
Nonlinear Optimization Exercises

1. Prove that the solution set S of an arbitrary (possibly infinite) system a′αx ≤ bα,
α ∈ A of linear inequalities for x ∈ Rn is convex.

2. Prove that unit balls of norms on Rn are exactly the same as convex sets V in Rn
satisfying the following three properties:

(a) V is symmetric with respect to the origin;

(b) V is bounded and closed;

(c) V contains a neighborhood of the origin.

A set V satisfying the outlined properties is the unit ball of the norm ‖x‖ = inf{t ≥
0 : x/t ∈ V }.

3. Prove that if M is a convex set in Rn and ε > 0, then for every norm on Rn, the
ε-neighborhood of M , i.e., the set

Mε = {y ∈ Rn : inf
x∈M
‖y − x‖ ≤ ε}

is convex.

4. Prove that a set M in Rn is convex if and only of it is closed with respect to taking
all convex combinations of its elements.

5. Prove that for nonempty M ⊂ Rn, the convex hull conv(M), defined as the intersection
of all convex sets containing M , is the set of all convex combinations of vectors from
M .

6. Prove that a nonempty subset M of Rn is a cone if and only of it is conic (i.e., x ∈M
and t ≥ 0 implies tx ∈ M) and closed with respect to addition (i.e., x, y ∈ M implies
x+ y ∈M).

7. Prove that the following operations preserve convexity of sets:

(a) Intersection: if (Mα)α∈A are convex sets, so is
⋂
α∈AMα.

(b) Direct product: if M1 ⊂ Rn1 and M2 ⊂ Rn2 are convex, so is

M1 ×M2 = {y = (y1, y2) : y1 ∈M1, y2 ∈M2}.

(c) Linear combination: if λ1, . . . , λk are arbitrary reals, and M1, . . . ,Mk are convex
sets in Rn, so is

λ1M1 + · · ·+ λkMk = {λ1x1 + · · ·λkxk : xi ∈Mi, i = 1, . . . , k}.

(d) Taking the image under affine mapping: if M ⊂ Rn is convex and x 7→ A(x) =
Ax+ b is an affine mapping from Rn to Rm, then

A(M) = {y = A(x) : x ∈M}

is a convex set in Rm.
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(e) Taking the inverse image under affine mapping: if M ⊂ Rn is convex and y 7→
A(y) = Ay + b is an affine mapping from Rm to Rn, then

A−1(M) = {y : A(y) ∈M}

is a convex set in Rm.

8. Prove that the relative interior of a simplex with vertices y0, . . . , ym is exactly the set
{x =

∑m
i=0 λiyi : λi > 0, i = 0, . . . ,m;

∑m
i=0 λi = 1}.

9. Let S1, . . . , SN be a family of N convex sets in Rn, and let m be the affine dimension
of aff(S1 ∪ · · · ∪ SN ). Assume that every m + 1 sets from the family have a point in
common. Prove that all sets from the family have a point in common.

10. Let S and T be nonempty convex sets in Rn. Prove that a linear form a separates S
and T if and only if

sup
x∈S

a′x ≤ inf
y∈T

a′y, inf
x∈S

a′x < sup
y∈T

a′y.

The separation is strong if and only if supx∈S a
′x < infy∈T a

′y.

11. Let S = {x = (ξ1, ξ2) ∈ R2 : ξ1 > 0, ξ2 ≥ 1/ξ1} and T = {x ∈ R2 : ξ1 < 0, ξ2 ≥ −1/ξ1}.
Can S and T be separated? Can they be strongly separated?

12. Use the Separation Theorem to prove that every closed convex set in Rn is the solution
of a (perhaps infinite) system of non-strict linear inequalities.

13. Provide an alternative proof of the Separation Theorem using the following approach.
Let S be a non-empty closed convex set in Rn.

(a) Prove that if x is a point in Rn, then there is a unique ΠS(x) in S (the projection
of x on S), so that min{‖x− y‖2 : y ∈ S} = ‖x−ΠS(x)‖2.

(b) Next, show that if x 6∈ S, then the linear form e = x− ΠS(x) strongly separates
{x} and S:

max
y∈S

e′y = e′ΠS(x) = e′x− e′e < e′x,

thus getting a direct proof of the possibility to strongly separate a non-empty
closed convex set and a point outside this set.

(c) From this, derive the Separation Theorem.

14. For a non-empty subset M of Rn, let

polar(M) = {a : supx∈M 〈a, x〉 ≤ 1}

be the polar (set) of M . Prove that

(a) polar(M) is a closed convex set containing the origin.

(b) polar(M) = polar(cl(M)).

(c) M is bounded if and only if 0 ∈ int(polar(M)).

(d) If M is a cone or if polar(M) is a cone, then

polar(M) = {a : supx∈M 〈a, x〉 ≤ 0}.
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15. Let L be a linear subspace in Rn. Show that polar(L) = L⊥, the orthogonal comple-
ment of L.

16. For an arbitrary norm ‖ · ‖ on Rn, its dual norm ‖ · ‖∗ is defined is

‖a‖∗ = sup
x:‖x‖≤1

| 〈a, x〉 | = sup
x 6=0

| 〈a, x〉 |
‖x‖

.

For 1 ≤ p <∞, the p-norm on Rn is ‖x‖p = (
∑
i |ξi|p)

1/p
; ‖x‖∞ = maxi |ξi|.

(a) Use Hölder’s inequality to show that for 1 ≤ p ≤ ∞, ‖ · ‖∗p = ‖ · ‖q, where
1/p+ 1/q = 1.

(b) Let A be a regular n× n matrix and ‖x‖ = ‖Ax‖p. Find ‖a‖∗.
(c) For γ > 0, let M = {x : ‖x‖ ≤ γ}. Find polar(M).

(d) Let S be a symmetric positive definite matrix and M = {x : x′Sx ≤ γ}. Find
polar(M).

17. Let M be a convex set containing the origin. Prove that

(a) int(M) 6= ∅ if and only polar(M) does not contain straight lines.

(b) If M is closed, it is a cone if and only if polar(M) is a (closed) cone.

18. For a non-empty subset M of Rn, the polar and dual cones M◦ and M∗ are given by

M◦ = {a : supx∈M 〈a, x〉 ≤ 0}, M∗ = {a : infx∈M 〈a, x〉 ≥ 0} = −M◦,

respectively. Show that both M◦ and M∗ are closed convex cones.

19. Let M be a convex cone in Rn, and M∗ its dual cone. Prove that M is solid (i.e, has
non-empty interior) if and only if M∗ is pointed (i.e., does not contain lines), and that

int(M) = {x : 〈a, x〉 > 0 for all non-zero a ∈M∗}.

From this, conclude that M is a pointed solid closed convex cone if and only if its dual
has the same properties.

20. Let M be a convex set in Rn and x ∈M . Prove that

(a) x is extreme if and only if x± h ∈M implies that h is the zero vector;

(b) x is extreme if and only if M \ {x} is convex.

21. Let M be a convex set in Rn. The set rec(M) = {h : M + h ⊆ M} is called the
recession cone of M . Show that

(a) rec(M) is indeed a cone;

(b) If M is closed, rec(M) is closed;

(c) If M is closed, rec(M) is the set of all h for which x + cone(h) ⊆ M for some
x ∈M ;

(d) M + rec(M) = M .

22. Let M be a closed non-empty convex set in Rn. Provide that rec(M) 6= {0} if and
only if M is unbounded.

3



23. Consider the space Rn×n of square n × n matrices with real entries, and its subsets
Sn, the set of all symmetric matrices (for which A = A′), and Jn, the set of all skew-
symmetric matrices (for which A = −A′).

(a) Show that Sn and Jn are linear subspaces of Rn×n.

(b) Find the dimension of Sn, and a basis for it.

(c) Find the dimension of Jn, and a basis for it.

(d) What are the sum and the intersection of Sn and Jn?

24. Let L = {x = (ξ1, . . . , ξn) ∈ Rn :
∑
i ξi = 0}. What is the orthogonal complement of

L?

25. Let L1 and L2 be linear subspaces of Rn. Show that

(L1 + L2)⊥ = L⊥1 ∩ L⊥2 , (L1 ∩ L2)⊥ = L⊥1 + L⊥2 .

26. Consider the space Rm×n of real-valued m×n matrices equipped with the “standard”
inner product (Frobenius product)

〈A,B〉 =
∑
i,j

αijβij .

(a) Verify that the Frobenius product can be written as 〈A,B〉 = tr(A′B) = tr(AB′),
where “tr” is the trace (the sum of the diagonal elements) of a square matrix.

(b) Build an orthonormal basis of the linear subspace Sn of symmetric matrices in
Rn×n.

(c) What is the orthogonal complement of Sn in Rn×n?

(d) Find the orthogonal decomposition of A = [1, 2; 3, 4] with respect to S2.

27. Let M be a convex cone. Prove that the largest linear subspace contained in M is
M ∩ (−M), and that the smallest linear subspace containing M is M −M = aff(M).

28. Let K1, . . . ,Km be cones. Show that (K1 + · · ·+Km)◦ = K◦1 ∩ · · · ∩K0
m.

29. Find the dual cones of cone({a1, . . . , am}) and {y = Ax : x ≥ 0}, where a1, . . . , am ∈
Rm and A ∈ Rn×m, respectively.

30. Let K = {x = (ξ1, . . . , ξn) ∈ Rn : 0 ≤ ξ1 ≤ · · · ≤ ξn}. Show that K is a cone, and
determine its polar cone K◦.

31. Let S be a subset of Rn, and K =
⋂
s∈S{x : 〈s, x〉 ≥ 0}. Show that K is a closed

convex cone with dual K∗ = cl(cone(S)).

32. Let Sn+ be the set of all positive semidefinite n×n matrices. Show that Sn+ is a self-dual
closed convex cone in Sn.

33. Let K be a closed convex cone. Show that K is self-dual iff 〈x, y〉 ≥ 0 for all x, y ∈ K
and 〈u, v〉 ≥ 0 for all u, v ∈ K∗.
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34. Let Dn be the set of all doubly stochastic n × n matrices A, i.e., the matrices with
non-negative entries and all row and column sums one. Show that Dn is convex and
all permutation matrices (i.e., binary doubly stochastic matrices) are extreme points
of Dn.

35. A matrix A ∈ Sn is co-positive if x′Ax ≥ 0 for all x ≥ 0. Show that the set K of all
co-positive matrices is a solid pointed closed convex cone in Sn, and find its dual cone.

Hint. Express K as an intersection of convex cones.

36. A symmetric n × n matrix A = is a Euclidean distance matrix if it has the form
A = [‖yi − yj‖22]1≤i,j≤n for some y1, . . . , yn ∈ Rk and some k. One can show that A
is a Euclidean distance matrix if and only if it has zero diagonal and x′Ax ≤ 0 for
all x with 1′x = 0 (where 1 denotes the vector of all ones). Show that the set K of
Euclidean distance matrices is a convex cone in Sn, and find its dual cone.

Hint. Express K as an intersection of convex cones.

37. Let K1 and K2 be closed convex cones. Show that K1 ⊆ K2 if and only of K∗2 ⊆
K∗1 . What does this give for K1 = cone({a}) and K2 = cone({a1, . . . , am}) with
a, a1, . . . , am ∈ Rn?

38. Let K be a closed convex cone in Rn. Prove that every x ∈ Rn can be represented as

x = ΠK(x) + ΠK◦(x), 〈ΠK(x),ΠK◦(x)〉 = 0.

39. Let K be a convex cone, and define the relation �K by x �K y iff y − x ∈ K.

(a) Show that �K is reflexive and transitive, and preserved under taking conic com-
binations (i.e., if xi �K yi and λi ≥ 0 for all i, then

∑
i λixi �K

∑
i λiyi).

(b) Show that if K is pointed, �K is anti-symmetric and hence an partial order
relation (“generalized inequality relation”). When is it a linear order relation?

(c) Show that if K is closed, �K is preserved under limits (i.e, if xi �K yi for all i
and x = limi xi and y = limi yi, then x �K y).

(d) Show that if K is closed, then x �K y iff 〈a, x〉 ≤ 〈a, y〉 for all a �K∗ 0.

(If K is solid, one can also define a generalized strict inequality relation by x ≺K y iff
y−x ∈ int(K). Thus, one typically considers proper (closed convex solid and pointed)
cones for definining generalized inequality relations.)

40. Let C be a closed convex set containing the origin. Show that

rec(C) =
⋂

ε>0
εC = {h : h/ε ∈ C for all ε > 0}

and conclude that rec(C) is the largest closed convex cone contained in C.

41. Let C and C◦ be a polar pair of closed convex sets containing the origin. Prove that
the recession cone of C and the closure of cone(C◦) are polar to each other, and the
lineality space of C (the set of all y such that for all x ∈ C, the line through x in the
direction of y is contained in C) and lin(C◦) are orthogonally complementary to each
other Dually, also, with C and C◦ interchanged.
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42. Suppose f is defined on S ⊆ Rn with values in the extended reals R = R∪{±∞}. Let

epi(f) = {(x, τ) : x ∈ S, τ ∈ R, f(x) ≤ τ}

be the epigraph of f and

dom(f) = {x : ∃τ such that (x, τ) ∈ epi(f)} = {x : x ∈ S, f(x) <∞}

be the (essential) domain of f . We say that f is convex on S iff epi(f) is a convex set.
Show that this implies that dom(f) is a convex set.

43. Suppose a (convex) function f : S → R is called proper iff epi(f) is non-empty and
contains no vertical lines. Show that this is equivalent to f(x) > −∞ for all x ∈ S
and f(x) <∞ for some x ∈ S.

44. Show that f : Rn → R is lower semicontinuous iff epi(f) is closed.

45. Let f(x) = ‖ · ‖ be a norm on Rn. Show that its epigraph K is a cone in Rn+1, and
that its polar cone has the form

K◦ = {(a, µ) : a ∈ Rn, µ ∈ R, µ ≤ −‖a‖∗}.

46. Let Z be a set in Rn and ‖ · ‖ be a norm in Rn. Show that x 7→ supz∈Z ‖x − z‖ is
convex, and that if Z is convex, x 7→ infz∈Z ‖x− z‖ is convex.

47. The convex hull of a function f : Rn → R is defined as

g(x) = inf({τ : (x, τ) ∈ conv(epi(f))}).

Show that g is the greatest convex minorant of f , i.e., that g is convex and that h ≤ g
for all convex h ≤ f .

48. For a vector x = (ξ1, . . . , ξn) ∈ Rn we define ξ[j], j = 1, . . . , n as its ordered coordinates:

ξ[1] ≥ · · · ≥ ξ[n].

Prove that for all 1 ≤ k ≤ n the function fk(x) =
∑k
j=1 ξ[j] is convex, and calculate

its subdifferential.

49. Let Y be a compact convex polyhedron in Rm and A be an n×m matrix. Prove that
the function F : Rn → R defined by

F (x) = maxy∈Y 〈x,Ay〉

is convex, and calculate its subdifferential.

50. Let C be a closed convex set in Rn and δC its indicator function, i.e., δC(x) = 0 if
x ∈ C, and ∞ otherwise. Show that the subdifferential of δC at x ∈ C is given by
∂δC(x) = (cone(C − x))◦.

51. Let ‖ · ‖ be a norm on Rn. Show that the subdifferential of ‖ · ‖ at x is given by

∂‖x‖ = {a ∈ Rn : ‖a‖∗ ≤ 1, 〈a, x〉 = ‖x‖}.

In particular, what are the subdifferentials of the 1-norm and ∞-norm at x = 0?
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52. Show that a function f on Rn is positively homogeneous if and only if its epigraph
epi(f) is a cone.

53. Prove that a convex function f is continuous at a point x ∈ dom(f) if and only if
(x, f(x) + ε) ∈ int(epi(f)) for some (all) ε > 0.

54. Show that for any convex function f , ri(epi(f)) consists of the points (x, τ) for which
x ∈ ri(dom(f)) and f(x) < τ <∞.

55. For a non-empty subset Z of Rn, let

KZ(x) = cone(Z − x)

be the radial cone of Z at x. Show that if Z is convex, KZ(x) is the convex cone of all
feasible directions h for which x+ εh ∈ Z for all ε sufficiently small. Determine KZ(x)
for a closed convex cone Z and x ∈ Z.

56. For f : Rn → (−∞,∞] and x ∈ dom(f), determine the normal cone of epi(f) at
(x, f(x)).

57. Show that the subdifferential is a closed convex set.

58. Show that if f is a convex function and x ∈ ri(dom(f)), then the subdifferential ∂f(x)
is non-empty.

59. Let f be a convex function, and x ∈ dom(f). Show that for each y, the function
λ 7→ (f(x+λy)−f(x))/λ is non-decreasing for λ > 0, so that the one-sided directional
derivative

f ′(x; y) = lim
λ→0+

f(x+ λy)− f(x)

λ

exists and is given by

f ′(x; y) = inf
λ>0

f(x+ λy)− f(x)

λ
.

Moreover, y 7→ f ′(x, y) is a positively homogeneous convex function with f ′(x; 0) = 0
and −f ′(x;−y) ≤ f ′(x; y).

60. Let f be a proper convex function. Show that the recession cone rec(epi(f)) is the
epigraph of some function g, the recession function rec(f) of f . Prove that rec(f) is a
positively homogeneous proper convex function, and that for all y,

rec(f)(y) = sup{f(x+ y)− f(x) : x ∈ dom(f)}.

Finally, show that if f is closed, rec(f) is closed too, and for any x ∈ dom(f),

rec(f)(y) = sup
λ>0

f(x+ λy)− f(x)

λ
= lim
λ→∞

f(x+ λy)− f(x)

λ
.

61. Use the fact that a closed convex set is the intersection of all closed halfspaces con-
taining it to show that a closed convex function f is the pointwise supremum of the
family of all affine functions h for which h ≤ f .
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62. The support function σZ of a set Z in Rn is defined as σZ(x) = supz∈Z 〈x, z〉. Show
that for arbitrary Z, σZ is convex and satisfies σZ = σconv(Z), and that for arbitrary
Z and Y , σZ+Y = σZ + σY and σZ∪Y = max(σZ , σY ).

63. Show that for arbitrary sets Z in Rn, the conjugate of the indicator function of Z is
the support function of Z, i.e., δ∗Z = σZ .

64. Let K be a convex cone in Rn. Show that the conjugate δ∗K of its indicator function
is the indicator function δK◦ of its polar cone.

65. Let ‖ · ‖ be a norm on Rn and B its unit ball. Show that the conjugate δ∗B of the
indicator function of B is the dual norm ‖ · ‖∗, and that the conjugate of the norm is
the indicator function δB∗ of the dual unit ball.

66. Show that if f is a positively homogeneous function on Rn (i.e., f(λx) = λf(x) for
all λ > 0), its conjugate f∗ is the indicator function δY of the set Y = {y : 〈y, x〉 ≤
f(x) for all x ∈ Rn}. Use this to determine the conjugate σ∗C of the support function
of a non-empty closed convex set C.

67. The gauge (or Minkowski) function of a set Z in Rn is defined as γZ(x) = inf({τ >
0 : x/τ ∈ Z}). Show that γZ is positively homogeneous and that, for convex Z, γZ is
convex, and determine the conjugate γ∗Z of γZ .

68. Let A ∈ Sn++ be a positive definite symmetric n × n matrix. Calculate the conjugate
function to fA(x) = 〈x,Ax〉 /2.

69. Let Z be a closed convex set in Rn and let

f(x) = ‖x‖22 −minz∈Z ‖x− z‖22.

Show that f is convex.

Hint. Represent f using a conjugate of a convex function.

70. Let Z be a closed convex set in Rn and let

f(x) = dist(x, Z) = minz∈Z ‖x− z‖

where ‖ · ‖ is a norm in Rn. Prove that the conjugate function f∗ is the sum of the
support function σZ of Z (given by σZ(a) = supz∈Z 〈a, z〉) and the indicator function
δB∗ of the dual unit ball B∗. Use this result to calculate the subdifferential of f . In
particular, what is the subdifferential of f(x) = minz∈Z ‖x− z‖2 at x 6∈ Z?
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