Nonlinear Optimization Exercises

- 1. Prove that the solution set S of an arbitrary (possibly infinite) system $a'_{\alpha}x \leq b_{\alpha}$, $\alpha \in \mathcal{A}$ of linear inequalities for $x \in \mathbb{R}^n$ is convex.
- 2. Prove that unit balls of norms on \mathbb{R}^n are exactly the same as convex sets V in \mathbb{R}^n satisfying the following three properties:
 - (a) V is symmetric with respect to the origin;
 - (b) V is bounded and closed;
 - (c) V contains a neighborhood of the origin.

A set V satisfying the outlined properties is the unit ball of the norm $||x|| = \inf\{t \ge 0 : x/t \in V\}$.

3. Prove that if M is a convex set in \mathbb{R}^n and $\epsilon > 0$, then for every norm on \mathbb{R}^n , the ϵ -neighborhood of M, i.e., the set

$$M_{\epsilon} = \{ y \in \mathbb{R}^n : \inf_{x \in M} \|y - x\| \le \epsilon \}$$

is convex.

- 4. Prove that a set M in \mathbb{R}^n is convex if and only of it is closed with respect to taking all convex combinations of its elements.
- 5. Prove that for nonempty $M \subset \mathbb{R}^n$, the convex hull $\operatorname{conv}(M)$, defined as the intersection of all convex sets containing M, is the set of all convex combinations of vectors from M.
- 6. Prove that a nonempty subset M of \mathbb{R}^n is a cone if and only of it is conic (i.e., $x \in M$ and $t \geq 0$ implies $tx \in M$) and closed with respect to addition (i.e., $x, y \in M$ implies $x + y \in M$).
- 7. Prove that the following operations preserve convexity of sets:
 - (a) Intersection: if $(M_{\alpha})_{\alpha \in \mathcal{A}}$ are convex sets, so is $\bigcap_{\alpha \in \mathcal{A}} M_{\alpha}$.
 - (b) Direct product: if $M_1 \subset \mathbb{R}^{n_1}$ and $M_2 \subset \mathbb{R}^{n_2}$ are convex, so is

 $M_1 \times M_2 = \{ y = (y_1, y_2) : y_1 \in M_1, y_2 \in M_2 \}.$

(c) Linear combination: if $\lambda_1, \ldots, \lambda_k$ are arbitrary reals, and M_1, \ldots, M_k are convex sets in \mathbb{R}^n , so is

$$\lambda_1 M_1 + \dots + \lambda_k M_k = \{\lambda_1 x_1 + \dots + \lambda_k x_k : x_i \in M_i, i = 1, \dots, k\}.$$

(d) Taking the image under affine mapping: if $M \subset \mathbb{R}^n$ is convex and $x \mapsto \mathcal{A}(x) = Ax + b$ is an affine mapping from \mathbb{R}^n to \mathbb{R}^m , then

$$\mathcal{A}(M) = \{ y = \mathcal{A}(x) : x \in M \}$$

is a convex set in \mathbb{R}^m .

(e) Taking the inverse image under affine mapping: if $M \subset \mathbb{R}^n$ is convex and $y \mapsto \mathcal{A}(y) = Ay + b$ is an affine mapping from \mathbb{R}^m to \mathbb{R}^n , then

$$\mathcal{A}^{-1}(M) = \{ y : \mathcal{A}(y) \in M \}$$

is a convex set in \mathbb{R}^m .

- 8. Prove that the relative interior of a simplex with vertices y_0, \ldots, y_m is exactly the set $\{x = \sum_{i=0}^m \lambda_i y_i : \lambda_i > 0, i = 0, \ldots, m; \sum_{i=0}^m \lambda_i = 1\}.$
- 9. Let S_1, \ldots, S_N be a family of N convex sets in \mathbb{R}^n , and let m be the affine dimension of $\operatorname{aff}(S_1 \cup \cdots \cup S_N)$. Assume that every m + 1 sets from the family have a point in common. Prove that all sets from the family have a point in common.
- 10. Let S and T be nonempty convex sets in \mathbb{R}^n . Prove that a linear form a separates S and T if and only if

$$\sup_{x \in S} a'x \le \inf_{y \in T} a'y, \qquad \inf_{x \in S} a'x < \sup_{y \in T} a'y.$$

The separation is strong if and only if $\sup_{x \in S} a'x < \inf_{y \in T} a'y$.

- 11. Let $S = \{x = (\xi_1, \xi_2) \in \mathbb{R}^2 : \xi_1 > 0, \xi_2 \ge 1/\xi_1\}$ and $T = \{x \in \mathbb{R}^2 : \xi_1 < 0, \xi_2 \ge -1/\xi_1\}$. Can S and T be separated? Can they be strongly separated?
- 12. Use the Separation Theorem to prove that every closed convex set in \mathbb{R}^n is the solution of a (perhaps infinite) system of non-strict linear inequalities.
- 13. Provide an alternative proof of the Separation Theorem using the following approach. Let S be a non-empty closed convex set in \mathbb{R}^n .
 - (a) Prove that if x is a point in \mathbb{R}^n , then there is a unique $\Pi_S(x)$ in S (the projection of x on S), so that $\min\{\|x y\|_2 : y \in S\} = \|x \Pi_S(x)\|_2$.
 - (b) Next, show that if $x \notin S$, then the linear form $e = x \prod_S(x)$ strongly separates $\{x\}$ and S:

$$\max_{y \in S} e'y = e' \Pi_S(x) = e'x - e'e < e'x,$$

thus getting a direct proof of the possibility to strongly separate a non-empty closed convex set and a point outside this set.

- (c) From this, derive the Separation Theorem.
- 14. For a non-empty subset M of \mathbb{R}^n , let

 $\operatorname{polar}(M) = \{a : \sup_{x \in M} \langle a, x \rangle \le 1\}$

be the polar (set) of M. Prove that

- (a) polar(M) is a closed convex set containing the origin.
- (b) $\operatorname{polar}(M) = \operatorname{polar}(\operatorname{cl}(M)).$
- (c) M is bounded if and only if $0 \in int(polar(M))$.
- (d) If M is a cone or if polar(M) is a cone, then

 $\operatorname{polar}(M) = \{a : \sup_{x \in M} \langle a, x \rangle \le 0\}.$

- 15. Let L be a linear subspace in \mathbb{R}^n . Show that $\text{polar}(L) = L^{\perp}$, the orthogonal complement of L.
- 16. For an arbitrary norm $\|\cdot\|$ on \mathbb{R}^n , its dual norm $\|\cdot\|^*$ is defined is

$$\|a\|^* = \sup_{x:\|x\| \le 1} |\langle a, x \rangle| = \sup_{x \ne 0} \frac{|\langle a, x \rangle|}{\|x\|}$$

For $1 \le p < \infty$, the *p*-norm on \mathbb{R}^n is $||x||_p = (\sum_i |\xi_i|^p)^{1/p}; ||x||_\infty = \max_i |\xi_i|.$

- (a) Use Hölder's inequality to show that for $1 \leq p \leq \infty$, $\|\cdot\|_p^* = \|\cdot\|_q$, where 1/p + 1/q = 1.
- (b) Let A be a regular $n \times n$ matrix and $||x|| = ||Ax||_p$. Find $||a||^*$.
- (c) For $\gamma > 0$, let $M = \{x : ||x|| \le \gamma\}$. Find polar(M).
- (d) Let S be a symmetric positive definite matrix and $M = \{x : x'Sx \leq \gamma\}$. Find polar(M).
- 17. Let M be a convex set containing the origin. Prove that
 - (a) $int(M) \neq \emptyset$ if and only polar(M) does not contain straight lines.
 - (b) If M is closed, it is a cone if and only if polar(M) is a (closed) cone.
- 18. For a non-empty subset M of \mathbb{R}^n , the polar and dual cones M° and M^* are given by

$$M^{\circ} = \{a : \sup_{x \in M} \langle a, x \rangle \le 0\}, \qquad M^* = \{a : \inf_{x \in M} \langle a, x \rangle \ge 0\} = -M^{\circ},$$

respectively. Show that both M° and M^{*} are closed convex cones.

19. Let M be a convex cone in \mathbb{R}^n , and M^* its dual cone. Prove that M is *solid* (i.e., has non-empty interior) if and only if M^* is *pointed* (i.e., does not contain lines), and that

 $\operatorname{int}(M) = \{ x : \langle a, x \rangle > 0 \text{ for all non-zero } a \in M^* \}.$

From this, conclude that M is a pointed solid closed convex cone if and only if its dual has the same properties.

- 20. Let M be a convex set in \mathbb{R}^n and $x \in M$. Prove that
 - (a) x is extreme if and only if $x \pm h \in M$ implies that h is the zero vector;
 - (b) x is extreme if and only if $M \setminus \{x\}$ is convex.
- 21. Let M be a convex set in \mathbb{R}^n . The set $rec(M) = \{h : M + h \subseteq M\}$ is called the recession cone of M. Show that
 - (a) rec(M) is indeed a cone;
 - (b) If M is closed, rec(M) is closed;
 - (c) If M is closed, $\operatorname{rec}(M)$ is the set of all h for which $x + \operatorname{cone}(h) \subseteq M$ for some $x \in M$;
 - (d) M + rec(M) = M.
- 22. Let M be a closed non-empty convex set in \mathbb{R}^n . Provide that $rec(M) \neq \{0\}$ if and only if M is unbounded.

- 23. Consider the space $\mathbb{R}^{n \times n}$ of square $n \times n$ matrices with real entries, and its subsets \mathbb{S}^n , the set of all symmetric matrices (for which A = A'), and \mathbb{J}^n , the set of all skew-symmetric matrices (for which A = -A').
 - (a) Show that \mathbb{S}^n and \mathbb{J}^n are linear subspaces of $\mathbb{R}^{n \times n}$.
 - (b) Find the dimension of \mathbb{S}^n , and a basis for it.
 - (c) Find the dimension of \mathbb{J}^n , and a basis for it.
 - (d) What are the sum and the intersection of \mathbb{S}^n and \mathbb{J}^n ?
- 24. Let $L = \{x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n : \sum_i \xi_i = 0\}$. What is the orthogonal complement of L?
- 25. Let L_1 and L_2 be linear subspaces of \mathbb{R}^n . Show that

$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}, \qquad (L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}.$$

26. Consider the space $\mathbb{R}^{m \times n}$ of real-valued $m \times n$ matrices equipped with the "standard" inner product (Frobenius product)

$$\langle A, B \rangle = \sum_{i,j} \alpha_{ij} \beta_{ij}.$$

- (a) Verify that the Frobenius product can be written as $\langle A, B \rangle = tr(A'B) = tr(AB')$, where "tr" is the trace (the sum of the diagonal elements) of a square matrix.
- (b) Build an orthonormal basis of the linear subspace \mathbb{S}^n of symmetric matrices in $\mathbb{R}^{n \times n}$.
- (c) What is the orthogonal complement of \mathbb{S}^n in $\mathbb{R}^{n \times n}$?
- (d) Find the orthogonal decomposition of A = [1, 2; 3, 4] with respect to \mathbb{S}^2 .
- 27. Let M be a convex cone. Prove that the largest linear subspace contained in M is $M \cap (-M)$, and that the smallest linear subspace containing M is $M M = \operatorname{aff}(M)$.
- 28. Let K_1, \ldots, K_m be cones. Show that $(K_1 + \cdots + K_m)^\circ = K_1^\circ \cap \cdots \cap K_m^0$.
- 29. Find the dual cones of cone($\{a_1, \ldots, a_m\}$) and $\{y = Ax : x \ge 0\}$, where $a_1, \ldots, a_m \in \mathbb{R}^m$ and $A \in \mathbb{R}^{n \times m}$, respectively.
- 30. Let $K = \{x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n : 0 \le \xi_1 \le \dots \le \xi_n\}$. Show that K is a cone, and determine its polar cone K° .
- 31. Let S be a subset of \mathbb{R}^n , and $K = \bigcap_{s \in S} \{x : \langle s, x \rangle \ge 0\}$. Show that K is a closed convex cone with dual $K^* = \operatorname{cl}(\operatorname{cone}(S))$.
- 32. Let \mathbb{S}^n_+ be the set of all positive semidefinite $n \times n$ matrices. Show that \mathbb{S}^n_+ is a self-dual closed convex cone in \mathbb{S}^n .
- 33. Let K be a closed convex cone. Show that K is self-dual iff $\langle x, y \rangle \ge 0$ for all $x, y \in K$ and $\langle u, v \rangle \ge 0$ for all $u, v \in K^*$.

- 34. Let \mathbb{D}^n be the set of all doubly stochastic $n \times n$ matrices A, i.e., the matrices with non-negative entries and all row and column sums one. Show that \mathbb{D}^n is convex and all permutation matrices (i.e., binary doubly stochastic matrices) are extreme points of \mathbb{D}^n .
- 35. A matrix $A \in \mathbb{S}^n$ is *co-positive* if $x'Ax \ge 0$ for all $x \ge 0$. Show that the set K of all co-positive matrices is a solid pointed closed convex cone in \mathbb{S}^n , and find its dual cone. *Hint.* Express K as an intersection of convex cones.
- 36. A symmetric $n \times n$ matrix A = is a Euclidean distance matrix if it has the form $A = [||y_i y_j||_2^2]_{1 \le i,j \le n}$ for some $y_1, \ldots, y_n \in \mathbb{R}^k$ and some k. One can show that A is a Euclidean distance matrix if and only if it has zero diagonal and $x'Ax \le 0$ for all x with 1'x = 0 (where 1 denotes the vector of all ones). Show that the set K of Euclidean distance matrices is a convex cone in \mathbb{S}^n , and find its dual cone.

Hint. Express K as an intersection of convex cones.

- 37. Let K_1 and K_2 be closed convex cones. Show that $K_1 \subseteq K_2$ if and only of $K_2^* \subseteq K_1^*$. What does this give for $K_1 = \operatorname{cone}(\{a\})$ and $K_2 = \operatorname{cone}(\{a_1, \ldots, a_m\})$ with $a, a_1, \ldots, a_m \in \mathbb{R}^n$?
- 38. Let K be a closed convex cone in \mathbb{R}^n . Prove that every $x \in \mathbb{R}^n$ can be represented as

$$x = \Pi_K(x) + \Pi_{K^\circ}(x), \qquad \langle \Pi_K(x), \Pi_{K^\circ}(x) \rangle = 0.$$

- 39. Let K be a convex cone, and define the relation \preceq_K by $x \preceq_K y$ iff $y x \in K$.
 - (a) Show that \preceq_K is reflexive and transitive, and preserved under taking conic combinations (i.e., if $x_i \preceq_K y_i$ and $\lambda_i \ge 0$ for all i, then $\sum_i \lambda_i x_i \preceq_K \sum_i \lambda_i y_i$).
 - (b) Show that if K is pointed, \preceq_K is anti-symmetric and hence an partial order relation ("generalized inequality relation"). When is it a linear order relation?
 - (c) Show that if K is closed, \preceq_K is preserved under limits (i.e, if $x_i \preceq_K y_i$ for all i and $x = \lim_i x_i$ and $y = \lim_i y_i$, then $x \preceq_K y$).
 - (d) Show that if K is closed, then $x \preceq_K y$ iff $\langle a, x \rangle \leq \langle a, y \rangle$ for all $a \succeq_{K^*} 0$.

(If K is solid, one can also define a generalized strict inequality relation by $x \prec_K y$ iff $y - x \in int(K)$. Thus, one typically considers *proper* (closed convex solid and pointed) cones for definining generalized inequality relations.)

40. Let C be a closed convex set containing the origin. Show that

$$\operatorname{rec}(C) = \bigcap_{\epsilon > 0} \epsilon C = \{h : h/\epsilon \in C \text{ for all } \epsilon > 0\}$$

and conclude that rec(C) is the largest closed convex cone contained in C.

41. Let C and C° be a polar pair of closed convex sets containing the origin. Prove that the recession cone of C and the closure of $\operatorname{cone}(C^{\circ})$ are polar to each other, and the lineality space of C (the set of all y such that for all $x \in C$, the line through x in the direction of y is contained in C) and $\operatorname{lin}(C^{\circ})$ are orthogonally complementary to each other Dually, also, with C and C° interchanged. 42. Suppose f is defined on $S \subseteq \mathbb{R}^n$ with values in the extended reals $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Let

$$\operatorname{epi}(f) = \{(x,\tau) : x \in S, \tau \in \mathbb{R}, f(x) \le \tau\}$$

be the epigraph of f and

$$\operatorname{dom}(f) = \{x: \exists \tau \text{ such that } (x,\tau) \in \operatorname{epi}(f)\} = \{x: x \in S, f(x) < \infty\}$$

be the (essential) domain of f. We say that f is convex on S iff epi(f) is a convex set. Show that this implies that dom(f) is a convex set.

- 43. Suppose a (convex) function $f: S \to \overline{\mathbb{R}}$ is called *proper* iff $\operatorname{epi}(f)$ is non-empty and contains no vertical lines. Show that this is equivalent to $f(x) > -\infty$ for all $x \in S$ and $f(x) < \infty$ for some $x \in S$.
- 44. Show that $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is lower semicontinuous iff $\operatorname{epi}(f)$ is closed.
- 45. Let $f(x) = \|\cdot\|$ be a norm on \mathbb{R}^n . Show that its epigraph K is a cone in \mathbb{R}^{n+1} , and that its polar cone has the form

$$K^{\circ} = \{ (a, \mu) : a \in \mathbb{R}^{n}, \mu \in \mathbb{R}, \mu \leq - \|a\|_{*} \}.$$

- 46. Let Z be a set in \mathbb{R}^n and $\|\cdot\|$ be a norm in \mathbb{R}^n . Show that $x \mapsto \sup_{z \in Z} \|x z\|$ is convex, and that if Z is convex, $x \mapsto \inf_{z \in Z} \|x z\|$ is convex.
- 47. The convex hull of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$g(x) = \inf\{\{\tau : (x,\tau) \in \operatorname{conv}(\operatorname{epi}(f))\}\}.$$

Show that g is the greatest convex minorant of f, i.e., that g is convex and that $h \leq g$ for all convex $h \leq f$.

48. For a vector $x = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$ we define $\xi_{[j]}, j = 1, \ldots, n$ as its ordered coordinates:

 $\xi_{[1]} \geq \cdots \geq \xi_{[n]}.$

Prove that for all $1 \le k \le n$ the function $f_k(x) = \sum_{j=1}^k \xi_{[j]}$ is convex, and calculate its subdifferential.

49. Let Y be a compact convex polyhedron in \mathbb{R}^m and A be an $n \times m$ matrix. Prove that the function $F : \mathbb{R}^n \to \mathbb{R}$ defined by

 $F(x) = \max_{y \in Y} \langle x, Ay \rangle$

is convex, and calculate its subdifferential.

- 50. Let C be a closed convex set in \mathbb{R}^n and δ_C its *indicator function*, i.e., $\delta_C(x) = 0$ if $x \in C$, and ∞ otherwise. Show that the subdifferential of δ_C at $x \in C$ is given by $\partial \delta_C(x) = (\operatorname{cone}(C x))^\circ$.
- 51. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Show that the subdifferential of $\|\cdot\|$ at x is given by

 $\partial \|x\| = \{a \in \mathbb{R}^n : \|a\|_* \le 1, \langle a, x \rangle = \|x\|\}.$

In particular, what are the subdifferentials of the 1-norm and ∞ -norm at x = 0?

- 52. Show that a function f on \mathbb{R}^n is positively homogeneous if and only if its epigraph $\operatorname{epi}(f)$ is a cone.
- 53. Prove that a convex function f is continuous at a point $x \in \text{dom}(f)$ if and only if $(x, f(x) + \epsilon) \in \text{int}(\text{epi}(f))$ for some (all) $\epsilon > 0$.
- 54. Show that for any convex function f, ri(epi(f)) consists of the points (x, τ) for which $x \in ri(dom(f))$ and $f(x) < \tau < \infty$.
- 55. For a non-empty subset Z of \mathbb{R}^n , let

 $K_Z(x) = \operatorname{cone}(Z - x)$

be the radial cone of Z at x. Show that if Z is convex, $K_Z(x)$ is the convex cone of all feasible directions h for which $x + \epsilon h \in Z$ for all ϵ sufficiently small. Determine $K_Z(x)$ for a closed convex cone Z and $x \in Z$.

- 56. For $f : \mathbb{R}^n \to (-\infty, \infty]$ and $x \in \text{dom}(f)$, determine the normal cone of epi(f) at (x, f(x)).
- 57. Show that the subdifferential is a closed convex set.
- 58. Show that if f is a convex function and $x \in ri(dom(f))$, then the subdifferential $\partial f(x)$ is non-empty.
- 59. Let f be a convex function, and $x \in \text{dom}(f)$. Show that for each y, the function $\lambda \mapsto (f(x+\lambda y) f(x))/\lambda$ is non-decreasing for $\lambda > 0$, so that the one-sided directional derivative

$$f'(x;y) = \lim_{\lambda \to 0+} \frac{f(x+\lambda y) - f(x)}{\lambda}$$

exists and is given by

$$f'(x;y) = \inf_{\lambda>0} \frac{f(x+\lambda y) - f(x)}{\lambda}.$$

Moreover, $y \mapsto f'(x, y)$ is a positively homogeneous convex function with f'(x; 0) = 0and $-f'(x; -y) \leq f'(x; y)$.

60. Let f be a proper convex function. Show that the recession cone rec(epi(f)) is the epigraph of some function g, the recession function rec(f) of f. Prove that rec(f) is a positively homogeneous proper convex function, and that for all y,

$$\operatorname{rec}(f)(y) = \sup\{f(x+y) - f(x) : x \in \operatorname{dom}(f)\}.$$

Finally, show that if f is closed, $\operatorname{rec}(f)$ is closed too, and for any $x \in \operatorname{dom}(f)$,

$$\operatorname{rec}(f)(y) = \sup_{\lambda > 0} \frac{f(x + \lambda y) - f(x)}{\lambda} = \lim_{\lambda \to \infty} \frac{f(x + \lambda y) - f(x)}{\lambda}.$$

61. Use the fact that a closed convex set is the intersection of all closed halfspaces containing it to show that a closed convex function f is the pointwise supremum of the family of all affine functions h for which $h \leq f$.

- 62. The support function σ_Z of a set Z in \mathbb{R}^n is defined as $\sigma_Z(x) = \sup_{z \in Z} \langle x, z \rangle$. Show that for arbitrary Z, σ_Z is convex and satisfies $\sigma_Z = \sigma_{\operatorname{conv}(Z)}$, and that for arbitrary Z and Y, $\sigma_{Z+Y} = \sigma_Z + \sigma_Y$ and $\sigma_{Z\cup Y} = \max(\sigma_Z, \sigma_Y)$.
- 63. Show that for arbitrary sets Z in \mathbb{R}^n , the conjugate of the indicator function of Z is the support function of Z, i.e., $\delta_Z^* = \sigma_Z$.
- 64. Let K be a convex cone in \mathbb{R}^n . Show that the conjugate δ_K^* of its indicator function is the indicator function δ_{K° of its polar cone.
- 65. Let $\|\cdot\|$ be a norm on \mathbb{R}^n and B its unit ball. Show that the conjugate δ_B^* of the indicator function of B is the dual norm $\|\cdot\|_*$, and that the conjugate of the norm is the indicator function δ_{B_*} of the dual unit ball.
- 66. Show that if f is a positively homogeneous function on \mathbb{R}^n (i.e., $f(\lambda x) = \lambda f(x)$ for all $\lambda > 0$), its conjugate f^* is the indicator function δ_Y of the set $Y = \{y : \langle y, x \rangle \leq f(x) \text{ for all } x \in \mathbb{R}^n\}$. Use this to determine the conjugate σ_C^* of the support function of a non-empty closed convex set C.
- 67. The gauge (or Minkowski) function of a set Z in \mathbb{R}^n is defined as $\gamma_Z(x) = \inf(\{\tau > 0 : x/\tau \in Z\})$. Show that γ_Z is positively homogeneous and that, for convex Z, γ_Z is convex, and determine the conjugate γ_Z^* of γ_Z .
- 68. Let $A \in \mathbb{S}_{++}^n$ be a positive definite symmetric $n \times n$ matrix. Calculate the conjugate function to $f_A(x) = \langle x, Ax \rangle /2$.
- 69. Let Z be a closed convex set in \mathbb{R}^n and let

 $f(x) = \|x\|_2^2 - \min_{z \in Z} \|x - z\|_2^2.$

Show that f is convex.

Hint. Represent f using a conjugate of a convex function.

70. Let Z be a closed convex set in \mathbb{R}^n and let

$$f(x) = \operatorname{dist}(x, Z) = \min_{z \in Z} \|x - z\|$$

where $\|\cdot\|$ is a norm in \mathbb{R}^n . Prove that the conjugate function f^* is the sum of the support function σ_Z of Z (given by $\sigma_Z(a) = \sup_{z \in Z} \langle a, z \rangle$) and the indicator function δ_{B_*} of the dual unit ball B_* . Use this result to calculate the subdifferential of f. In particular, what is the subdifferential of $f(x) = \min_{z \in Z} ||x - z||_2$ at $x \notin Z$?