
Programming with S

Kurt Hornik

David Meyer

Vienna University of Economics and Business Administration

September 30, 2009



Overview

f Definitions

f Programming Languages

f S and R



Definitions

Programming To design, write, and test programs.

(Computer) Program A computer algorithm.

Algorithm A detailed sequence of instructions (actions) used to

do a particular job or solve a given problem.

Programming language An artificial language that is used to

generate or to express computer programs.

Language System of symbols used for communication (infor-

mation exchange). Consists of Syntax and Semantics.



Definitions

Syntax The structure of strings in some language.

Grammar A formal definition of the syntactic structure of a

language.

Semantics Meaning of a language (relation to the real world).



Programming Languages

Imperative PLs:

1. Implicit state: variables

2. State modification: through assignment (“side effecting”)

3. Instruction sequencing (begin-end blocks, loops, . . . )



Programming Languages

Imperative PLs:

1. Implicit state: variables

2. State modification: through assignment (“side effecting”)

3. Instruction sequencing (begin-end blocks, loops, . . . )

Declarative PLs:

1. No implicit state, no assignments

2. Expression evaluation instead of instruction sequencing

3. Recursion instead of loops



Imperative PLs

First Generation Languages (1GL)

Language of the first computer systems (1940s). Raw machine

code, i.e. numeric (binary) values interpreted as commands by

the processor.

Example: 00011010 0011 0100 (3 + 4)



Imperative PLs

First Generation Languages (1GL)

Language of the first computer systems (1940s). Raw machine
code, i.e. numeric (binary) values interpreted as commands by
the processor.

Example: 00011010 0011 0100 (3 + 4)

Second Generation Languages (2GL)

= Assembler language (early 1950s). Symbolic representation of
machine code. The use of macros (placeholder for a sequence
of commands) is common.

Example: ADD 3,4



Imperative PLs

Third Generation Languages (3GL)

High level languages. Key characteristics:

1. Easy to understand (compared to assembler)

2. System independent (core functionality)

3. Provides named variables

4. Provides structure elements (loops, conditions)



Imperative PLs

Every 3GL program must be translated into machine code prior

to execution, either command by command during execution

(interpreter) or as a whole before execution (compiler).

The 3GL program is called source code, the resulting machine

code object code.



Imperative PLs

Every 3GL program must be translated into machine code prior
to execution, either command by command during execution
(interpreter) or as a whole before execution (compiler).

The 3GL program is called source code, the resulting machine
code object code.

History

1950: COBOL (COmmon Business Oriented Language)
1955: FORTRAN (FORmula TRANslator)
1960: BASIC (Beginners All-purpose Symbolic Instruction

Code)
1970: PASCAL, MODULA (Niklaus Wirth), C
1980: C++, Objective Pascal



Imperative PLs

Fourth Generation Languages (4GL)



Imperative PLs

Fourth Generation Languages (4GL)

“Application specific” high-level languages, mostly built around

database systems (late 1970s).

Powerful set of functions/commands, but slower execution than

3GL. Often vendor-dependent.



Imperative PLs

Fourth Generation Languages (4GL)

“Application specific” high-level languages, mostly built around

database systems (late 1970s).

Powerful set of functions/commands, but slower execution than

3GL. Often vendor-dependent.

f Query languages for interactive data retrieval (e.g., SQL)

f Report generators

f Graphics languages (e.g., PostScript)

f Application generators, CASE tools (e.g., Delphi)

f Very high-level programming languages (e.g., MATLAB, SAS)



Imperative PLs

Object-Oriented Programming Languages



Imperative PLs

Object-Oriented Programming Languages

Objects model real-world entities. Each object is composed of

data and code which are “encapsulated” from the other objects.

An object is characterized through state and behavior.



Imperative PLs

Object-Oriented Programming Languages

Objects model real-world entities. Each object is composed of

data and code which are “encapsulated” from the other objects.

An object is characterized through state and behavior.

The behavior of an object is defined by its repertoire of methods

(code).



Imperative PLs

Object-Oriented Programming Languages

Objects model real-world entities. Each object is composed of

data and code which are “encapsulated” from the other objects.

An object is characterized through state and behavior.

The behavior of an object is defined by its repertoire of methods

(code).

The state of an object is defined by its attributes (variables).

Attributes are accessed through methods.



Imperative PLs

Object-Oriented Programming Languages

Objects model real-world entities. Each object is composed of

data and code which are “encapsulated” from the other objects.

An object is characterized through state and behavior.

The behavior of an object is defined by its repertoire of methods

(code).

The state of an object is defined by its attributes (variables).

Attributes are accessed through methods.

Objects are instances of classes (object templates). Classes can

be hierarchically organized through inheritance of both methods

and attributes.



Declarative PLs

Functional Programming Languages

f Computation based on function evaluation.

f Ideally, no assignments (“side-effects”).

f Referential transparency: meaning of the whole is solely de-

termined by the meaning of the parts.

f Functions are first-class objects (treated like values)

f Lazy evaluation: expressions are evaluated only when needed

f Examples: LISP, APL, S



Declarative PLs

Logic Programming Languages

f based on rules of formal logic

f results are derived from rules

f base concept: unification

Two terms to be unified are compared. Both constants: re-

sult is TRUE or FALSE. One constant, one variable: variable

is bound to constant. Two expressions: unified recursively.

f Example: PROLOG (PROgramming with LOGic)



Examples: 1,2,3,. . . ,10

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. DisplayNumbers.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 I PIC 99 VALUE 1.

PROCEDURE DIVISION.

Begin.

PERFORM UNTIL I = 11

DISPLAY I

ADD 1 TO I

END-PERFORM

STOP RUN.



Examples: 1,2,3,. . . ,10

FORTRAN

PROGRAM DisplayNumbers

INTEGER :: i

DO 99 i = 1, 10

PRINT *, i

99 CONTINUE

END PROGRAM



Examples: 1,2,3,. . . ,10

BASIC

10 FOR i = 1 TO 10

20 PRINT i

30 NEXT i

PASCAL

Program DisplayIntegers;

Var i : Integer;

Begin

For i := 1 to 10 do

WriteLn(i);

End.



Examples: 1,2,3,. . . ,10

C

void main() {

for (int i = 1; i < 10; i++)

printf("%u\n",i);

}

LISP

(dotimes (i 10)

(print (+ 1 i))

)

S

print(1:10)


