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Basics

Root finding: for ƒ : Rn → Rm, find roots ∗ such that ƒ (∗) = 0.

Optimization: for ƒ : Rn → R and X ⊆ Rn, find ∗ ∈ X such that
ƒ (∗) =mx∈X ƒ () (if a max is sought) or ƒ (∗) =min∈X ƒ () (if a min
is sought).

Simplest case where max/min are attained: life can be more
complicated.

If X = Rn: unconstrained optimization problem.

If ∗ is a root of ƒ : ⇒ minimizes ‖ƒ ()‖2 over the domain of ƒ .

If ∗ is a local optimum of ƒ and this is smooth: ⇒ ∗ is a critical point
of ƒ , i.e., ∇ƒ (∗) = 0.

Can find roots via optimization, and optimize via root finding!

Note that the ƒ for optimization always is a scalar function!
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Root finding

� Solve systems of linear equations ⇒ numerical linear algebra (2 more
weeks)

� Find roots of polynomials: polyroot().
� Find roots of continuous univariate functions: uniroot().

This is based on the bisection method.
� Already encountered Newton’s method for root finding, which is a

fixed-point iteration method.
Interestingly, no function for this in base R.
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Bisection method

Suppose ƒ is continuous with a sign change in [, b] (i.e., ƒ () and ƒ (b)
have opposite signs).

Then ƒ must have at least one root in [, b].

Can be found by the following iteration: Starting with 0 =  and b0 = b,

� Take the current interval [n, bn].
� If bn − n is small enough; done. Otherwise, compute the midpoint
n = (n + bn)/2.

� If ƒ has a sign change in [n, n], take this as the next interval;
otherwise take [n, bn].
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Bisection method

In each step, halves the interval (length).

After n steps, interval length is (b − )/2n.

So the interval converges to a root of ƒ “exponentially fast”.

Hence the computational complexity is logarithmic in the precision
(interval length) sought.
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Example

The function ƒ () = cos() −  has a root in [0, π/2]:

R> f <- function(x) cos(x) - x
R> plot(f, 0, pi / 2); abline(h = 0)
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Example

R> uniroot(f, c(0, pi / 2))

$root
[1] 0.7390839

$f.root
[1] 2.059443e-06

$iter
[1] 5

$init.it
[1] NA

$estim.prec
[1] 6.103516e-05
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Fixed-point iteration

Suppose g is continuous and the iteration

n+1 = g(n)

gives a sequence n with (finite) limit ∗. What can we say about ∗?

By continuity,

∗ = lim
n
n+1 = limn g(n) = g

�

lim
n
n
�

= g(∗)

Thus ∗ must be a fixed point of g, i.e., solve ∗ = g(∗).

Can use to find roots of ƒ via fixed points of g() =  + ƒ ()? Not quite so
simple . . .
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Fixed-point iteration

If g is smooth about ∗,

n+1 − ∗ = g(n) − g(∗) ≈ g′(∗)(n − ∗),

So convergence somehow needs g to be attractive at ∗, i.e.,
|g′(∗)| < 1.

Otherwise, the approximation error n − ∗ would not get reduced.

In the attractive case, approximation errors go to zero exponentially
fast.

Slide 11



Fixed-point iteration

If g is smooth about ∗,

n+1 − ∗ = g(n) − g(∗) ≈ g′(∗)(n − ∗),

So convergence somehow needs g to be attractive at ∗, i.e.,
|g′(∗)| < 1.

Otherwise, the approximation error n − ∗ would not get reduced.

In the attractive case, approximation errors go to zero exponentially
fast.

Slide 11



Fixed-point iteration

If g is smooth about ∗,

n+1 − ∗ = g(n) − g(∗) ≈ g′(∗)(n − ∗),

So convergence somehow needs g to be attractive at ∗, i.e.,
|g′(∗)| < 1.

Otherwise, the approximation error n − ∗ would not get reduced.

In the attractive case, approximation errors go to zero exponentially
fast.

Slide 11



Fixed-point iteration

Prime example: Newton’s method. This uses

g() =  −
ƒ ()

ƒ ′()
.

Clearly,

 = g()⇒
ƒ ()

ƒ ′()
= 0⇒ ƒ () = 0.

Also,

g′() = 1 −
ƒ ′()2 − ƒ ()ƒ ′′()

ƒ ′()2
=
ƒ ()ƒ ′′()

ƒ ′()2
.
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Fixed-point iteration

Hence, if ∗ is a fixed point of g: g′(∗) = 0!

In a sense, such fixed points are “very attractive”.

Convergence to ∗ is actually “locally quadratic” in the sense that

|n+1 − ∗| ≤ const |n − ∗|2.

(Note the confusing terminology: approximation errors go to zero faster
than exponentially fast!).
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Optimization with base R

� optimize() optimizes a univariate function based on golden section
search.

� nlm() optimizes functions via Newton-type algorithms (i.e., via
finding critical points)

� optim() provides several optimization methods: Nelder-Mead,
quasi-Newton and conjugate-gradient algorithms, and simulated
annealing.

� nls() solves non-linear least squares problems
� constrOptim() minimizes a function subject to linear inequality

constraints using an adaptive barrier algorithm.

Much more in add-on packages . . . and other courses.

Here, we really only show the tip of the iceberg, and some basics.
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Golden section search

A function ƒ is unimodal (over some interval [, b]) if there is an m in
the interval such that

ƒ is increasing for  ≤  < m and decreasing for m<  ≤ b.

In this case, clearly ƒ has its maximum at m, and no local maxima.

ƒ does not have to be continuous. Example:
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Golden section search
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Golden section search

Golden section search is based on “trisection”.

One starts with an interval [, b] containing the maximum, and adds
two more points 1 and 2 to cut into three subintervals:

 < 1 < 2 < b.

If ƒ (1) > ƒ (2), the max cannot be in [2, b], and the new interval is
[, 2].

If ƒ (1) < ƒ (2), the max cannot be in [, 1], and the new interval is
[1, b].
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Golden section search
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Golden section search

Golden section search is based on the following idea:

� Intervals are always partitioned in constant proportions:

1 =  + γ1(b − ), 2 =  + γ2(b − )

The γ are chosen in a way that one of the previous  points (and
hence its function value ƒ ()) can be re-used.

Why? Function evaluation can be very expensive.
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Golden section search

If ƒ (1) > ƒ (2), the new interval is [′ = , b′ = 2], and the new 
points are

′1 =  + γ1(2 − ), ′2 =  + γ2(2 − )

One of these must be 1, and clearly ′1 < 1, so we must have ′2 = 1.

Thus,

 + γ1(b − ) = 1 = ′2 =  + γ2(2 − ) =  + γ
2
2(b − )

from which γ1 = γ22.
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Golden section search

If ƒ (1) < ƒ (2), the new interval is [′ = 1, b′ = b], and the new 
points are

′1 = 1 + γ1(b − 1), ′2 = 1 + γ2(b − 1)

One of these must be 2 = (1 − γ2) + γ2b. As clearly
′2 = (1 − γ2)1 + γ2b > 2, we must have 2 = ′1. Thus:

 + γ2(b − ) = 1 + γ1(b − 1)
= (1 − γ1)1 + γ1b
=  + (1 − γ1)(1 − ) + γ1(b − )
=  + (1 − γ1)γ1(b − ) + γ1(b − )

from which γ2 = 2γ1 − γ21.
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Golden section search

Looks complicated? We have

γ22 = γ1, γ21 = 2γ1 − γ2.

Subtracting:

γ22 − γ
2
1 = γ1 − (2γ1 − γ2) = γ2 − γ1.

As γ1 < γ2 and γ22 − γ
2
1 = (γ2 − γ1)(γ2 + γ1), we get

γ2 + γ1 = 1.
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Golden section search

Substituting now gives γ22 = γ1 = 1 − γ2, so that γ2 solves

γ22 + γ2 − 1 = 0.

Looks familiar?

Roots are −1/2 ±
p

5/4, so that

γ2 =

p
5 − 1

2
=

p
5 − 1

2

p
5 + 1
p
5 + 1

=
2

p
5 + 1

=
1

ϕ
≈ 0.61803

is the reciprocal value of the golden ratio ϕ!

Similarly,

γ1 = 1 − γ2 = 1 −
1

ϕ
= 1 − (ϕ − 1) = 2 − ϕ ≈ 0.38197.

Slide 24



Golden section search

Substituting now gives γ22 = γ1 = 1 − γ2, so that γ2 solves

γ22 + γ2 − 1 = 0.

Looks familiar?

Roots are −1/2 ±
p

5/4, so that

γ2 =

p
5 − 1

2
=

p
5 − 1

2

p
5 + 1
p
5 + 1

=
2

p
5 + 1

=
1

ϕ
≈ 0.61803

is the reciprocal value of the golden ratio ϕ!

Similarly,

γ1 = 1 − γ2 = 1 −
1

ϕ
= 1 − (ϕ − 1) = 2 − ϕ ≈ 0.38197.

Slide 24



Golden section search

Good to know (so that we can impress friends and family).

One can show that using the golden section proportions provides
optimal shrinkage of the interval length.

Text book and lecture notes contain a simple implementation.

In real life, just use optimize().

With the function we used as example:

R> f <- function(x) - (x - 0.5) * (x - 2.25) + ifelse(x < 1, -1, 0)

Slide 25



Golden section search

Good to know (so that we can impress friends and family).

One can show that using the golden section proportions provides
optimal shrinkage of the interval length.

Text book and lecture notes contain a simple implementation.

In real life, just use optimize().

With the function we used as example:

R> f <- function(x) - (x - 0.5) * (x - 2.25) + ifelse(x < 1, -1, 0)

Slide 25



Golden section search

Good to know (so that we can impress friends and family).

One can show that using the golden section proportions provides
optimal shrinkage of the interval length.

Text book and lecture notes contain a simple implementation.

In real life, just use optimize().

With the function we used as example:

R> f <- function(x) - (x - 0.5) * (x - 2.25) + ifelse(x < 1, -1, 0)

Slide 25



Golden section search

Good to know (so that we can impress friends and family).

One can show that using the golden section proportions provides
optimal shrinkage of the interval length.

Text book and lecture notes contain a simple implementation.

In real life, just use optimize().

With the function we used as example:

R> f <- function(x) - (x - 0.5) * (x - 2.25) + ifelse(x < 1, -1, 0)

Slide 25



Golden section search

Good to know (so that we can impress friends and family).

One can show that using the golden section proportions provides
optimal shrinkage of the interval length.

Text book and lecture notes contain a simple implementation.

In real life, just use optimize().

With the function we used as example:

R> f <- function(x) - (x - 0.5) * (x - 2.25) + ifelse(x < 1, -1, 0)

Slide 25



Golden section search

R> optimize(f, c(0, 3), maximum = TRUE)

$maximum
[1] 1.375

$objective
[1] 0.765625
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Golden section search
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Golden section search

Things to note:

� Golden section search is only guaranteed to work if ƒ is unimodal (for
max).

� By default, optimize does minimization and not maximization.
� optimize only works for functions ƒ : R→ R. Does not need

derivatives: blessing or curse?
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Example: MLE for the Poisson distribu-
tion

The density of the Poisson distribution with parameter λ at
(non-negative integer)  is

λ

!
e−λ

Suppose we observe a sample 1, . . . , n from a Poisson distribution with
unknown λ. How can we estimate λ from that sample?

We’ll learn how to do this in the Statistics 2 course.
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Example: MLE for the Poisson distribu-
tion

The preferred method is maximum likelihood estimation (MLE): one
forms the likelihood function

L(λ|1, . . . , n) =
n
∏

=1

λ

!
e−λ

and maximizes this over λ.

Usually, one actually takes the log-likelihood because this is more
convenient to work with.
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Example: MLE for the Poisson distribu-
tion

Up to an additive constant, the log-likelihood is

LL(λ|1, . . . , n) =
n
∑

=1

( log(λ) − λ) = s(1, . . . , n) log(λ) − nλ

with s(1, . . . , n) =
∑n

=1 .

So for the MLE we have to find mxλ>0 s log(λ) − nλ.

The MLE is obviously given by λ̂ = s/n = ̄.

Nice as we can do math to find a simple formula.
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Example: MLE for the Poisson distribu-
tion

Numerically, we can simply do

R> mle_pois <- function(x) {
+ LL <- function(lambda) {
+ sum(x) * log(lambda) - length(x) * lambda
+ }
+ optimize(LL, lower = 0, upper = max(x), maximum = TRUE)
+ }

(Some finite upper bound is needed.)
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Example: MLE for the Poisson distribu-
tion

To illustrate:

R> x <- rpois(100, 3.2)
R> mle_pois(x)

$maximum
[1] 3.660001

$objective
[1] 108.8715

R> ## Compare to
R> mean(x)

[1] 3.66
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Multivariate optimization

Newton-type algorithms use the following idea.

Suppose ƒ : X→ R with X ⊆ Rn is twice continuously differentiable on the
interior of X and attains its max there at some ∗.

Then ∗ must be a critical point:

∇ƒ (∗) = 0,

where

∇ƒ () =
�

∂ƒ

∂ξ1
(), . . . ,

∂ƒ

∂ξn
()

�′

,  = (ξ1, . . . , ξn)′

is the gradient (and the prime denotes transposition).
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Multivariate optimization

We can try finding roots of the gradient using a multivariate version of
Newton’s method.

First, close to n we have

∇ƒ () ≈ Ln() = ∇ƒ (n) + Hƒ (n)( − n),

where

Hƒ () =

�

∂2ƒ

∂ξ∂ξj
()

�

1≤,j≤n

is the Hessian of ƒ at , i.e., the matrix of all second partial derivatives
of ƒ .

Details in the math course.
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Multivariate optimization

Now solve Ln() = 0. Mathematically, this gives the linear system

Hƒ (n)( − n) = −∇ƒ (n)

which has solution

 − n = −Hƒ (n)−1∇ƒ (n).

Thus, one gets the iteration

n+1 = n − Hƒ (n)−1∇ƒ (n).

That’s the basic idea. Things are really more complicated, but
fortunately we can simply use functions like optim() or nlm().
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Multivariate optimization

Things to note:

� This needs ƒ smooth and the first and second partials of ƒ . We can
either provide these in addition to ƒ , or have R approximate these
numerically.

� This can only find some local optimum of ƒ , which may not be the
global one.

� Things will always be fine if we maximize a concave function.
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Example: MLE for the normal distribu-
tion

The density of the normal distribution with parameters μ and σ2 at  is
given by

1
p
2πσ

exp

�

( − μ)2

2σ2

�

Suppose we observe a sample 1, . . . , n from a normal distribution with
unknown μ and σ2. How can we estimate μ and σ2 from that sample?
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Example: MLE for the normal distribu-
tion

The likelihood of a sample 1, . . . , n is

L(μ, σ2|1, . . . , n) =
n
∏

=1

1
p
2πσ

exp

�

( − μ)2

2σ2

�

Up to an additive constant, the log-likelihood is

LL(μ, σ2) = −
n

2
log(σ2) −

1

2σ2

n
∑

=1

( − μ)2.

This has partials

∂LL

∂μ
=
1

σ2

n
∑

=1

( − μ),
∂LL

∂σ2
= −

n

2

1

σ2
+

1

2σ4

n
∑

=1

( − μ)2.
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Example: MLE for the normal distribu-
tion

This has a unique critical point given by

μ̂ = ̄, σ̂2 =
1

n

n
∑

=1

( − ̄)2

where ̄ is the mean of , which thus gives the MLEs.

Note that the MLE of σ2 is not the sample variance!

Nice as we can do math to find a simple formula.
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Example: MLE for the normal distribu-
tion

Numerically, we can simply minimize twice the negative log-likelihood:

R> mle_norm <- function(x, p0) {
+ nLL <- function(p) {
+ mu <- p[1]
+ sigmasq <- p[2]
+ length(x) * log(sigmasq) + sum((x - mu) ^ 2) / sigmasq
+ }
+ optim(p0, nLL)
+ }

This needs some initial estimate of (μ, σ2).
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Example: MLE for the normal distribu-
tion I

To illustrate (note that in R the normal distribution is parametrized by
the standard deviation σ and not the variance σ2):

R> x <- rnorm(100, 0.5, 2)
R> mle_norm(x, c(0, 1))

$par
[1] 0.6005534 4.5651644

$value
[1] 251.826

$counts
function gradient

53 NA

$convergence
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Example: MLE for the normal distribu-
tion II

[1] 0

$message
NULL

R> ## Compare to
R> c(mean(x), (1 - 1 / length(x)) * var(x))

[1] 0.6003242 4.5642757
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Example: MLE for the normal distribu-
tion

By default, this actually uses Nelder-Mead, which
uses only function values and is robust but relatively slow. It will work
reasonably well for non-differentiable functions.

Could also do quasi-Newton: optim(method = "BFGS"), which
uses function values and gradients to build up a picture of the surface
to be optimized.

(No explicit computation of second partials.)
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Example: MLE for the normal distribu-
tion

Alternatively, we can use nlm() which employs a Newton-type method
(and always minimizes), without explicitly providing gradients and
Hessians):

R> nLL2 <- function(p, x) {
+ mu <- p[1]
+ sigmasq <- p[2]
+ length(x) * log(sigmasq) + sum((x - mu) ^ 2) / sigmasq
+ }

Starting from (0,1) again:
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Example: MLE for the normal distribu-
tion

R> nlm(nLL2, c(0, 1), x)

$minimum
[1] 251.826

$estimate
[1] 0.6003227 4.5642620

$gradient
[1] -4.237677e-05 -5.506546e-05

$code
[1] 1

$iterations
[1] 15
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