
Computing Unit 4:
Programming

Kurt Hornik

October 29, 2020

Outline

� Programming Elements

� Programming Tasks

Slide 2

Blocks

Using curly braces:

{ EXPRS }

EXPRS can be a list of expressions, separated either by newlines or
semicolons.

Value of block is that of the last expression evaluated.

Slide 3

Conditionals

if(COND) EXPR

if(COND) EXPR1 else EXPR2

There is also switch to avoid deep nesting.

Slide 4

Loops

for(VAR in SEQ) EXPR

This really performs iteration over the elements of SEQ, with VAR bound
to these elements when evaluating EXPR.

while(COND) EXPR
repeat EXPR

To advance to the next iteration: next

To terminate the loop: break

Slide 5

Functions

function (ARGLIST) EXPR

ARGLIST gives the formals (or arguments) of the function, as a
comma-separated list of names, name = value pairs, or

EXPR gives the body of the function.

Slide 6

Outline

� Programming Elements

� Programming Tasks

Slide 7

Fibonacci Numbers

Defined by the second order recursion

ƒ1 = ƒ2 = 1, ƒn = ƒn−1 + ƒn−2, n > 2.

See https://en.wikipedia.org/wiki/Fibonacci_number, which
follows the more modern convention to start with index 0.

So

ƒ3 = ƒ2 + ƒ1 = 2
ƒ4 = ƒ3 + ƒ2 = 3
ƒ5 = ƒ4 + ƒ3 = 5

etc. Alternatively, next element is the sum of its two predecessors:

(1,1,1 + 1 = 2,1 + 2 = 3,2 + 3 = 5,3 + 5 = 8,5 + 8 = 13, . . .)

Slide 8

https://en.wikipedia.org/wiki/Fibonacci_number

Fibonacci Numbers

Defined by the second order recursion

ƒ1 = ƒ2 = 1, ƒn = ƒn−1 + ƒn−2, n > 2.

See https://en.wikipedia.org/wiki/Fibonacci_number, which
follows the more modern convention to start with index 0.

So

ƒ3 = ƒ2 + ƒ1 = 2
ƒ4 = ƒ3 + ƒ2 = 3
ƒ5 = ƒ4 + ƒ3 = 5

etc. Alternatively, next element is the sum of its two predecessors:

(1,1,1 + 1 = 2,1 + 2 = 3,2 + 3 = 5,3 + 5 = 8,5 + 8 = 13, . . .)

Slide 8

https://en.wikipedia.org/wiki/Fibonacci_number

Sieve of Eratosthenes

See https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

Start by listing all integers from 2 to n (here, 30):

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slide 9

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Sieve of Eratosthenes

See https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

Start by listing all integers from 2 to n (here, 30):

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slide 9

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

7 must be a prime number etc etc.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slide 10

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

7 must be a prime number etc etc.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slide 10

Sieve of Eratosthenes

3 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5 must be a prime number; all its multiples are not.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

7 must be a prime number etc etc.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Slide 10

Newton’s method

How can we find a root of a differentiable function ƒ?

Suppose we have a “candidate value” n.

Close to n, we can approximate ƒ () by its tangent at n:

ƒ () ≈ gn() = ƒ (n) + ƒ ′(n)( − n).

Idea of Newton’s method: try approximating roots of ƒ by the root of gn!

Slide 11

Newton’s method

gn has a single root unless ƒ ′(n) = 0:

gn() = 0 ⇔ ƒ ′(n)( − n) = −ƒ (n)

⇔  − n = −
ƒ (n)

ƒ ′(n)

⇔  = n −
ƒ (n)

ƒ ′(n)

Repetitively applying this idea gives the recursion

n+1 = n −
ƒ (n)

ƒ ′(n)

with suitable starting point 0.
Slide 12

	Programming Elements
	Programming Tasks

