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Introduction

The results of regression methods are often not satisfactory due to lack of

Prediction accuracy: Estimates of LMs and GLMs have low bias, but high
variance. Prediction accuracy (which depends on the sum of variance and bias) can
sometimes be improved by reducing the variance, while increasing the bias. A
reduction in variance is achieved by shrinking estimates or setting them to 0, which
increases the bias.

Interpretability: With a large number of predictors, identifying a smaller subset
exhibiting the strongest effects might be of interest.
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Best-subset or stepwise selection

Best-Subset: Find for each k ∈ {0, 1, . . . , p} the subset of size k that gives the
best model fit (e.g. smallest RSS for a linear model).
The leaps-and-bounds algorithm makes this feasible for p as large as 30 or 40. See
for example package leaps.

Stepwise: A nested sequence of models is generated by adding or dropping terms
depending on the search performed:

Forward
Backward
Hybrid

Terms are added or removed as long as the performance criterion (e.g. AIC) is
improved. See for example step() in the base distribution and stepAIC() in
package MASS.
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OLS regression

The following optimization problem is solved in OLS regression

β̂OLS = argmin
β

{
∥y − Xβ∥22

}
= argmin

β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

 ,

i.e., the OLS estimator β̂OLS minimizes the residual sum-of-squares (RSS).

The solution is given in closed form by

β̂OLS = (X⊤X)−1X⊤y
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Shrinkage

Shrinkage methods add a complexity parameter which allows to gradually change
between a simple model (e.g., intercept only) to a complex model (e.g., the least
squares fit of all variables).

In general the optimization criterion is modified by adding a penalty.

Examples:

Ridge
LASSO (least absolute shrinkage and selection operator)
Subset selection
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Penalized regression

In general the optimization problem in linear penalized regression is given by

β̂pen = argmin
β

{
∥y − Xβ∥22 + λϕ(β)

}
= argmin

β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λϕ(β1, . . . , βp)

 ,

The parameter λ ≥ 0 is a complexity parameter, that controls the amount of
shrinkage.

The intercept β0 is in general not shrunken.

The function ϕ only depends on β, often on the“length”of β.

This approach is sometimes also referred to as regularization.
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Ridge regression

The following optimization problem is solved in Ridge regression

β̂Ridge = argmin
β

{
∥y − Xβ∥22 + λ∥β[−0]∥22

}
= argmin

β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

 .

The parameter λ ≥ 0 is a complexity parameter, that controls the amount of
shrinkage.

λ = 0: least squares fit.
λ = ∞: only a constant function β0 fit.
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Ridge regression / 2

An equivalent problem formulation is:

β̂Ridge = argmin
β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

 , subject to

p∑
j=1

β2
j ≤ t,

with a one-to-one correspondence between t and λ.

The intercept β0 is not shrunken.

Ridge regression alleviates the problem of poorly identified coefficients in case of
multicollinearity.

The Ridge solutions are not equivariant under scaling of the regressors.
⇒ One normally standardizes the regressors before analysis.
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Ridge regression / 3

The Ridge criterion can also be written as

RSS(β) = (y − Xβ)⊤(y − Xβ) + λβ⊤β,

with solution

β̂Ridge = (X⊤X+ λI)−1X⊤y,

where I is the p × p identity matrix.
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Ridge: Shrinkage effects

For orthonormal inputs:

β̂ridge =
β̂

1 + λ
.

Otherwise use the singular value decomposition

X = UDV⊤,

with

U a n × p orthogonal matrix,
V a p × p orthogonal matrix,
D a p × p diagonal matrix with d1 ≥ d2 ≥ . . . dp ≥ 0.

This gives

Xβ̂ridge = X(X⊤X+ λI)−1X⊤y = UD(D2 + λI)−1DU⊤y.
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Ridge: Shrinkage effects / 2

Ridge regression

projects y onto the principal components and
shrinks the coefficients of the low-variance components more than the
high-variance components.

The effective degrees of freedom are given by

df(λ) = tr[X(X⊤X+ λI)−1X⊤] = tr(Hλ) =

p∑
j=1

d2
j

d2
j + λ

.
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LASSO

The following optimization problem is solved in LASSO regression

β̂LASSO = argmin
β

{
∥y − Xβ∥22 + λ∥β[−0]∥1

}
= argmin

β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |

 .

This is equivalent to solving

β̂LASSO = argmin
β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

 , subject to

p∑
j=1

|βj | ≤ t.
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LASSO / 2

LASSO is the abbreviation for“least absolute shrinkage and selection operator”.

The LASSO replaces the L2 ridge penalty with the L1 penalty.

The parameter λ ≥ 0 is a complexity parameter, that controls the amount of
shrinkage.

The intercept β0 is not shrunken.

If t is sufficiently small, some of the coefficients will be exactly zero.

If t is larger than t0 =
∑p

j=1 |β̂j |, then the LASSO estimates are the OLS estimates

β̂j . If t = t0/2, the LASSO estimates are shrunken by 50% on average.

A standardized penalty parameter is given by

s =
t∑p

j=1 |β̂j |
,

with s ∈ [0, 1].
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LASSO / 3

The LASSO solutions are not equivariant under scaling of the regressors.
⇒ One normally standardizes the regressors before analysis.

The solution cannot be given in closed form, but efficient algorithms exist to
compute the entire path of solutions as λ is varied.
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Best subset selection

Regression with best subset selection obtains the estimates by adding a penalty in
dependence of the L0 norm of the regression coefficients:

β̂BSS = argmin
β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ∥β\0∥0

 ,

with the L0 norm being equal to the number of non-zero elements in a vector and
with λ ≥ 0 the complexity parameter.

An equivalent problem formulation is:

β̂BSS = argmin
β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

 , subject to ∥β\0∥0 ≤ t,

with a one-to-one correspondence between t and λ.
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Comparison

For orthonormal columns of the model matrix X the estimators are derived from the OLS
estimates β̂j by:

Estimator Formula

Best subset (size M) β̂j · I (rank(β̂j) ≤ M)

Ridge β̂j/(1 + λ)

LASSO sign(β̂j)(|β̂j | − λ)+

Bettina Grün Penalized Regression – 4 – 15 / 35



Comparison / 2

Best subset

(0, 0)

|β̂(M)|

Ridge

(0, 0)

LASSO

(0, 0)
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Comparison / 3

LASSO

β1

β2

β̂

Ridge

β1

β2

β̂
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Elastic net

The following optimization problem is solved in elastic net regression

β̂enet = argmin
β

{
∥y − Xβ∥22 + λ(α∥β[−0]∥22 + (1− α)∥β[−0]∥1)

}
= argmin

β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

 p∑
j=1

αβ2
j + (1− α)|βj |

 .

The parameter λ ≥ 0 is a complexity parameter, that controls the amount of
shrinkage. The parameter α ∈ [0, 1] determines the compromise between Ridge and
LASSO penalty.

The intercept β0 is not shrunken.

The elastic net solutions are not equivariant under scaling of the regressors.
⇒ One normally standardizes the regressors before analysis.
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Shrinkage methods: Estimation

Ridge:

Regression coefficient estimates are available in closed form for a given λ.

LASSO:

If λ decreases the coefficient values change in a piecewise linear fashion. The
slope only changes if coefficients leave or enter the set of active coefficients.
The entire path for all λ values can be determined in a computationally efficient
way using a similar algorithm as least angle regression (LAR).
Convex optimization problem (as ridge regression).
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Shrinkage methods: Estimation / 2

Best subset selection:

Use of an efficient branch and bound algorithm to avoid enumeration of all
subsets.
Exploits that in linear regression it holds for the residual sum of squares (RSS)
that

RSS(A) ≤ RSS(B),

where A is any set of independent variables and B is a subset of A.
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Degrees of freedom

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi , yi ).

For linear regression with p fixed predictors this gives: df(ŷ) = p.

For Ridge regression: df(ŷ) = tr(Hλ).

For LASSO df(ŷ) approximately equals the number of predictors in the model.

For best subset selection if p variables are selected: df(ŷ) ≥ p.
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Selection of shrinkage parameters

Testing / Training:

Split data in testing and training data.
Select shrinkage parameters such that prediction performance is optimal in the
training data.

K -fold cross-validation:

Split data in K subsets.
Fit model K times where each time one subset is omitted.
Evaluate the performance of the K models using the leave-out data.
Select the smallest model which does not perform significantly worse than the
best performing model.
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Relation to Bayesian estimation

Bayesian estimation determines the posterior distribution of a parameter given

prior beliefs and
observed data

by combining the prior distribution of the parameter with the likelihood function.

All regularization approaches can be seen as determining the maximum a-posteriori
estimates of the parameters using different prior distributions.
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Relation to Bayesian estimation / 2
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Software in R

Package glmnet:

Fits a generalized linear model via penalized maximum likelihood.

The regularization path is computed for the LASSO or elasticnet penalty at a grid of
values for the regularization parameter λ.

Implements k-fold cross-validation to select the hyperparameter λ.

No formula interface is provided.

By default an intercept is added and the covariates are standardized.
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Example: German Data Set

R> load("german.rda")

R> library("glmnet")

R> mf <- model.frame(Amount ~ . - Class, data = german)

R> X <- model.matrix(Amount ~ . - Class, data = mf)[, -1]

R> y <- model.response(mf)

LASSO:

R> model <- glmnet(X, y)
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Example: German Data Set / 2
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R> set.seed(1234)

R> cv.model <- cv.glmnet(X, y)
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Example: German Data Set / 3
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Ridge:

R> model <- glmnet(X, y, alpha = 0)
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Example: German Data Set / 4
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R> set.seed(1234)

R> cv.model <- cv.glmnet(X, y, alpha = 0)
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Example: German Data Set / 5
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Penalized GLMs

In general the optimization problem in penalized GLMs is given by

β̂pen = argmin
β

{−2ℓ(β|y,X) + λϕ(β)} ,

where twice the negative log-likelihood is penalized instead of the residual sum of squares.
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Example: German Data Set

R> mf <- model.frame(Class ~ ., data = german)

R> X <- model.matrix(Class ~ ., data = mf)[, -1]

R> y <- model.response(mf)

R> model <- glmnet(X, y, family = "binomial")
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Example: German Data Set / 2
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R> cv.model <- cv.glmnet(X, y, family = "binomial")

Bettina Grün Penalized Regression – 4 – 33 / 35



Example: German Data Set / 3
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Extensions

Grouped LASSO:

For categorical variables the LASSO penalizes the individual dummy variables
and selects them without taking into account that they belong to the same
categorical variable.
Impose a penalty on the norm of the subvector of regression coefficients for the
same categorical variable.

Other penalties: e.g.,

SCAD (smoothly clipped absolute deviation) to achieve that larger coefficients
are shrunken less.
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