
Statistics I Exercises

1. The general n× n Hilbert matrix has element (i, j) given by 1/(i+ j − 1).

(a) Write a function which gives the n × n Hilbert matrix as its output, for any positive
integer n.

(b) Are all of the Hilbert matrices invertible?

(c) Use solve() and qr.solve() to compute the inverse of Hilbert matrices for n = 1 to
10. Is there a problem?

2. Let (x1, x2, x3, x4, x5, x6) = (10, 11, 12, 13, 14, 15). Find the coefficients of the quintic poly-
nomial p(x) for which (p(x1), p(x2), p(x3), p(x4), p(x5), p(x6)) = (25, 16, 26, 19, 21, 20). Hint:
the quintic polynomial p(x) = a1+a2x+a3x

2+a4x
3+a5x

4+a6x
5 can be viewed as the matrix

product of the row vector [1, x, x2, x3, x4, x5] with the column vector [a1, a2, a3, a4, a5, a6]
′.

Work out the matrix version of this to give [p(x1), p(x2), p(x3), p(x4), p(x5), p(x6)]
′.

3. Create a 5 × 3 matrix X with elements drawn randomly from the uniform distribution on
[0, 1].

(a) Calculate H = X(X ′X)−1X ′ and the eigenvalues and eigenvectors if H.

(b) Calculate the trace of H, and compare with the sum of the eigenvalues.

(c) Calculate the determinant of H, and compare with the product of the eigenvalues.

(d) Verify that the columns of X are eigenvectors of H. What are the corresponding
eigenvalues?

4. Obtain the 6 × 6 Hilbert matrix, and compute its eigenvalues and eigenvectors. Compute
the inverse of the matrix. Is there a relation between the eigenvalues of the inverse and the
eigenvalues of the original matrix? Is there supposed to be a relationship?

5. Consider the following circulant matrix:

P =


0.1 0.2 0.3 0.4
0.4 0.1 0.2 0.3
0.3 0.4 0.1 0.2
0.2 0.3 0.4 0.1


(a) P is an example of a stochastic matrix. Verify that the row sums add to one.

(b) Compute Pn for n = 2, 3, 5, 10. Is a pattern emerging?

(c) Find a non-negative vector x whose elements sum to one and which satisfies P ′x = x.
Do you see any connection between P 10 and x?

6. Consider the following matrix:

P =



0.1 0.2 0.3 0.4 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.1 0.4
0.2 0.2 0.2 0.2 0.2 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0
0.3 0.3 0.3 0.1 0.0 0.0 0.0


(a) P is an example of a stochastic matrix. Verify that the row sums add to one.

(b) Compute Pn for n = 2, 3, 5, 10. Is a pattern emerging?
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(c) Find a non-negative vector x whose elements sum to one and which satisfies P ′x = x.
Do you see any connection between P 10 and x?

7. Let P be a permutation matrix. Show that P−1 = P ′ and that P can be expressed as a
product of pairwise interchanges.

8. How would you solve a partitioned linear system of the form[
L1 O
B L2

] [
x
y

]
=

[
b
c

]
where L1 and L2 are non-singular lower triangular matrices, and the solution and right-hand
side are partitioned accordingly?

9. Given an n-vector a, we can annihilate all of its entries below the kth position, provided
that αk ̸= 0, by the following transformation:

Mka =



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −µk+1 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · −µn 0 · · · 1





α1

...
αk

αk+1

...
αn


=



α1

...
αk

0
...
0


where µi = αi/αk, i = k + 1, . . . , n. The divisor αk is called the pivot; a matrix of the form
of Mk is called an elementary transformation matrix.

Establish the following properties of such matrices.

(a) Mk is a lower triangular matrix with unit main diagonal, and hence non-singular.

(b) Mk = I −mke
′
k, where mk = [0, . . . , 0, µk+1, . . . , µn]

′ and ek is the k-th Cartesian unit
vector.

(c) M−1
k = I +mke

′
k, which mean that M−1

k = Lk is the same as Mk except that the signs
of the multipliers are reversed.

(d) If Ml, l > k is another elementary elimination matrix with ml its vector of multipliers,
then

MkMl = I −mke
′
k −mle

′
l.

10. Prove that the matrix

A =

[
0 1
1 0

]
has no LU factorization, i.e., that there are no lower triangular matrix L and upper triangular
matrix U such that A = LU .

11. Show that an n× n matrix A has rank one if and only if there are non-zero n-vectors u and
v such that A = uv′.

12. An n×n matrix A is said to be elementary if it differs from the identity matrix by a matrix
of rank one, i.e., if A = I − uv′ for some non-zero n-vectors u and v.

(a) If A is elementary, what condition on u and v ensures that A is non-singular?

(b) If A is elementary and non-singular, prove that A−1 is also elementary by showing that
A−1 = I −σuv′ for some scalar σ. What is the specific value of σ, in terms of u and v?
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(c) Are elementary elimination matrices elementary? If so, what are u, v and σ in this
case?

13. Prove the Sherman-Morrison formula

(A− uv′)−1 = A−1 +A−1u(1− v′A−1u)−1v′A−1.

Hint : Multiply both sides by A− uv′.

14. Prove the Woodbury formula

(A− UV ′)−1 = A−1 +A−1U(I − V ′A−1U)−1V ′A−1.

Hint : Multiply both sides by A− UV ′.

15. Suppose the symmetric matrix

B =

[
α a′

a A

]
of order n+ 1 is positive definite.

(a) Show that the scalar α must be positive and that n × n matrix A must be positive
definite.

(b) What is the Choleski factorization of B in terms of its constituent sub-matrices?

16. Suppose the symmetric matrix

B =

[
A a
a′ α

]
of order n+ 1 is positive definite.

(a) Show that the scalar α must be positive and that n × n matrix A must be positive
definite.

(b) What is the Choleski factorization of B in terms of its constituent sub-matrices?

17. Use Gaussian elimination without pivoting to solve the linear system

A(ϵ)x(ϵ) = b(ϵ), A(ϵ) =

[
ϵ 1
1 1

]
, b(ϵ) =

[
1 + ϵ
2

]
for ϵ = 10−2k, k = 1, . . . , 10. I.e., perform one elimination step using the elementary
elimination matrix

M(ϵ) =

[
1

−1/ϵ 1

]
and then backsolve the resulting system M(ϵ)A(ϵ)x =M(ϵ)b(ϵ).

Clearly, the exact solution x(ϵ) is [1, 1]′, independently of the value of ϵ. How does the
accuracy of the computed solution behave as the value of ϵ decreases?

18. The 2-norm of a matrix A is defined as

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

.

How can ∥ · ∥2 be expressed in terms of the singular values of A? Implement ∥ · ∥2.
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19. The condition number of a regular square matrix A is defined as κ(A) = ∥A∥∥A−1∥. If the
2-norm is used, how can κ be expressed in terms of the singular values of A? Implement κ.

20. Consider a linear system Ax = b for a regular matrix A. We are interested in estimating the
effect of changes in the rhs b on the solutions x. Show that the relative error in x does not
exceed the relative error in b multiplied by the condition number of A, i.e.,

∥∆x∥
∥x∥

≤ κ(A)
∥∆b∥
∥b∥

where ∆b and ∆x are the changes in b and x, respectively. (The bound is rather pessimistic.)
(Hint: note that ∆x = A−1∆b and ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥.)

21. Consider the linear system[
1 1 + ϵ

1− ϵ 1

]
x =

[
1 + ϵ+ ϵ2

1

]
where ϵ is a small parameter. The exact solution is obviously given by x = [1, ϵ]′. Experiment
with available methods for solving linear systems and ϵ small (especially near the square root
of the machine precision). How does the accuracy obtained for each component compare
with expectations based on the condition number of the matrix?

22. Suppose the n× n matrix A has the block upper triangular form

A =

[
A11 A12

O A22

]
where A11 is k × k and A22 is (n− k)× (n− k).

(a) If λ is an eigenvalue of A11, show that it is also an eigenvalue of A. (Hint : let u be the
corresponding eigenvector if A11, and determine an (n − k)-vector v such that [u′, v′]′

is an eigenvector of A with eigenvalue λ.)

(b) If λ is an eigenvalue of A22 (but not of A11), show that it is also an eigenvalue of A.

(c) If λ is an eigenvalue of A with corresponding eigenvector [u′, v′]′ where u is a k-vector,
show that λ is an eigenvalue of A11 with corresponding eigenvector u or an eigenvalue
of A22 with corresponding eigenvector v.

(d) Conclude that λ is an eigenvalue of A if and only if it is an eigenvalue of either A11 or
A22.

23. Let A be an n× n matrix of rank one so that A = uv′ for non-zero n-vectors u and v.

(a) Show that u′v is an eigenvalue of A.

(b) What are the other eigenvalues of A?

(c) What is the singular value decomposition of A?

(d) Consider the power iteration xk = Axk−1. How many iterations are required so that
xk exactly becomes an eigenvector corresponding to the dominant eigenvalue u′v of A?

24. Show that for two n-vectors u and v, det(I + uv′) = 1 + u′v.

25. What are the eigenvalues of the Householder transformation

H = I − 2
vv′

v′v

where v is a non-zero n-vector? What is the geometric interpretation of H?
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26. A singular matrix must have a zero eigenvalue, but must a nearly singular matrix have a
“small” eigenvalue? Consider a matrix of the form

1 −1 −1 −1 −1
1 −1 −1 −1

1 −1 −1
1 −1

1


whose eigenvalues are obviously all ones. Compute the singular value decomposition of such
a matrix for various dimensions. How does the ratio σmax/σmin grow as the order of the
matrix grows?

27. The matrix

C =


0 0 · · · 0 −γ0
1 0 · · · 0 −γ1
0 1 · · · 0 −γ2
...

...
. . .

...
...

0 0 · · · 1 −γn−1


is called the companion matrix of the polynomial p(z) = γ0 + γ1z + · · · + γn−1z

n−1 + zn.
Show that (−1)np(z) is the characteristic polynomial det(C − zI) of its companion matrix.

Specifically, consider the polynomial

p(z) = 24− 40z + 35z2 − 13z3 + z4.

Compute all its roots by forming the companion matrix and determining its eigenvalues.

28. How can the singular value decomposition A = UDV ′ of an m × n matrix A be used to
obtain orthonormal bases for the range of A (the set {Ax : x ∈ Rn}) and the null space of
A (the set {x ∈ Rn : Ax = 0}?
Implement two R functions for computing these bases. For this, you will need to determine
which singular values are “numerically zero”: a common criterion is to test whether singular
values are less than σ1 max(m,n)ϵ for a given tolerance ϵ (e.g., .Machine$double.eps).

29. The “vec” operator stacks the columns of a matrix one underneath the other. I.e., if A = [αij ],
then

vec(A) = (α11, . . . , αm1, α12, . . . , αm2, . . . , α1n, . . . , αmn).

Implement vec.

30. For symmetric matrices, e.g. the supradiagonal elements are redundant. The “vech” operator
extracts the non-supradiagonal elements of an n× n matrix A as follows:

vech(A) = (α11, . . . , αn1, α22, . . . , αn2, . . . , αnn).

Implement vech.

31. The duplication matrix Dn is defined as the unique matrix satisfying

Dnvech(A) = vec(A)

for all symmetric n × n matrices A, and can be used to recover a symmetric A from its
non-redundant vech elements. Write a function returning Dn for given n.

32. Investigate the singular values of the duplication matrix Dn.
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33. The elimination matrix Ln is the unique matrix satisfying

Lnvec(A) = vech(A)

for all n× n matrices A. Write a function returning Ln for given n.

34. What is the singular value decomposition of Ln?

35. Let A be an arbitrary m×n matrix. Clearly, vec(A) and vec(A′) contain the same elements,
but arranged in different order. Hence, there exists a unique mn × mn matrix Kmn, the
commutation matrix, for which

Kmnvec(A) = vec(A′).

Write a function returning Kmn for given m and n.

36. Investigate the singular values of the commutation matrix Kmn.

37. How can the generalized inverse (Moore-Penrose inverse) of a matrix A be expressed in terms
of its singular value decomposition A = UDV ′? Implement the Moore-Penrose inverse,
providing a tolerance parameter tol controlling when singular values are regarded as zero.

38. Write an efficient function wcptrace computing trace(A′diag(w)A) for given A and w.

39. The density of the multivariate normal distribution with mean m and regular covariance
matrix V is given by

det(2πV )−1/2 exp(−(x−m)′V −1(x−m)/2).

Write a computationally efficient function dmvnorm computing the density for a given ma-
trix x containing the points as its rows, m and V. (E.g., try exploiting the potential of the
eigendecomposition of V .)

40. This problem concerns the computation in R of the square root of a symmetric non-negative-
definite square matrix.

Write a function, call it msqrt, with argument A which: Checks that A is a square matrix,
is symmetric and diagonalizes the matrix by computing the eigenvalues and the matrix of
the eigenvectors (hint: eigen). Return a symmetric matrix of the same size as A, with the
same eigenvectors, the eigenvalue corresponding to a given eigenvector being the square root
of the corresponding eigenvalues of A. The matrix returned is called the square root of the
matrix A and will be denoted by A1/2.

41. If X has a multivariate normal distribution with mean mX and covariance matrix ΣX ,
the linearly transformed Y = AX + b has a multivariate normal distribution with mean
mY = AmX +b and covariance matrix ΣY = AΣXA

′. Use this result to obtain an algorithm
for sampling from a multivariate normal distribution with parameters m and Σ based on
independent, identically distributed samples from the (univariate) standard normal distri-
bution (as obtained from rnorm), using (a) the eigendecomposition of Σ or (b) the Choleski
decomposition of Σ. Write a function rmvnorm for generating n random points (collected in a
matrix with n rows) from the multivariate normal distribution with mean m and covariance
matrix Σ for given n, m and Σ.

42. Suppose X is a d-dimensional random vector with standardized margins (i.e., zero mean
and unit variance) and an equicorrelation matrix, i.e, cor(Xi, Xj) = ρ for i ̸= j. Then
cov(X) = ρ1d1

′
d + (1− ρ)Id, where 1d is a d-dimensional vector of ones. Assume that ρ > 0.
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(a) Suppose that Y is a standardized scalar random variable independent of X. Write

F =

√
ρ

1 + ρ(d− 1)

d∑
j=1

Xj +

√
1− ρ

1 + ρ(d− 1)
Y, ϵi = Xi −

√
ρF.

so that Xi =
√
ρF + ϵi. Show that F, ϵ1, . . . , ϵd have zero means and are mutually

uncorrelated with var(F ) = 1 and var(ϵi) = 1− ρ.

(b) Suppose that X is Gaussian. Show that we have the one-dimensional factor model

Xi =
√
ρF +

√
1− ρZi,

where F,Z1, . . . , Zd are i.i.d. standard normal. Use this model to write a function
for generating n random points in Rd (collected in a matrix with n rows) from a d-
dimensional standard normal distribution with common correlation ρ, without using
matrix decompositions.

43. A d-dimensional random vector X has a (multivariate) normal variance mixture distribution
if

X =d m+
√
WAZ,

where for some k

(a) Z ∼ Nk(0, Ik);

(b) W is a non-negative, scalar-valued random variable which is independent of Z;

(c) A ∈ Rd×k and m ∈ Rd are a matrix and a vector of constants, respectively

(and =d denotes equality in distribution). Show that if W has finite expectation, then

E(X) = m, cov(X) = E(W )Σ, Σ = AA′.

Note that the distribution of X depends on A only via Σ.

If W has an inverse Gamma distribution with parameters ν/2 and ν/2, which is equivalent
to saying that ν/W has a chi-squared distribution with ν degrees of freedom, then X has
a multivariate t distribution td(ν,m,Σ) with parameters ν (degrees of freedom), m (mean)
and Σ (dispersion). Show that if ν > 2,

E(X) = m, cov(X) =
ν

ν − 2
Σ

(so that Σ is not the covariance matrix of X).

Write a function rmvt for generating n random points (collected in a matrix with n rows)
from the multivariate t distribution with parameters ν, m and Σ. Test your implementation
for some d > 1 for ν = 4 and 13, m = 0 and Σ having diagonal entries one and off-diagonal
entries ρ = 0.3, e.g., using Q-Q plots for the marginal distributions and comparing empirical
and theoretical first and second moments.

(Note that if d = k = 1, m = µ and A = σ > 0, we obtain X = µ+ σ
√
WZ, i.e., a location-

scale family for the “standard” variance mixture
√
WZ (which is the standard univariate

Student t distribution with ν degrees of freedom in the t case).)

44. Let −1 < ρ < 1.

First suppose that (X1, X2) has a bivariate standard normal distribution with correlation ρ.
Show that

X2|X1 = x ∼ N(ρx, 1− ρ2)
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and use this to show that

lim
x→−∞

P(X2 ≤ x|X1 = x) = 0

(i.e., extreme events occur independently).

Now suppose that (X1, X2) has a bivariate t distribution t2(ν, 0, P ) where P is a correlation
matrix with off-diagonal element ρ. One can show that conditional on X1 = x,√

ν + 1

ν + x2
X2 − ρx√
1− ρ2

has a standard univariate t distribution with ν+1 degrees of freedom. Use this to determine
limx→−∞ P(X2 ≤ x|X1 = x) (which is non-zero, so there is extreme tail dependence).

45. The goal of this problem is to prove rigorously a couple of useful formulae for normal random
variables.

(a) Show that if Z ∼ N(0, 1), then for all β and functions f ,

E(f(Z)eβZ) = eβ
2/2E(f(Z + β)),

(provided that the integrals exist), and use this formula to recover the well known fact

E(eX) = eµ+σ2/2,

whenever X ∼ N(µ, σ2).

(b) We now assume that X and Y are jointly-normal mean-zero random variables and that
h is any function. Prove that:

E(eXh(Y )) = E(eX)E(h(Y + cov(X,Y ))).

π 46. The purpose of this exercise is to investigate the minimally and maximally possible corre-
lations ρmin and ρmax, respectively, of log-normal random variables (i.e., random variables
whose logarithms are normally distributed).

Let (X1, X2) have a bivariate normal distribution with zero means, variances 1 and σ2, and
correlation ρ.

(a) Construct a regularly spaced grid of 100 σ2 values from 0.1 to 20, and a regularly spaced
grid of 21 ρ values from −1 to 1. For each pair (σ2, ρ), generate a sample of size n = 500
from the above bivariate normal, and compute the sample correlation of exp(X1) and
exp(X2). Produce a scatterplot of the sample correlations against the σ2 values used
for obtaining them. What can you see?

(b) Now prove theoretically that

ρmin(σ) =
e−σ − 1√

(e− 1)(eσ2 − 1)
, ρmax(σ) =

eσ − 1√
(e− 1)(eσ2 − 1)

,

and that limσ→∞ ρmin(σ) = limσ→∞ ρmax(σ) = 0, and compare the exact and simu-
lated bounds. (Hint: use the moment generating function of the multivariate normal
distribution.)

47. Generate 1000 uniform pseudorandom variates using runif(), and assign them to vector U,
using an initial seed of 19908.

(a) Compute the average, variance and standard deviation of the values.
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(b) Compare the results with the true mean, variance and standard deviations.
(c) Compute the proportion of the values of U that are less than 0.6, and compare with the

probability that a uniform random variable U is less than 0.6.

48. Simulate 10 000 values of a Uniform(0, 1) random variable U1 using runif(), and another
10 000 values of a Uniform(0, 1) random variable U2. Assign these to U1 and U2, respectively.
Since the values in U1 and U2 are approximately independent, we can view U1 and U2 as
independent Uniform(0, 1) random variables.

(a) Estimate E(U1 + U2). Compare with the true value, and compare with an estimate of
E(U1) + E(U2).

(b) Estimate var(U1 + U2) and var(U1) + var(U2). Are they equal? Should the true values
be equal?

(c) Estimate P(U1 + U2 ≤ 1.5).
(d) Estimate P(

√
U1 +

√
U2 ≤ 1.5).

49. Suppose U1, U2 and U3 are independent uniform random variables on the interval (0, 1). Use
simulation to estimate the following quantities:

(a) E(U1 + U2 + U3).
(b) var(U1 + U2 + U3) and var(U1) + var(U2) + var(U3).
(c) E(

√
U1 + U2 + U3).

(d) P(
√
U1 +

√
U2 +

√
U3 ≥ 0.8).

50. Suppose a class of 100 writes a 20-question True-False test, and everyone in the class guesses
at the answers.

(a) Use simulation to estimate the average mark on the test as well as the standard deviation
of the marks.

(b) Estimate the proportion of students who would obtain a mark of 30% or higher.

51. Simulate 10 000 binomial pseudorandom numbers with parameters 20 and 0.3. Let X be a
binomial(20, 3) random variable. Use the simulated numbers to estimate the following:

(a) P(X ≤ 5)

(b) P(X = 5)

(c) E(X)

(d) var(X)

(e) the 95th percentile of X (you may use the quantile() function)
(f) the 99th percentile of X
(g) the 99.9999th quantile of X.

In each case, compare your estimates with the true values. What is required to estimate
extreme quantities accurately?

52. Consider the following function which is designed to simulate binomial pseudorandom vari-
ates using the inversion method:

R> ranbin1 <- function(n, size, prob) {
+ cumbins <- pbinom(0 : (size - 1), size, prob)
+ singlenumber <- function() {
+ x <- runif(1)
+ sum(x > cumbins)
+ }
+ replicate(n, singlenumber())
+ }
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(a) Study this function carefully and write documentation for it.

(b) Use ranbin1() to simulate vectors of length 1000, 10 000, and 100 000 from the binomial
distribution with size parameter 10 and probability parameter 0.4. Use system.time()
to compare the execution times for these simulations with the corresponding execution
times when rbinom() is used.

53. The following function simulates binomial pseudorandom numbers by summing up the cor-
responding independent Bernoulli variates:

R> ranbin2 <- function(n, size, prob) {
+ singlenumber <- function(size, prob) {
+ x <- runif(size)
+ sum(x < prob)
+ }
+ replicate(n, singlenumber(size, prob))
+ }

(a) Study this function carefully and write documentation for it.

(b) Use ranbin2() to simulate vectors of length 10 000 from the binomial distribution with
size parameters 10, 100, and 1000, and probability parameter 0.4. Use system.time()
to compare the execution times for these simulations with the corresponding execution
times when rbinom() is used, and compare timings with those for ranbin1().

54. The generator for ranbin2() required size uniform pseudorandom numbers to be generated
for each binomial number generated. The following generator is based on the same principle,
but requires only one uniform pseudorandom number for each binomial number generated:

R> ranbin3 <- function(n, size, prob) {
+ singlenumber <- function(size, prob) {
+ k <- 0
+ U <- runif(1)
+ X <- numeric(size)
+ while(k < size) {
+ k <- k + 1
+ if(U <= prob) {
+ X[k] <- 1
+ U <- U / prob
+ } else {
+ X[k] <- 0
+ U <- (U - prob) / (1 - prob)
+ }
+ }
+ sum(X)
+ }
+ replicate(n, singlenumber(size, prob))
+ }

(a) Use the ranbin3() function to generate 100 pseudorandom numbers from the
binomial(20, 0.4) and binomial(500, 0.7) distributions, respectively.

(b) What is the conditional distribution of U/p, given that U < p?

(c) What is the conditional distribution of (U − p)/(1− p), given that U > p?

(d) Use the answers to the above questions to provide documentation for ranbin3().
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55. Use random trials to determine the smallest number of persons required for the probability
that two persons in a group have the same birthday to be greater than one half. Also justify
your result analytically.

56. Use random sampling to determine the probability that the quadratic equation ax2+bx+c =
0 has only real roots, if each of its coefficients a, b and c is randomly chosen from the interval
[−1, 1]. Also justify your result analytically.

57. Let X be a random variable with cdf F and corresponding quantile function F−1(u) =
inf{x : F (x) ≥ u}. Show that for x ∈ R and 0 ≤ u ≤ 1,

F−1(u) ≤ x ⇔ F (x) ≥ u.

Conclude that

F (F−1(u)) ≥ u, F−1(F (x)) ≤ x

and characterize the cases where there is strict inequality.

58. Let X be a random variable with continuous cdf F . Show that the probability integral
transform F (X) is uniformly distributed on [0, 1].

59. LetX be a discrete random variable which attains the values x1 < · · · < xn with probabilities
p1, . . . , pn. With F the cdf of X, what is the cdf of F (X)?

60. The Pareto(a, b) distribution has cdf

F (x) = 1− (b/x)a, x ≥ b > 0, a > 0.

Derive the probability inverse transformation F−1(U) and use the inverse transform method
to simulate a random sample from the Pareto(2, 2) distribution. Graph the density of the
histogram of the sample with the Pareto(2, 2) density superimposed for comparison.

61. The generalized Pareto distribution has cdf

F (x) = 1− (1 + ξ(x− µ)/σ)−1/ξ

for in the support of this distribution, where µ ∈ R is the location parameter, σ > 0 is
the scale parameter, and ξ ∈ R is the shape parameter. Establish first that for ξ → 0,
F (x) → 1 − exp((−(x − µ)/σ). Then show that the support is thus [µ,∞) for ξ ≥ 0 and
[µ, µ− σ/ξ] for ξ < 0.

62. The generalized Pareto distribution has cdf

F (x) = 1− (1 + ξ(x− µ)/σ)−1/ξ

for x ≥ µ and x ≤ µ− σ/ξ when ξ < 0, where µ ∈ R is the location parameter, σ > 0 is the
scale parameter, and ξ ∈ R is the shape parameter. Use the inverse transform method to
generate a random sample from the generalized Pareto distribution.

63. A discrete random variable X has probability mass function

x 0 1 2 3 4
p(x) 0.1 0.2 0.2 0.2 0.3

Use the inverse transform method to generate a random sample of size 1000 from the dis-
tribution of X. Construct the relative frequency table and compare the empirical with the
theoretical probabilities. Repeat using function sample().
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64. Conduct a simulation experiment to check the reasonableness of the assertion that the dis-
tribution of the number of points from a rate 1.5 Poisson process which fall in the interval
[4, 5] is Poisson with a mean of 1.5. First, simulate a large number of realizations of the
Poisson process on the interval [0, 10]. Then count the number of points in [4, 5] for each
realization. Compare this set of counts with simulated Poisson counts using a Q-Q plot.

65. A simple electronic device consists of two components which have failure times which may
be modeled as independent exponential random variables. The first component has a mean
time to failure of 3 months, and the second has a mean time to failure of 6 months. The
electronic device will fail when either of the components fails. Use simulation to estimate
the mean and the variance of the time to failure for the device. Re-do the calculations for
the case where the device will fail only when both components fail.

66. A χ2 random variable with n degrees of freedom has the same distribution as the sum of
the squares of n independent standard normal random variables. Simulate a χ2 random
variable with 8 degrees of freedom, and estimate its mean and variance. (Compare with the
theoretical values: 8 and 16.)

67. The following function returns normal pseudorandom numbers:

R> rannorm <- function(n, mean = 0, sd = 1){
+ singlenumber <- function() {
+ repeat {
+ U <- runif(1)
+ U2 <- sign(runif(1, min = -1)) # value is +/- 1.
+ Y <- rexp(1) * U2 # Y is a double exponental r.v.
+ if (U < dnorm(Y) / exp(-abs(Y))) break
+ }
+ Y
+ }
+ replicate(n, singlenumber()) * sd + mean
+ }

(a) Use this method to generate a vector of 10 000 normal pseudorandom numbers with a
mean of 8 and a standard deviation of 2.

(b) Obtain a Q-Q plot to check the accuracy of this generator.

(c) Use curve() to draw the graph of the standard normal density on the interval [−4, 4].
Use the add = TRUE parameter to overlay the exponential density on the same interval
to verify that the rejection method has been implemented appropriately.

68. Consider the following two methods for simulating from the discrete distribution with values
0, 1, 2, 3, 4, 5 which take respective probabilities 0.2, 0.3, 0.1, 0.15, 0.05, 0.2.

The first method is an inversion method:

R> probs <- c(0.2, 0.3, 0.1, 0.15, 0.05, 0.2)
R> randiscrete1 <- function(n, probs) {
+ cumprobs <- cumsum(probs)
+ singlenumber <- function() {
+ x <- runif(1)
+ sum(x > cumprobs)
+ }
+ replicate(n, singlenumber())
+ }

The second method is a rejection method:
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R> randiscrete2 <- function(n, probs) {
+ singlenumber <- function() {
+ repeat {
+ U <- runif(2,
+ min = c(-0.5, 0),
+ max = c(length(probs) - 0.5, max(probs)))
+ if(U[2] < probs[round(U[1]) + 1]) break
+ }
+ return(round(U[1]))
+ }
+ replicate(n, singlenumber())
+ }

Execute both functions using n = 100, 1000, and 10 000. Use system.time() to determine
which method is faster.

69. Generate a random sample of size 1000 from a normal location mixture. The components
of the mixture have N(0, 1) and N(3, 1) distributions with mixing probabilities p1 and p2 =
1−p1. Graph the histogram of the sample with density superimposed for p1 = 0.75. Repeat
with different values for p1 and observe whether the empirical distribution of the mixture
appears to be bimodal. Make a conjecture about the values of p1 that produce bimodal
mixtures.

70. Simulate a continuous Exponential-Gamma mixture. Suppose that the rate parameter Λ has
Gamma(r, β) distribution and Y has Exp(Λ) distribution. That is, Y |Λ = λ ∼ fY (y|λ) =
λe−λy. Generate 1000 random observations of this mixture with r = 4 and β = 2. It can
be shown that the mixture has a Lomax (“Pareto” in actuarial science: a standard Pareto
distribution shifted so that its support starts at 0) distribution with cdf

F (y) = 1−
(

β

β + y

)r

, y ≥ 0.

Compare the empirical and theoretical (Lomax/Pareto) distributions by graphing the density
histogram of the sample and superimposing the Lomax/Pareto density curve.

71. If (X1, X2) has a bivariate t distribution t2(ν,m,Σ), one can show that the Kendall rank
correlation ρτ (X1, X2) of X1 and X2 satisfies

ρτ (X1, X2) =
2

π
arcsin(ρ),

where

ρ =
σ12√

σ11
√
σ22

is the pseudo-correlation coefficient and σij denotes the (i, j) entry of Σ. (This relation more
generally holds for pairs of random variables following a bivariate elliptical distribution.)
Inverting this relation can be used for estimating ρ.

Generate B = 3000 samples of size n = 90 from a bivariate t distribution with ν = 3
degrees of freedom and linear correlation ρ = 0.5, and estimate ρ (a) directly using sample
correlations and (b) by inverting the sample Kendall’s τ correlations.

Which method works better? How can this method be used to estimate the correlations of
a d-variate t distribution with d > 2? Can you anticipate possible problems for this?
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72. A compound Poisson process is a stochastic process (X(t), t ≥ 0 which can represented as
the random sum

X(t) =

N(t)∑
i=1

Yi,

where (N(t), t ≥ 0) is a Poisson process and Y1, Y2, . . . are i.i.d. and independent of (N(t)).
Write a program to simulate a compound Poisson(λ)–Gamma process. Estimate the mean
and the variance of X(10) for several choices of the parameters and compare with the theo-
retical values. Hint: show that E(X(t)) = λtE(Y1) and var(X(t)) = λtE(Y 2

1 ).

73. Use Monte Carlo integration to estimate the following integrals, comparing with the exact
answer if known.∫ 3

1

x2dx,

∫ π

0

sin(x)dx,

∫ ∞

0

e−xdx,

∫ 3

0

sin(ex)dx,

∫ 2

0

1√
2π
e−x2/2dx.

74. Compute a Monte Carlo estimate θ̂ of

θ =

∫ 0.5

0

e−xdx

by sampling from Uniform(0, 0.5), and estimate the variance of θ̂. Find another Monte Carlo
estimator θ∗ by sampling from the exponential distribution. Which of the variances (of θ̂
and θ∗) is smaller, and why?

75. Suppose a bank has a credit portfolio with 10 obligors with rating grade AA, 25 with A,
and 96 rated BBB, respectively, with corresponding one-year probabilities of default (PDs)
0.0001, 0.0005, and 0.0025, respectively. Simulate default scenarios, assuming that the de-
fault occur independently.

π 76. Consider a credit portfolio with n obligors. Suppose that obligor i defaults if its associated
critical variable Xi falls below a default threshold di, and that the Xi are jointly normal
with zero mean and unit variance and common asset correlation ρ ≥ 0. (This is a simple
Merton-type threshold model for portfolio credit risk.)

Take n = 100 and all di equal to the 2.5% quantile of the standard normal distribution. Let
Di be the default indicator for obligor i (Di = 1 if obligor i defaults, Di = 0 otherwise). Use
simulation to determine the default correlation cor(Di, Dj), i ̸= j, as a function of the asset
correlation ρ.

Can you determine the exact values of the default correlations?

(Hint: The Xi can be simulated via Xi =
√
ρZ0+

√
1− ρZi, where Z0, . . . , Zn are i.i.d. stan-

dard normal.)

π 77. Consider a credit portfolio with n obligors. Given a common (latent) factor Ψ, defaults
occur independently with probability Q = p(Ψ). Let Di be the default indicator for obligor i
(Di = 1 if obligor i defaults, Di = 0 otherwise), and write M = D1 + · · ·+Dn for the total
number of defaults.

Suppose that Q has a Beta distribution with parameters a and b.

(a) Take n = 100, a = 1 and b = 9, and use simulation to determine the default probabilities
E(Di), the default correlations cor(Di, Dj), i ̸= j, and the distribution of M .

(b) Obtain exact expressions for the default probabilities and correlations, and the distri-
bution of M . How well does simulation work?

(The distribution of M is called the beta-binomial distribution.)
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π 78. The following model has been used for the study of contagion. Suppose that there are N
persons some of whom are sick with influenza. The following assumptions are made:

• when a sick person meets a healthy one, the chance is α that the latter will be infected

• all encounters are between two persons

• all possible encounters in pairs are equally likely

• one such encounter occurs in every unit of time.

(a) Write a function which simulates this model for various values of N (say, 10 000) and
α (say, between 0.001 and 0.1). Monitor the history of this process, assuming that one
individual is infected at the beginning.

(b) Suppose that initially only one individual is infected. What is the expected length of
time until 1000 people are infected?

(c) Now add the assumption that each infected person has chance β, say 0.01, of recovering
at each time unit. Monitor several histories of this new process, and compare them with
the histories of the old process.

(d) Re-do with the assumption that the time between encounters is an exponential random
variable with a mean of 5 minutes.

(e) Re-do assuming that the time between encounters is the absolute value of a normal
random variable with a mean of 5 minutes and a standard deviation of 1 minute.

π 79. Simulate the following simple model of auto insurance claims:

• Claims arise according to a Poisson process at a rate of 100 per year.

• Each claim is random in size following a Gamma distribution with shape and rate
parameters both equal to 2. This distribution has a mean of 1 and a variance of 1/2.
Claims must be paid by the insurance company as soon as they arise.

• The insurance company earns premiums at a rate of 105 per year, spread evenly over
the year (i.e., at time t measured in years, the total premium received is 105t).

Write R code to do the following:

(a) Simulate the times and amounts of all the claims that would occur in one year. Draw
the graph of the total number of money that the insurance company would have through
the year, starting from zero: it should increase smoothly with the premiums, and drop
at each claim time.

(b) Repeat the simulation 1000 times, and estimate the following quantities:

i. The expected minimum amount of money that the insurance company would have.
ii. The expected final amount of money that the insurance company would have.

π 80. An insurance company has an initial risk reserve of x = 5 monetary units (MUs). Premiums
flow in at a constant rate of p = 1 MU per year. Claims arrive according to a Poisson process
with rate λ = 2, are independent identically exponentially distributed with rate δ = 2.25,
and must be paid once they arise. Thus, if N(t) is the number of claims up to time t and
Xi is the size of claim i, the risk reserve at time t is R(t) = x + pt −

∑
i:i≤N(t)Xi. Use

simulation to determine the ruin probability

ψ(x) = P (R(t) < 0 for some t < 0) .

(In this simple case, the ruin probability can be determined analytically: can you find the
corresponding expression?)
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π 81. For the German credit data, explore the relations between personal status (‘Sta-
tus_and_sex’) and Age, Amount, Purpose and quality (‘Class’). Which patterns can you
find?

π 82. For the German credit data, explore the relations between credit history (‘History’), em-
ployment level (‘Job’) and duration (‘Employment_since’), and credit amount (‘Amount’)
and quality (‘Class’). Which patterns can you find?

83. The R standard data set islands is a vector containing the areas of 48 land masses.

(a) Plot a histogram of these data.
(b) Are there advantages to taking logarithms of the areas before plotting the histogram?
(c) Compare the histograms that result when using breaks based on Sturges’ and Scott’s

rules. Make this comparison on the log-scale and the original scale.
(d) Construct a boxplot for these data on the log-scale as well as on the original scale.
(e) Construct a dot-chart of the areas. Is a log transformation needed here?
(f) Which form of graphic do you think is most appropriate for displaying these data?

84. For the islands data set, try out the following code.

R> hist(log(islands, 10), breaks = "Scott", axes = FALSE,
+ xlab = "Area", main = "Histogram of Island Areas")
R> axis(1, at = 1 : 5, labels = 10 ^ (1 : 5))
R> axis(2)
R> box()

(a) Explain what is happening at each step of the above code.
(b) Add a subtitle to the plot such as “Base-10 Log-Scale”.
(c) Modify the code to incorporate the use of the Sturges rule in place of the Scott rule. In

this case, you will need to use the round() function to ensure that excessive numbers
of digits are not used in the axis labels.

85. The R standard data set stackloss is a data frame with 21 observations on four variables
taken at a factory where ammonia is converted to nitric acid. The first three variables are
Air.Flow, Water.Temp and Acid.Conc. The fourth variable is stack.loss, which measures
the amount of ammonia that escapes before being absorbed. (Read the help file for more
information about this data frame.)

(a) Use scatterplots to explore possible relationships between acid concentration, water
temperature, and air flow and the amount of ammonia which escapes. Do these rela-
tionships appear to be linear or nonlinear?

(b) Use the pairs() function to obtain all pairwise scatterplots among the four variables.
Identify pairs of variables where the might be linear or nonlinear relationships.

86. The R standard data set pressure is a data frame with two variables, temperature and
pressure.

(a) Construct a scatterplot with pressure on the vertical axis and temperature on the
horizontal one. Are the variables related linearly or non-linearly?

(b) The graph of the following function passes through the plotted points reasonably well:

y = (0.168 + 0.007x)20/3

The differences between the pressure values predicted by the curve and the observed
pressure values are called residuals, and can be computed via
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R> residuals <-
+ with(pressure,
+ pressure - (0.168 + 0.007 * temperature)^(20/3))

Construct a normal Q-Q plot of these residuals and decide whether they are normally
distributed or whether they follow a skewed distribution.

(c) Now, apply the power transformation y3/20 to the pressure data values. Plot these
transformed values against temperature. Is a linear or nonlinear relationship evident
now?

(d) Calculate residuals for the difference between transformed pressure values and those
predicted by the straight line. Obtain a normal Q-Q plot, and decide whether the
residuals follow a normal distribution or not.

87. Consider the pressure data set.

(a) Plot pressure against temperature, and use the following command to pass a curve
through these data:
R> curve((0.168 + 0.007 * x)^(20/3), from = 0, to = 400, add = TRUE)

(b) Now, apply the power transformation y3/20 to the pressure data values. Plot these
transformed values against temperature. Is a linear or nonlinear relationship evident
now? Use the abline() function to pass a straight line through the points. (See the
previous part of the exercise to obtain an intercept and a slope for this line.)

(c) Add a suitable title to the graph.
(d) Re-do the above plots, but use the mfrow mechanism to display them in a 2× 1 layout

on the graphics page. Repeat once again using a 1× 2 layout.

88. Write a function to “correctly” graph the amount of money that the insurance com-
pany would have in the auto insurance simulation model in the following style:

0.0 0.2 0.4 0.6 0.8 1.0
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0
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0
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π 89. How normal are stock returns?
Consider the daily log returns of (at least 20) or the 30 stocks in the Dow Jones Industrial
Average for the past 10 years. Use quantmod to obtain these returns and compute sample
skewness and kurtosis coefficients and the p-value of the Jarque-Bera test for normality (use
jarque.bera.test() from package tseries). What do you find?
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How do your results change when instead considering weekly, monthly or quarterly returns?
(Hint: see ?quantmod::periodReturn for conveniently obtaining these returns.)

π 90. This problem deals with the analysis of the daily S&P 500 closing values.

(a) Load the data using quantmod.

(b) Create a vector DSPRET containing the daily raw returns. Compute the mean and
the variance of this daily raw return vector, produce its eda.shape plot, and discuss the
features of this plot which you find remarkable.

(c) Fit a Generalized Pareto Distribution (GPD for short) to the daily raw returns, give
detailed plots of the fit in the two tails, and discuss your results.

(d) Generate a sample of size 10000 from the GPD fitted above. Call this sample SDSPRET,
produce a Q-Q plot of DSPRET against SDSPRET, and comment.

(e) Compute the VaR (expressed in units of the current price) for a horizon of one day, at
the level α = 0.01 in each of the following cases:

• assuming that the daily raw return is normally distributed;
• using the GPD distribution fitted to the data in the previous question;
• compare the results (think of a portfolio containing a very large number of con-

tracts).

π 91. Redo the above problem after replacing the vector DSP with a vector SDSP containing only
the first 6000 entries of DSP. Compare the results, and especially the VaRs. Explain the
differences.

π 92. For 0 < α < 1, the expected shortfall ESα of a normal distribution with mean µ and
variance σ2 is

ESα = µ+ σ
ϕ(Φ−1(α))

1− α
,

where ϕ and Φ, respectively, are the density and distribution function of the standard normal
distribution. For a univariate t distribution with ν degrees of freedom and location and scale
parameters µ and σ one can show that

ESα = µ+ σ
ftν (F

−1
tν (α))

1− α

ν + (F−1
tν (α))2

ν − 1
,

where ftν and Ftν , respectively, are the density and distribution function of the standard
univariate t distribution with ν degrees of freedom.

Use quantmod to obtain the daily log returns of the stock prices of Boeing Co (BA), Walt
Disney Co (DIS), General Electric Co (GE), and Microsoft Corp (MSFT) from 1993 to
2000. Fit normal distributions (by using the sample means and variances) and t location-
scale distributions (see ?MASS::fitdistr for how to do this) to these log returns. Estimate
the value-at-risk VaR0.99 and the expected shortfall ES0.975 of the daily losses (a) directly
(using the sample quantities), (b) using the fitted normal model and (c) using the fitted t
model. Interpret your results.

93. What is the relation between expected shortfall and value at risk for large α? First try to
numerically determine the limit of the shortfall-to-quantile ratio ESα/VaRα as α → 1− for
losses from a normal distribution, or a Student t distribution with shape parameter ν > 1.
Then prove that the limit is 1 for the normal, and ν/(ν − 1) for Student’s t.

(Hint: For the normal, use that for x → ∞, Φ(x) ≈ 1− ϕ(x)/x. For Student’s t, note that
ftν (x) ≈ c(ν)/xν+1 for x → ∞, and use this to derive an asymptotic approximation for
F−1
tν (α) as α→ 1−).
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94. Determine VaRα and ESα for the generalized Pareto distribution with location parameter µ,
scale parameter σ and shape parameter ξ < 1. What is the limit of the shortfall-to-quantile
ratio ESα/VaRα as α→ 1−?

π 95. Use quantmod to obtain the daily log returns of the stock prices of International Business
Machines Co (IBM), The Coca-Cola Co (KO), McDonald’s Corp (MCD) and Nike Inc (NKE)
from 1993 to 2000. Fit (symmetric) t location-scale distributions see (?MASS::fitdistr for
how to do this) and 2-sided Generalized Pareto distributions to these log returns, and discuss
the implied tail behavior. (Note that the tail probabilities of the t and GPD distributions
behave, respectively, like x−ν and x−1/ξ.)

96. Let U1, . . . , Ud be i.i.d. U [0, 1] random variables. Determine the copulas of (a) (U1, . . . , Ud)
(independence copula), (b) (U1, . . . , U1) (U1 repeated d times, comonotonicity copula), and
(c) (U1, 1− U1) (countermonotonicity copula).

97. Show that for every copula C(u1, . . . , ud) we have

max

(
d∑

i=1

ui + 1− d, 0

)
≤ C(u1, . . . , ud) ≤ min(u1, . . . , ud).

98. Consider a bivariate Bernoulli random variable (X1, X2) with joint distribution

P(X1 = 0, X2 = 0) = 1/8, P(X1 = 1, X2 = 1) = 3/8

and

P(X1 = 0, X2 = 1) = P(X1 = 1, X2 = 0) = 2/8.

Determine all possible copulas for (X1, X2) (i.e., all C such that for all x1, x2 we have
P(X1 ≤ x1, X2 ≤ x2) = C(P(X1 ≤ x1),P(X2 ≤ x2))).

99. Let X and Y be continuous random variables with cdfs FX and FY , respectively, and cop-
ula C. Prove that

(a) P(max(X,Y ) ≤ t) = C(FX(t), FY (t)),

(b) P(min(X,Y ) ≤ t) = FX(t) + FY (t)− C(FX(t), FY (t)).

100. Show that if X is a random variable with distribution symmetric about 0 and finite second
moments, then X and |X| are uncorrelated.

101. This elementary exercise is intended to give an example showing that lack of correlation does
not necessarily mean independence. Let us assume that X ∼ N(0, 1) and let us define the
random variable Y by Y = (|X| −

√
2/π)/

√
1− 2/π.

(a) Compute E(|X|).
(b) Show that Y has mean zero, variance 1, and that it is uncorrelated with X.

102. The purpose of this problem is to show that lack of correlation does not imply independence,
even when the two random variables are Gaussian. We assume that X, ϵ1 and ϵ2 are
independent random variables, that X ∼ N(0, 1), and that P(ϵi = −1) = P(ϵi = +1) = 1/2
for i = 1, 2. We define the random variable X1 and X2 by X1 = ϵ1X, and X2 = ϵ2X.

(a) Prove that X1 ∼ N(0, 1), X2 ∼ N(0, 1) and that ρ(X1, X2) = 0.

(b) Show that X1 and X2 are not independent.

(c) Determine the copula of X1 and X2.
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103. Let the random variables X1 and X2 represent the profits and losses on two portfolios, and
suppose we are told that both have standard normal distributions and are uncorrelated. One
possible model for this is taking X1 and X2 as independent (Model A). Another possibility
is taking (X1, X2) = (Z, ϵZ) where Z is standard normal and ϵ takes the values ±1 with
probabilty 1/2 and is independent of Z (Model B). This roughly corresponds to a situation
where with equal probability, profits and losses are perfectly comonotonic (either gain or
lose the same in both portfolios) or perfectly countermonotonic (gain in one portfolio and
lose the same in the other).

Verify that for model B we indeed have standard normal margins and zero correlation, and
that the copula is

CB(x1, x2) =
1

2
max(u1 + u2 − 1, 0) +

1

2
min(u1, u2).

Compute and compare the VaRs for the aggregate profits and losses X1+X2 under model A
and model B.

104. A d-dimensional copula is a distribution function on [0, 1]d with standard uniform marginal
distributions. I.e., if (U1, . . . , Ud) is a random vector such that Ui ∼ U [0, 1], then

C(u1, . . . , ud) := P(U1 ≤ u1, . . . , Ud ≤ ud)

is the corresponding copula. Note that U1, . . . , Ud do not need to be independent!

Assume that F1, . . . , Fd are arbitrary continuous and increasing distribution func-
tions, let F−1

1 , . . . , F−1
d be their corresponding quantile functions, and let Z :=

(F−1
1 (U1) . . . , F

−1
d (Ud)). Show that

P(Z1 ≤ z1, . . . , Zd ≤ zd) = C(F1(z1), . . . , Fd(zd)).

Note. The converse statement is also true: for a given arbitrary random vector Z with
marginal distributions F1, . . . , Fd we can find a copula C such that

P(Z1 ≤ z1, . . . , Zd ≤ zd) = C(F1(z1), . . . , Fd(zd)).

This result is known as Sklar’s Theorem.

105. Let ψ : [0,∞) → [0, 1] be continuous and non-increasing with ψ(0) = 1 and limt→∞ ψ(t) = 0.
For 0 ≤ u ≤ 1, let ψ−1(u) = inf{t : ψ(t) = u} (where the inf is always attained for u > 0).
Show that if ψ is also convex, then

C(u, v) = ψ(ψ−1(u) + ψ−1(v))

is a copula, the so-called Archimedean copula with generator ψ. (One can show that convexity
is also necessary for ψ(ψ−1(u) + ψ−1(v)) to be a copula.)

106. The Gumbel family of copulas has

CGu
θ (u, v) = exp(−((− log(u))θ + (− log(v))θ)1/θ)

where θ ≥ 1. Show that this is an Archimedean copula, and determine its generator. What
are the limits for θ → 1+ and θ → ∞?

107. Copulas are used to model dependence structures of multivariate random variables. Of
particular importance is the Gaussian copula, which is the corresponding copula to a multi-
variate normal distribution with mean zero and correlation matrix P .

In the spirit of Sklar’s theorem we use the following algorithm to simulate from the copula:

(a) Generate (Z1, . . . , Zd) ∼ Nd(0, P ) using rmvnorm
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(b) Return U = (Φ(Z1), . . . ,Φ(Zd)), where Φ denotes the cdf of the standard normal dis-
tribution. The random vector U is now distributed according to the Gaussian copula
with parameter P .

How does P influence the dependence structure of U? Generate 2000 samples each for for

• cov(Z1, Z2) = 0

• cov(Z1, Z2) = −0.8

• cov(Z1, Z2) = 0.8

(note that var(Z1) = var(Z2) = 1). For each case, plot your results as a scatter plot. What
can you see? What happens if cov(Z1, Z2) → ±1?

108. The Student t copula is the copula of a multivariate t distribution td(ν, 0, P ) where P is a
correlation matrix.

In the spirit of Sklar’s theorem we can use the following algorithm to simulate from a t
copula:

(a) Generate (X1, . . . , Xd) ∼ td(ν, 0, P )

(b) Return U = (Ftν (X1), . . . , Ftν (Xd)), where Ftν is the distribution function of the stan-
dard univariate t distribution with ν degrees of freedom.

Implement a function which generates n random points (collected in a matrix with n rows)
from the multivariate t copula with given parameters ν and P .

Investigate how P influences the dependence structure of U by inspecting scatterplots of
generated samples with ν = 3 or 10, d = 2 and off-diagonal correlations ρ of −0.7, 0 and
0.7.

π 109. This problem is based on the data matrix UTILITIES. Each row corresponds to a given day.
The first column gives the log of the weekly return on an index based on Southern Electric
stock value and capitalization (we’ll call that variable X), and the second column gives, on
the same day, the same quantity for Duke Energy (we’ll call that variable Y ), another large
utility company.

(a) Compute the means and the standard deviations of X and Y , and compute their cor-
relation coefficients.

(b) We first assume that X and Y are samples from a jointly Gaussian distribution with
parameters computed in question 1. Compute the q-percentile with q = 2% of the
variables X + Y and X − Y .

(c) Fit a generalized Pareto distribution (GPD) to X and Y separately, and fit a copula of
the Gumbel family to the empirical copula of the data.

(d) Generate a sample of size N (where N is the number of rows of the data matrix) from
the joint distribution estimated in question 3. Use this sample to compute the same
statistics as in question 1 (i.e., means and standard deviations of the columns, as well as
their correlation coefficients), and compute the results to the numerical values obtained
in question 1. Compute, still for this simulated sample, the two percentiles considered
in question 2, compare the results, and comment.

π 110. An alternative to quantmod for loading limited free financial data is offered by the pack-
age Quandl. See https://cran.r-project.org/package=Quandl/README.html for basic
information about using this package to access Quandl data from R. For this exercise install
the package Quandl from CRAN and load the daily prices of West Texas Intermediate crude
oil (WTI) and Brent Crude Oil (Brent) from 2004-01-01 to 2014-01-01. The codes to use are
"FRED/DCOILWTICO" and "FRED/DCOILBRENTEU", respectively. Restrict the data to the days
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where prices for both crude oils are available, i.e., remove days where at least one has an NA
entry. Compute log-returns for the remaining data. These log-returns should be considered
in the sequel.

a) Compute the means for the WTI and Brent sample as well as their joint covariance
matrix. Simulate a sample with the same size as the data from a bivariate normal
distribution with the corresponding parameters. Compare scatter-plots of the actual
data and the simulated data, compute Q-Q plots of actual data versus simulated data
and comment.

b) To account for the heavier tails fit a multivariate t-distribution with location and scale
parameter to WTI and Brent. This multivariate distribution is defined as follows.
We start with an Rk-valued random vector T whose components are independent and
follow a t-distribution with ν degrees of freedom. With a vector µ ∈ Rk and a matrix
Σ ∈ Rk×k with Choleski decomposition Σ = LL′ the multivariate t-distribution with ν
degrees of freedom is defined as the distribution of X which is given by

X = µ+ LT.

The expectation and the covariance matrix are then (ν > 2)

E(X) = µ

cov(X) = L cov(T )L′ =
ν

ν − 2
LL′ =

ν

ν − 2
Σ.

(1)

Write a function which generates a sample of arbitrary size from a multivariate t-
distribution with the given parameters µ, Σ and ν. Then choose parameters for a
bivariate t-distribution with 4 degrees of freedom such that the resulting moments in
(1) match the empirical moments. Simulate a sample with the same size as the data
from this bivariate t-distribution with the corresponding parameters. Compare scatter-
plots of the actual data and the simulated data and/or analyze Q-Q plots and comment.

c) Now match one-dimensional t-distributions with 4 degrees of freedom and location and
scale parameter to WTI and Brent separately. Use these marginal distributions to fit
a copula of the Gumbel family to the empirical copula of the data. Simulate a sample
from this distribution and compare the scatter-plots again.

d) Assume now that an investor holds a portfolio with a value of USD 10 million. Fifty
percent are invested in WTI and the remaining fifty percent are invested in Brent.
Using simulation estimate the 1 percent quantile of the discrete daily return of this
portfolio for all the distributions of log-returns considered (use quantile). Use these
estimated quantiles to estimate the Value at Risk of the daily return. Compare the
different estimates you get.

π 111. The (in)famous Li model is/was a simple dynamic credit risk model used by practitioners
to price basket credit derivatives. Given a set of n obligors, let τi by the time to default of
obligor i. In the Li model, the τi are assumed to have exponential distributions with rates λi,
with dependence given by a Gauss copula with suitable correlation matrix P .

Take n = 125, λi ≡ 0.3 and an equicorrelation copula (i.e., all off-diagonal entries of P are
equal to the same ρ) with ρ = 0.7. Simulate the distribution of the number of defaults in
one year, and in particular estimate the probability of no default in one year, as accurately
as possible.
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