
Computing Unit 3:
Data Types

Kurt Hornik

September 26, 2018

Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.

� C-style special characters in double-quoted string constants:
\a \n \t \\ \"

etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2

Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2

Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().

� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2

Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==

� Creation and testing of character vectors using character et al.

Slide 2

Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding

Slide 3

Character vectors

match, pmatch (simple) complete and partial matching of character
strings

grep, grepl, sub, gsub, regexpr, gregexpr pattern matching and
replacement using regular expressions

strsplit split strings into substrings

Slide 4

Character vectors

match, pmatch (simple) complete and partial matching of character
strings

grep, grepl, sub, gsub, regexpr, gregexpr pattern matching and
replacement using regular expressions

strsplit split strings into substrings

Slide 4

Character vectors

match, pmatch (simple) complete and partial matching of character
strings

grep, grepl, sub, gsub, regexpr, gregexpr pattern matching and
replacement using regular expressions

strsplit split strings into substrings

Slide 4

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [] () { }.
� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [] () { }.
� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [] () { }.
� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.

� ERE special characters: . * + ? ^ $ | \ [] () { }.
� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [] () { }.

� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [] () { }.
� Any non-special character is ordinary unless preceded by a \.

Slide 5

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.

Slide 6

Regexp Character Alternatives

� [. . .] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special:] - ^.
� [ˆ . . .] is a complementary character alternative matching any

character except the ones specified.
� Inside a character alternative, one can also use character classes by

enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).

Slide 7

Regexp Character Alternatives

� [. . .] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special:] - ^.
� [ˆ . . .] is a complementary character alternative matching any

character except the ones specified.
� Inside a character alternative, one can also use character classes by

enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).

Slide 7

Regexp Character Alternatives

� [. . .] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special:] - ^.

� [ˆ . . .] is a complementary character alternative matching any
character except the ones specified.

� Inside a character alternative, one can also use character classes by
enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).

Slide 7

Regexp Character Alternatives

� [. . .] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special:] - ^.
� [ˆ . . .] is a complementary character alternative matching any

character except the ones specified.

� Inside a character alternative, one can also use character classes by
enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).

Slide 7

Regexp Character Alternatives

� [. . .] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special:] - ^.
� [ˆ . . .] is a complementary character alternative matching any

character except the ones specified.
� Inside a character alternative, one can also use character classes by

enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).

Slide 7

Regexp Grouping

(. . .) specifies a grouping. Used
1. to enclose a set of | alternatives;

2. to enclose a complicated expression for the postfix
operators;

3. record a matched substring for future reference with
\DIGIT

Slide 8

Regexp Grouping

(. . .) specifies a grouping. Used
1. to enclose a set of | alternatives;
2. to enclose a complicated expression for the postfix

operators;

3. record a matched substring for future reference with
\DIGIT

Slide 8

Regexp Grouping

(. . .) specifies a grouping. Used
1. to enclose a set of | alternatives;
2. to enclose a complicated expression for the postfix

operators;
3. record a matched substring for future reference with

\DIGIT

Slide 8

Regexp Bounds

{ . . . } specifies a bound on the preceding regexp (atom).

1. {m}, 0 ≤m ≤ 255, matches a sequence of exactly m
repetitions of the preceding regexp.

2. {m,}, 0 ≤m ≤ 255, matches a sequence of at least m
repetitions of the preceding regexp.

3. {m,n}, 0 ≤m ≤ n ≤ 255, matches a sequence of m
through n (inclusive) repetitions of the preceding regexp.

Slide 9

Regexp Bounds

{ . . . } specifies a bound on the preceding regexp (atom).

1. {m}, 0 ≤m ≤ 255, matches a sequence of exactly m
repetitions of the preceding regexp.

2. {m,}, 0 ≤m ≤ 255, matches a sequence of at least m
repetitions of the preceding regexp.

3. {m,n}, 0 ≤m ≤ n ≤ 255, matches a sequence of m
through n (inclusive) repetitions of the preceding regexp.

Slide 9

Regexp Bounds

{ . . . } specifies a bound on the preceding regexp (atom).

1. {m}, 0 ≤m ≤ 255, matches a sequence of exactly m
repetitions of the preceding regexp.

2. {m,}, 0 ≤m ≤ 255, matches a sequence of at least m
repetitions of the preceding regexp.

3. {m,n}, 0 ≤m ≤ n ≤ 255, matches a sequence of m
through n (inclusive) repetitions of the preceding regexp.

Slide 9

Regexp Bounds

{ . . . } specifies a bound on the preceding regexp (atom).

1. {m}, 0 ≤m ≤ 255, matches a sequence of exactly m
repetitions of the preceding regexp.

2. {m,}, 0 ≤m ≤ 255, matches a sequence of at least m
repetitions of the preceding regexp.

3. {m,n}, 0 ≤m ≤ n ≤ 255, matches a sequence of m
through n (inclusive) repetitions of the preceding regexp.

Slide 9

