The upper triangle contains the R of the decomposition and the lower
triangle contains information on the Q of the decomposition, stored in
compact form.

The Q and R can be retrieved using qr.Q() and qr.R(), respectively.

R> Q <- qr.Q(H_qr)
R> R <- qr.R(H_qr)

We can then verify that Q is orthogonal and R is upper triangular:
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QR decomposition

R> crossprod(Q)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 7.632783e-17 2.775558e-17 -2.775558e-17
[2,] 7.632783e-17 1.000000e+00 1.387779e-16 2.775558e-17
[3,] 2.775558e-17 1.387779e-16 1.000000e+00 -1.110223e-16
[4,] -2.775558e-17 2.775558e-17 -1.110223e-16 1.000000e+00
[5,] 0.000000e+00 -5.551115e-17 -8.326673e-17 -1.665335e-16
[6,] 6.938894e-18 1.387779e-17 0.000000e+00 1.110223e-16

[,5] [,6]
[1,] 0.000000e+00 6.938894e-18
[2,] -5.551115e-17 1.387779e-17
[3,] -8.326673e-17 0.000000e+00
[4,] -1.665335e-16 1.110223e-16
[5,] 1.000000e+00 2.775558e-17
[6,] 2.775558e-17 1.000000e+00
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QR decomposition

R> R

[,1] [,2] [,3] [,4] [,5]
[1,] -1.221224 -0.7018717 -0.504470316 -0.3969691267 -3.284337e-01
[2,] 0.000000 -0.1384670 -0.151130170 -0.1443643562 -1.340082e-01
[3,] 0.000000 0.0000000 -0.009561613 -0.0151932381 -1.813029e-02
[4,] 0.000000 0.0000000 0.000000000 0.0004802815 9.942382e-04
[5,] 0.000000 0.0000000 0.000000000 0.0000000000 1.733898e-05
[6,] 0.000000 0.0000000 0.000000000 0.0000000000 0.000000e+00

[,6]
[1,] -2.806128e-01
[2,] -1.236690e-01
[3,] -1.953170e-02
[4,] 1.419101e-03
[5,] 4.403070e-05
[6,] 3.986241e-07
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QR decomposition

How well can we recover H6 from its QR decomposition?

R> max(abs((Q %*% R) - H))

[1] 2.220446e-16

(not bad).
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QR decomposition

To solve H6 = b using the QR decomposition “by hand”, we can do

R> x3a <- c(backsolve(R, crossprod(Q, b)))
R> ## Compare to result of qr.solve():
R> x3a - x3

[1] 2.904699e-11 -1.182343e-10 6.839400e-10 -1.746230e-09
[5] 1.833541e-09 -6.839400e-10

It is more correct to compute Q′b in one step:

R> x3a <- c(backsolve(R, qr.qty(H_qr, b)))
R> ## Compare to result of qr.solve():
R> x3a - x3

[1] 0 0 0 0 0 0

So this is what qr.solve() does.
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QR decomposition

How can we find the (absolute value) of the determinant of a matrix
from its QR decomposition?

Clearly.

det(A) = det(Q)det(R)

where det(Q) = ±1 and det(R) is the product of the diagonal elements
of R.

Hence, |det(A)| is

prod(dig(R))

which is rather close to zero (so H6 is close to singular)!
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QR decomposition

How can we find the (absolute value) of the determinant of a matrix
from its QR decomposition?

Clearly.

det(A) = det(Q)det(R)

where det(Q) = ±1 and det(R) is the product of the diagonal elements
of R.

Hence, |det(A)| is
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which is rather close to zero (so H6 is close to singular)!
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Singular value decomposition (SVD)

The SVD of a quadratic matrix is

A = UDV′,

where U and V are orthogonal and D = dig(σ1, . . . , σn) is diagonal with
non-negative entries.

Note 1: the SVD also works for rectangular m × n matrices. In this cases
D is “rectangular diagonal”.

Note 2: the SVD also works for complex matrices. In this case U and V
are unitary.

Note 3: If A has rank r, there is also the compact SVD A = UrDrV′r , where
Ur is m × r, Dr is r × r diagonal, and Vr is n × r, with U′

r
Ur = V′

r
Vr = r.
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The SVD of a quadratic matrix is
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Singular value decomposition (SVD)

Let us first understand the SVD.

As U′U = , we have

A′A = (UDV′)′UDV′ = VDU′UDV′ = VD2V′

where D2 = D ·D = dig(σ2
1
, . . . , σ2

n
).

Thus,

A′AV = VD2V′V = VD2.
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Singular value decomposition (SVD)

Write j for the j-th column of V. Then

A′AV = A′A[1, . . . , n] = [A′A1, . . . , A′An]

and

VD2 = [1, . . . , n] dig(σ21 , . . . , σ
2
n
) = [σ2

1
1, . . . , σ

2
n
n].

Putting together, for all j

A′Aj = σ2
j
j.

I.e., the columns j of V are the eigenvectors of A′A, and the singular
values σ2

j
the corresponding eigenvalues.
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Singular value decomposition (SVD)

Similarly,

AA′ = UDV′(UDV′)′ = UDV′VDU′ = UD2U′

so that

AA′U = UD2U′U = UD2.

Thus, writing j for the j-th column of U, we have

AA′j = σ2
j
j

so that the j are the eigenvectors of AA′ and the σ2
j

the corresponding

eigenvalues.

Slide 90



Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.

If D is diagonal,  7→ D performs coordinate scaling.

Hence, if A has SVD UDV′,

 7→ A = UDV′

factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.
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Singular value decomposition (SVD)

What is the geometric interpretation of the SVD?

If U is orthogonal,  7→ U performs a rotation.
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Hence, if A has SVD UDV′,
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factors the linear transformation corresponding to A into a rotation, a
scaling, and another rotation.
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Singular value decomposition (SVD)

In R, we can compute the SVD via svd(), which returns things “as
expected”:

R> H_svd <- svd(H)
R> typeof(H_svd)

[1] "list"

R> length(H_svd)

[1] 3

R> names(H_svd)

[1] "d" "u" "v"
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Singular value decomposition (SVD) I

R> H_svd

$d
[1] 1.618900e+00 2.423609e-01 1.632152e-02 6.157484e-04 1.257076e-05
[6] 1.082799e-07

$u
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]
[1,] -0.001248194

Slide 93



Singular value decomposition (SVD) II

[2,] 0.035606643
[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453

$v
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]
[1,] -0.001248194
[2,] 0.035606643
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Singular value decomposition (SVD) III

[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453
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Singular value decomposition (SVD)

Extract the elements of the SVD:

R> U <- H_svd$u
R> s <- H_svd$d
R> V <- H_svd$v

Verify that U and V are orthogonal:
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Singular value decomposition (SVD)

R> crossprod(U)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -8.326673e-17 8.326673e-17 0.000000e+00
[2,] -8.326673e-17 1.000000e+00 -2.775558e-17 0.000000e+00
[3,] 8.326673e-17 -2.775558e-17 1.000000e+00 -1.665335e-16
[4,] 0.000000e+00 0.000000e+00 -1.665335e-16 1.000000e+00
[5,] -1.387779e-17 8.326673e-17 2.498002e-16 1.665335e-16
[6,] 2.081668e-17 4.163336e-17 -5.551115e-17 5.551115e-17

[,5] [,6]
[1,] -1.387779e-17 2.081668e-17
[2,] 8.326673e-17 4.163336e-17
[3,] 2.498002e-16 -5.551115e-17
[4,] 1.665335e-16 5.551115e-17
[5,] 1.000000e+00 -4.163336e-17
[6,] -4.163336e-17 1.000000e+00
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Singular value decomposition (SVD)

R> crossprod(V)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 2.914335e-16 -2.914335e-16 1.387779e-17
[2,] 2.914335e-16 1.000000e+00 -2.775558e-16 -1.110223e-16
[3,] -2.914335e-16 -2.775558e-16 1.000000e+00 -1.110223e-16
[4,] 1.387779e-17 -1.110223e-16 -1.110223e-16 1.000000e+00
[5,] 1.387779e-17 -2.775558e-17 -1.665335e-16 8.326673e-17
[6,] 6.938894e-18 1.387779e-17 2.775558e-17 -2.220446e-16

[,5] [,6]
[1,] 1.387779e-17 6.938894e-18
[2,] -2.775558e-17 1.387779e-17
[3,] -1.665335e-16 2.775558e-17
[4,] 8.326673e-17 -2.220446e-16
[5,] 1.000000e+00 1.387779e-17
[6,] 1.387779e-17 1.000000e+00
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Singular value decomposition (SVD)

More compactly,

R> max(abs(crossprod(U) - diag(6)))

[1] 5.551115e-16

R> max(abs(crossprod(V) - diag(6)))

[1] 1.110223e-15
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Singular value decomposition (SVD)

How well can H6 be recovered from its SVD?

Note that

Udig(s)V′ = cmlt(U, s) · V′ = tcrossprod(cmlt(U, s), V).

Numerically,

R> max(abs(tcrossprod(cmult(U, s), V) - H))

[1] 2.220446e-16

which is quite impressive!
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Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101



Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101



Singular value decomposition (SVD)

If A is regular with SVD A = UDV′, its inverse is given by

A−1 = (UDV′)−1 = (V′)−1D−1U−1 = VD−1U′

where D−1 = dig(1/σ1, . . . ,1/σn).

Geometrically, this makes perfect sense: to invert, need to invert the
rotation by U, then the scaling by D, and finally the rotation by V′.

Writing D = dig(s), to compute

VD−1U′b = V dig(1/s)U′b

we can do

cmlt(V,1/s) · crossprod(U,b).

Slide 101



Singular value decomposition (SVD)

To solve H6 = b via the SVD, we can thus do

R> x4 <- cmult(V, 1 / s) %*% crossprod(U, b)
R> b4 <- H %*% x4
R> b4 - b

[,1]
[1,] 1.091394e-11
[2,] 5.456968e-12
[3,] 5.456968e-12
[4,] 5.456968e-12
[5,] 3.637979e-12
[6,] -1.818989e-12

Again, very impressive.
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Singular value decomposition (SVD)

Finally, clearly

det(A) = det(U)det(D)det(V′) = ± det(D) = ±
∏

j

σj.

In our case, this gives |det(H6)| as

R> prod(s)

[1] 5.3673e-18

(again, very small).
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Eigendecomposition

The eigendecomposition (or spectral decomposition) of a symmetric
square matrix A is

A = UDU′

where U is orthogonal and D = dig(δ1, . . . , δn) is diagonal.

Then

AU = UDU′U = UD

so writing j for the j-the column of U,

Aj = δjj.

I.e., the j are the eigenvectors of A, and the δj the corresponding
eigenvalues.
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Eigendecomposition

Note that the eigendecomposition can only work for symmetric A:

(UDU′)′ = (U′)′D′U′ = UDU′.

Note that for symmetric matrices, the eigendecomposition is “like the
SVD”, but not quite the same: taking V = U no longer allows to fix the
signs of the elements in the diagonal matrix!
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Eigendecomposition

Geometric interpretation: if A has eigendecomposition A = UDU′, then

 7→ UDU′

perform rotation (by U′), scaling, and inverse rotation.

Clearly,

A2 = UDU′UDU′ = UD2U′

and generally,

Ak = UDkU′

where Dk = dig(δk
1
, . . . , δk

n
).
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Eigendecomposition

In R, we can compute the eigendecomposition via eigen(), which again
returns things “as expected”:

R> H_eigen <- eigen(H)
R> typeof(H_eigen)

[1] "list"

R> length(H_eigen)

[1] 2

R> names(H_eigen)

[1] "values" "vectors"
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Eigendecomposition I

R> H_eigen

eigen() decomposition
$values
[1] 1.618900e+00 2.423609e-01 1.632152e-02 6.157484e-04 1.257076e-05
[6] 1.082799e-07

$vectors
[,1] [,2] [,3] [,4] [,5]

[1,] -0.7487192 0.6145448 -0.2403254 -0.06222659 0.01114432
[2,] -0.4407175 -0.2110825 0.6976514 0.49083921 -0.17973276
[3,] -0.3206969 -0.3658936 0.2313894 -0.53547692 0.60421221
[4,] -0.2543114 -0.3947068 -0.1328632 -0.41703769 -0.44357472
[5,] -0.2115308 -0.3881904 -0.3627149 0.04703402 -0.44153664
[6,] -0.1814430 -0.3706959 -0.5027629 0.54068156 0.45911482

[,6]
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Eigendecomposition II

[1,] -0.001248194
[2,] 0.035606643
[3,] -0.240679080
[4,] 0.625460387
[5,] -0.689807199
[6,] 0.271605453
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Eigendecomposition

Extract the elements of the eigendecomposition:

R> U <- H_eigen$vectors
R> d <- H_eigen$values

Verify that U is orthogonal:

R> max(abs(crossprod(U) - diag(6)))

[1] 4.996004e-16
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Eigendecomposition

How well can H6 be recovered from its eigendecomposition?

As before,

R> max(abs(tcrossprod(cmult(U, d), U) - H))

[1] 6.661338e-16

Slide 112



Eigendecomposition

If A is regular with eigendecomposition A = UDU′, its inverse is given by

A−1 = (UDU′)−1 = (U′)−1D−1U−1 = UD−1U′

where D−1 = dig(1/δ1, . . . ,1/δn).

Geometrically: rotate, invert the scaling, rotate back.
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Eigendecomposition

As for the SVD, we can thus solve via eigendecomposition as

R> x5 <- cmult(U, 1 / d) %*% crossprod(U, b)
R> b5 <- H %*% x5
R> b5 - b

[,1]
[1,] -3.637979e-12
[2,] 3.637979e-12
[3,] -3.637979e-12
[4,] 1.818989e-12
[5,] -1.818989e-12
[6,] 0.000000e+00

(Of course, we get the same as for the SVD.)
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Eigendecomposition

Finally, clearly

det(A) = det(U)det(D)det(U′) = det(D) =
∏

j

δj

In our case, this gives det(H6) as

R> prod(d)

[1] 5.3673e-18

Did we already point out that this rather small?
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Choleski decomposition

The Choleski decomposition of a non-negative definite symmetric
square matrix A is

A = LL′

where L is lower triangular.

Equivalently (as used by R),

A = R′R

where R is upper triangular.

Note: named after the French military officer and mathematician
André-Louis Cholesky (Wikipedia writes a ‘y’ at the end, the R docs write
‘i’).
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Choleski decomposition

Note that the Choleski decomposition can only work for non-negative
definite symmetric matrices:

A = R′R⇒ A′ = (R′R)′ = R′(R′)′ = R′R = A

and

′A = ′R′R = (R)′(R) = ∥R∥2
2
≥ 0.
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Choleski decomposition

In R, we can compute the Choleski decomposition/factor using chol():

R> (R <- chol(H))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0.5000000 0.3333333 0.25000000 0.200000000 0.166666667
[2,] 0 0.2886751 0.2886751 0.25980762 0.230940108 0.206196525
[3,] 0 0.0000000 0.0745356 0.11180340 0.127775313 0.133099284
[4,] 0 0.0000000 0.0000000 0.01889822 0.037796447 0.052495066
[5,] 0 0.0000000 0.0000000 0.00000000 0.004761905 0.011904762
[6,] 0 0.0000000 0.0000000 0.00000000 0.000000000 0.001196474
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Choleski decomposition

How well can we recover H6 from its Choleski factor?

R> crossprod(R) - H

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 0 0 0 0 0
[5,] 0 0 0 0 0 0
[6,] 0 0 0 0 0 0
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Choleski decomposition

The linear system A = R′R = b can be solved via the Choleski
decomposition as

R′y = b, R = y

via

bcksolve(R, forwrdsolve(R′, b)).
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Choleski decomposition

To solve H6 = b via the Choleski decomposition, we can thus do

R> x6 <- backsolve(R, forwardsolve(t(R), b))
R> b6 <- H %*% x6
R> b6 - b

[,1]
[1,] 1.818989e-12
[2,] 1.091394e-11
[3,] 5.456968e-12
[4,] 1.818989e-12
[5,] -1.818989e-12
[6,] 2.728484e-12
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Choleski decomposition

Finally, what about the determinant?

det(A) = det(R′R) = det(R′)det(R) = det(R)2 = (prod(dig(R)))2.

In our case, this gives det(H6) as

R> prod(diag(R)) ^ 2

[1] 5.3673e-18

Slide 123



Outline

■ Matrix basics

■ Matrix decompositions and linear systems
■ Introduction

■ LU decomposition

■ QR decomposition

■ Singular value decomposition (SVD)

■ Eigendecomposition

■ Choleski decomposition

■ Summary

Slide 124



Summary

The solutions we obtained were rather different:

R> dist(t(cbind(x1, x2, x3, x4, x5, x6)), "maximum")

x1 x2 x3
x2 5.567017e-09
x3 1.414525e-05 1.414568e-05

1.146636e-05 1.146679e-05 2.678891e-06
2.000082e-05 2.000039e-05 3.414607e-05 3.146718e-05

x6 8.379517e-06 8.379080e-06 2.252476e-05 1.984587e-05 1.162131e-05
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Summary

Qualitatively, the “straightforward” translation of A−1b works worst:

R> apply(abs(cbind(b1, b2, b3, b4, b5, b6) - b), 2, max)

[1] 6.311893e-10 3.637979e-12 5.456968e-12 1.091394e-11 3.637979e-12
[6] 1.091394e-11

Interestingly, for a simple 6 × 6 system with apparently an all-integer
solution the solutions are “not too good”:

R> X <- cbind(x1, x2, x3, x4, x5, x6)
R> apply(abs(X - round(X)), 2, max)

x1 x2 x3
2.104789e-05 2.104833e-05 6.902643e-06 9.581534e-06 4.104871e-05

x6
2.942741e-05

Slide 126



Summary

How come?

Well, we repeatedly showed that det(H6) ≈ 10−18. So, in some sense, H6

is “close to singular”, which has consequences.

Intuitively, the closer the det is to zero, the closer to singular.

Mathematically, what matters (most) is how “well-conditioned” a linear
system is, which can be measured by its condition number.

See the homeworks.
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