
Introduction to the R-package:

ranger
A Fast Implementation of Random Forests

Group B

Data and Text Mining
QFin SS22

Date: 2022-04-21

Part I

Introduction

R-package: ranger 2022-04-21 Slide 2

Introduction

� ranger = "random forest generator"
� fast implementation of random forests (RF’s) for high dimensional

data, optimised by extensive runtime and memory profiling
� core is implemented in C++ and R package Rcpp was employed to

make the new implementation available as R package
� most of the features of the randomForest package are available and

new ones were added
� in addition to classification and regression forests, survival forests can

be grown
� class probabilities for multi-class classification problems can be

estimated

R-package: ranger 2022-04-21 Slide 3

Why need ranger?

Package / implementation Limitation(s)

original implementation (Fortran 77) has to be recompiled in case of
data/parameter value changes

randomForest (R) not optimised for the use with high-
dimensional data

Willows not optimised for number of features

party (R) shares weaknesses of randomForest and
Willows

bigrf (R) only classification forests can be grown
RandomForests licensing costs and closed source code
Random Jungle only available as C++ application
Rborist (R) and
randomForestSRC (R)

relatively large runtime when growing RF’s
on high-dimensional data

R-package: ranger 2022-04-21 Slide 4

Part II

Example

R-package: ranger 2022-04-21 Slide 5

Example - Set-up

Loading in ranger and german:

library(ranger)
load("~/WU/QFin/S3Q2/DataTextMining/R_Package_Project/Data/german.rda")

Constructing train and test sets (70/30 split):

set.seed(123)
train.index = sample(seq_len(nrow(german)),

size = floor(0.7 * nrow(german)))
train.german = german[train.index,]
test.german = german[-train.index,]

R-package: ranger 2022-04-21 Slide 6

Example - Interfaces

First, we train a classification random forest, with Class as the
dependent variable and all variables included in the set of potential
predictors.
We can call ranger, specifying formula and data:

rf = ranger(formula = Class ~ ., data = train.german)

Alternatively, we can specify dependent.variable.name and data:

rf = ranger(dependent.variable.name = "Class", data = train.german)

Else, we can supply predictor data (x) and response vector (y):

rf = ranger(x = train.german[, -21], y = train.german[, 21])

R-package: ranger 2022-04-21 Slide 7

Example - Hyperparameter values

Note, that we can set our own hyperparameter values to fit a RF by
specifying the corresponding argument values in ranger:

rf = ranger(formula = Class ~ ., data = train.german,

num.trees = 1000,
mtry = 5,
min.node.size = 3,
max.depth = 5)

As mentioned in one of the lectures, for bagging we set mtry equal to
the total number of predictors.
Let’s stick to the original specification with default values for simplicity:

rf = ranger(formula = Class ~ ., data = train.german)

R-package: ranger 2022-04-21 Slide 8

Example - ranger output

Applying the print method (for ranger objects) to rf yields a clean,
informative summary:

rf

Ranger result
##
Call:
ranger(formula = Class ~ ., data = train.german)
##
Type: Classification
Number of trees: 500
Sample size: 700
Number of independent variables: 20
Mtry: 4
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error: 25.43 %

R-package: ranger 2022-04-21 Slide 9

Example - ranger output

A ranger.forest object is written by default; to save memory one can
set write.forest = FALSE if no predictions are intended. Applying the
print method (for ranger.forest objects) yields:

rf$forest

Ranger forest object
##
Type: Classification
Number of trees: 500

Conveniently, we can access the train set confusion matrix, stored in
the output:

rf$confusion.matrix

predicted
true good bad
good 449 47
bad 131 73

R-package: ranger 2022-04-21 Slide 10

Example - Test set predictions

Objects of class ranger have their corresponding predict method. We
call predict and provide our ranger object and data:

test.ranger.prediction = predict(rf, data=test.german)

To obtain a matrix with terminal nodeIDs for all observations in dataset
and trees, include type = "terminalNodes".
Note, that we obtain an object from a different class:

class(test.ranger.prediction)

[1] "ranger.prediction"

R-package: ranger 2022-04-21 Slide 11

Example - Test set predictions ctd.

Applying the corresponding print method to test.ranger.prediction
yields:

test.ranger.prediction

Ranger prediction
##
Type: Classification
Sample size: 300
Number of independent variables: 20

Now, to extract the predictions we can call predictions and provide
this ranger.predict object as the only input:

test.pred = predictions(test.ranger.prediction)
head(test.pred)

[1] good good bad good good bad
Levels: good bad

R-package: ranger 2022-04-21 Slide 12

Example - Train set predictions

If we wish to make predictions on the train set, we can conveniently
access these as follows:

train.pred = predictions(rf)

R-package: ranger 2022-04-21 Slide 13

Example - Variable importance

By default, variable importance is not computed.

importance(rf)

Error in importance.ranger(rf): No variable importance found.
Please use ’importance’ option when growing the forest.

For classification, there are 3 choices for the value of importance
argument in ranger - "impurity", "impurity_corrected" and
"permutation".

R-package: ranger 2022-04-21 Slide 14

Example - "impurity" importance

For the simple Gini impurity measure, we set importance = "impurity":

rf = ranger(Class ~ ., data = german, importance = "impurity")
head(importance(rf))

Status_of_checking_account Duration
46.89292 41.14497
History Purpose
25.66421 25.55567
Amount Savings
55.28643 20.38094

However, there is no method of getting p-values for this method:

importance_pvalues(rf)

Error in importance_pvalues(rf): Impurity variable importance found. Please
use (hold-out) permutation importance or corrected impurity importance to use this
method.

R-package: ranger 2022-04-21 Slide 15

Example - "impurity_corrected" impor-
tance and "janitza" p-values

This method takes care of the bias towards the variables, which have
large possible numbers of splits associated with them.

rf = ranger(Class ~ ., data = german, importance = "impurity_corrected")

Printing the variable importance values and p-values, based on "janitza"
method:

head(importance_pvalues(rf, method = "janitza"))

Warning in importance_pvalues(rf, method = "janitza"): Only few negative
importance values found, inaccurate p-values. Consider the ’altmann’ approach.

importance pvalue
Status_of_checking_account 24.202150 0
Duration 7.455544 0
History 8.570162 0
Purpose 1.804617 0
Amount 7.169496 0
Savings 4.842300 0

R-package: ranger 2022-04-21 Slide 16

Example - "janitza" limitations

Why do we get a warning?

� With an unbiased variable importance measure, the importance
values of non-associated variables vary randomly about zero.

� Thus, the method assumes that all variables with negative importance
values belong to the set of variables not associated with the response.

� They are used to construct a distribution of importance under the null
of no association with the response.

� In our case, there are too few of them and the constructed
distribution is probably inaccurate.

� The "janitza" method is really meant for high-dimensional data, where
there would be more of such variables and hence, higher accuracy
could be achieved.

R-package: ranger 2022-04-21 Slide 17

Example - "permutation" importance and
"altmann" p-values

The warning suggests to try the "altmann" method instead.
In order to do so, the variable importance needs to be measured via the
permutation approach.

rf = ranger(Class ~ ., data = german, importance = "permutation")
head(importance_pvalues(rf, formula = Class ~ ., data = german, method = "altmann"))

importance pvalue
Status_of_checking_account 0.037091650 0.00990099
Duration 0.018105326 0.00990099
History 0.013182394 0.00990099
Purpose 0.004803444 0.01980198
Amount 0.012086962 0.00990099
Savings 0.007027413 0.00990099

R-package: ranger 2022-04-21 Slide 18

Example - Regularisation

Regularisation may be applied as a feature selection method. The
smaller the regularization.factor value, the harsher the penalty;
additionally, we can use depth to intensify the penalty with increasing
tree depth (by setting regularization.usedepth = TRUE).

rf = ranger(Class ~., data = german,
regularization.factor = 0.5, regularization.usedepth = T,
importance = "impurity")

Warning in ranger(Class ~ ., data = german, regularization.factor = 0.5, :
Paralellization deactivated (regularization used).

R-package: ranger 2022-04-21 Slide 19

Example - respect.unordered.factors

By default, respect.unordered.factors = "ignore" (FALSE) and all
factors are regarded ordered. These variables are essentially treated as
numeric and ranger appears to run faster. However, not all categorical
variables (if any) are known to have ordered relations with the outcome.

formula = "Duration ~ History + Status_of_checking_account + Purpose + Savings"

set.seed(123)
rf1 = ranger(formula = formula, data = train.german,

respect.unordered.factors = TRUE)
set.seed(123)
rf2 = ranger(formula = formula, data = train.german)

rf1$prediction.error; rf2$prediction.error

[1] 152.7619
[1] 153.0551

rf1$r.squared; rf2$r.squared

[1] 0.01127661
[1] 0.009378965

R-package: ranger 2022-04-21 Slide 20

Example - replace and sample.fraction

We can specify both arguments to control the size of bootstrap samples
and whether we are sampling with or without replacement. By default,
replace = TRUE and sample.fraction = 1, i.e. we are sampling from
the whole data set with replacement.
Now, set replace = FALSE and sample.fraction = 1... What
happens?

rf = ranger(formula = Class ~ ., data = train.german,
replace = F, sample.fraction = 1)

rf$prediction.error

[1] NaN

The OOB prediction error is NaN, as each bootstrap sample was identical
to the full data set.

R-package: ranger 2022-04-21 Slide 21

Other ranger arguments

� probability: grow probability forests as in Malley et al. (2012) [2]
� case.weights: weights for sampling of training observations
� class.weights: weights for the outcome classes in the splitting rule
� always.split.variables: variable names to be always selected in

addition to the mtry variables
� splitrule: splitting rule to be used
� split.select.weights: probabilities to select variables for splitting
� num.threads: number of threads to be used
� save.memory: slower, but uses less memory

R-package: ranger 2022-04-21 Slide 22

Part III

Additional Functions

R-package: ranger 2022-04-21 Slide 23

csrf()

Run case-specific random forest (algorithm by Xu et al. (2014) [4]):
1. Grow a random forest on the training data.
2. For each observation of interest (test data), the weights of all training

observations are computed by counting the number of trees in which
both observations are in the same terminal node.

3. For each test observation, grow a weighted random forest on the
training data, using the weights obtained in Step 2. Predict the
outcome of the test observation as usual.

csrf(formula, train.german, test.german,
params1 = list(),
params2 = list(), verbose = FALSE)

R-package: ranger 2022-04-21 Slide 24

holdoutRF() and parse.formula()

The holdoutRF() function grows two random forests on two CV folds.
Instead of out-of-bag data, the other fold is used to compute
permutation importance ([1]).
� Inputs: All arguments are passed to ranger() (except importance,
case.weights, replace and holdout).

� Outputs: Hold-out random forests with variable importance.

The parse.formula() function parses formula and returns dataset
containing selected columns.
� Inputs: formula (the model to fit), data (data frame with training

data, env (for LHS evaluation).
� Outputs: Dataset including selected columns and interactions.

R-package: ranger 2022-04-21 Slide 25

treeInfo()

The treeInfo() function extracts the tree information of a ranger
object.
� Inputs: object (a ranger object), tree (number of the tree of

interest).
� Outputs: data.frame with each row being a node and the following

columns:
� nodeID (0-indexed)
� leftChild: ID of the left child (0-indexed)
� rightChild: ID of the right child (0-indexed)
� splitvarID: ID of the splitting variable (0-indexed), the variable order

changes if the formula interface is used.
� splitvarName: Name of the splitting variable
� terminal: logical, TRUE for terminal nodes,
� prediction: the predicted class (factor) for classification and the

predicted numerical value for regression

R-package: ranger 2022-04-21 Slide 26

Part IV

Validation

R-package: ranger 2022-04-21 Slide 27

Validation I

The authors of the package compared the results to those obtained by
randomForest.

� binary outcome was simulated with 2000 samples and 50 features (5
with non-zero effect)

� 200 data sets were generated
� 5000 trees were fitted on each data set with both packages
� out-of-bag prediction errors for each data set were compared

→ No systematic difference could be observed.

A similar experiment was conducted to measure differences in variable
importance.

→ Variable importance results are very similar for both packages.

R-package: ranger 2022-04-21 Slide 28

Validation II

R-package: ranger 2022-04-21 Slide 29

Validation III

R-package: ranger 2022-04-21 Slide 30

Part V

Runtime and Memory Usage

R-package: ranger 2022-04-21 Slide 31

Runtime and memory usage I

� Simulation study to compare runtime and memory usage
� 5 different implementations of random forests
� all implementations were run with 12 CPU cores (if possible)

Implementations:
� R package randomForest
� R package randomForestSRC
� R package Rborist
� C++ application Random Jungle
� R package ranger

R-package: ranger 2022-04-21 Slide 32

Runtime and memory usage II

Runtime and memory usage for high-dimensional data:
10K observations, 150K features, 1K trees, mtry = 5K, 15K, 135K

R-package: ranger 2022-04-21 Slide 33

Runtime and memory usage III

Runtime and memory usage for low-dimensional data:
100K observations, 100 features, 1K trees, binary and continuous
features

R-package: ranger 2022-04-21 Slide 34

Runtime and memory usage IV

The results from the previous tables show

� ranger is the fastest implementation for features with
few unique values in case of high and low dimensional data.

� Rborist is faster for continuous features and low dimensional data
with large sample sizes

... so the authors compared the performance for continuous features
with different sample- and feature sizes.

R-package: ranger 2022-04-21 Slide 35

Runtime and memory usage V

Figure: [3]

R-package: ranger 2022-04-21 Slide 36

Thank you

Thank you for your attention!
Any questions?

R-package: ranger 2022-04-21 Slide 37

Part VI

Bibliography

R-package: ranger 2022-04-21 Slide 38

References I

Silke Janitza, Ender Celik, and Anne-Laure Boulesteix. “A
computationally fast variable importance test for random forests
for high-dimensional data”. In: Advances in Data Analysis and
Classification 12.4 (2018), pp. 885–915.

James D Malley et al. “Probability machines”. In: Methods of
information in medicine 51.01 (2012), pp. 74–81.

Marvin N Wright and Andreas Ziegler. “ranger: A fast
implementation of random forests for high dimensional data in
C++ and R”. In: arXiv preprint arXiv:1508.04409 (2015).

R-package: ranger 2022-04-21 Slide 39

References II

Ruo Xu, Dan Nettleton, and Daniel J. Nordman. “Case-Specific
Random Forests”. In: Journal of Computational and Graphical
Statistics 25.1 (2016), pp. 49–65. DOI:
10.1080/10618600.2014.983641. eprint:
https://doi.org/10.1080/10618600.2014.983641. URL:
https://doi.org/10.1080/10618600.2014.983641.

R-package: ranger 2022-04-21 Slide 40

https://doi.org/10.1080/10618600.2014.983641
https://doi.org/10.1080/10618600.2014.983641
https://doi.org/10.1080/10618600.2014.983641

	Introduction
	Example
	Example

	Additional Functions
	Validation
	Runtime and Memory Usage
	Bibliography
	References

