Computing Unit 4: Programming

Kurt Hornik AACSB

- AMBA

Outline

- Programming Elements
- Programming Tasks

Blocks

Using curly braces:
\{ EXPRS \}

EXPRS can be a list of expressions, separated either by newlines or semicolons.

Value of block is that of the last expression evaluated.

Conditionals

```
if( COND ) EXPR
if( COND ) EXPRR else EXPR2
```

There is also switch to avoid deep nesting.
$\boldsymbol{M A C S B}_{\text {AMMA }}$

Loops

```
for( VAR in SEQ ) EXPR
```

This really performs iteration over the elements of SEQ, with VAR bound to these elements when evaluating EXPR.

```
while( COND ) EXPR
repeat EXPR
```

To advance to the next iteration: next
To terminate the loop: break

Functions

function (ARGLIST) EXPR

ARGLIST gives the formals (or arguments) of the function, as a comma-separated list of names, name = value pairs, or EXPR gives the body of the function.

Outline

- Programming Elements
- Programming Tasks

Fibonacci Numbers

Defined by the second order recursion

$$
f_{1}=f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad n>2
$$

See https://en.wikipedia.org/wiki/Fibonacci_number, which follows the more modern convention to start with index 0.

Fibonacci Numbers

Defined by the second order recursion

$$
f_{1}=f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad n>2
$$

See https://en.wikipedia.org/wiki/Fibonacci_number, which follows the more modern convention to start with index 0 .

So

$$
\begin{aligned}
& f_{3}=f_{2}+f_{1}=2 \\
& f_{4}=f_{3}+f_{2}=3 \\
& f_{5}=f_{4}+f_{3}=5
\end{aligned}
$$

etc. Alternatively, next element is the sum of its two predecessors:

$$
(1,1,1+1=2,1+2=3,2+3=5,3+5=8,5+8=13, \ldots)
$$

Sieve of Eratosthenes

See https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
Start by listing all integers from 2 to n (here, 30):

$$
\begin{array}{rrrrrrrrrrrrrrr}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}
$$

Sieve of Eratosthenes

See https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
Start by listing all integers from 2 to n (here, 30):

$$
\begin{array}{rrrrrrrrrrrrrrr}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}
$$

2 must be a prime number; all its multiples are not.

$$
\begin{array}{rrrrrrrrrrrrrrr}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}
$$

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

$$
\begin{array}{rrrrrrrrrrrrrrr}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}
$$

5 must be a prime number; all its multiples are not.

$$
\begin{array}{rrrrrrrrrrrrrrr}
& 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}
$$

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

5 must be a prime number; all its multiples are not.

7 must be a prime number etc etc.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Newton's method

How can we find a root of a differentiable function f ?
Suppose we have a "candidate value" x_{n}.
Close to x_{n}, we can approximate $f(x)$ by its tangent at x_{n} :

$$
f(x) \approx g_{n}(x)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)
$$

Idea of Newton's method: try approximating roots of f by the root of g_{n} !

Newton's method

g_{n} has a single root unless $f^{\prime}\left(x_{n}\right)=0$:

$$
\begin{aligned}
g_{n}(x)=0 & \Leftrightarrow \quad f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=-f\left(x_{n}\right) \\
& \Leftrightarrow \quad x-x_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& \Leftrightarrow \quad x=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Repetitively applying this idea gives the recursion

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with suitable starting point x_{0}.

