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Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.

� C-style special characters in double-quoted string constants:
\a \n \t \\ \"

etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2



Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2



Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().

� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2



Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==

� Creation and testing of character vectors using character et al.

Slide 2



Character vectors

� String constants:
� enclosed in ". . . " (double quotes), alternatively single quotes.
� C-style special characters in double-quoted string constants:

\a \n \t \\ \"
etc.

� Combination using c().
� Elementwise equality using ==
� Creation and testing of character vectors using character et al.

Slide 2



Character vectors

nchar count the number of characters

substr, substring extract or replace substrings

paste concatenate vectors after converting to character

sprintf C-style string formatting

iconv convert between encodings

chartr, toupper, tolower character translation and case folding
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Character vectors

match, pmatch (simple) complete and partial matching of character
strings

grep, grepl, sub, gsub, regexpr, gregexpr pattern matching and
replacement using regular expressions

strsplit split strings into substrings
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Regular Expressions

� A “regular expression” (“regexp”, “RE”) is a pattern that denotes a
(possibly infinite) set of strings.

� Portable Operating System Interface (POSIX) 1003.2 defines modern
“extended” regexps, and obsolete “basic” regexps.

� REs have a syntax in which a few characters are special constructs
and the rest are “ordinary”.

� An ordinary character is a simple regexp matching just itself.
� ERE special characters: . * + ? ^ $ | \ [ ] ( ) { }.
� Any non-special character is ordinary unless preceded by a \.
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Regexp Special Characters

. Matches any single character.

* Postfix operator: matches the preceding regexp as many times as
possible (zero or more).

+ Postfix operator: matches the preceding regexp as many times as
possible, but at least once.

? Postfix operator: matches the preceding regexp once or not at all.

ˆ Matches the null string at the beginning of a line

$ Matches the null string at the end of a line

| specifies an alternative (applies to the largest possible surrounding).

\ Quotes special characters, and introduces additional special
constructs.
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Regexp Character Alternatives

� [ . . . ] is a character alternative (bracket expression) matching one of
the specified characters.

� Character ranges can be included by writing the starting and ending
characters with a - between them.

� Inside character alternatives, the following are special: ] - ^.
� [ˆ . . . ] is a complementary character alternative matching any

character except the ones specified.
� Inside a character alternative, one can also use character classes by

enclosing their names in [: . . . :] (character classes are alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit).
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Regexp Grouping

( . . . ) specifies a grouping. Used
1. to enclose a set of | alternatives;

2. to enclose a complicated expression for the postfix
operators;

3. record a matched substring for future reference with
\DIGIT
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Regexp Bounds

{ . . . } specifies a bound on the preceding regexp (atom).

1. {m}, 0 ≤m ≤ 255, matches a sequence of exactly m
repetitions of the preceding regexp.

2. {m,}, 0 ≤m ≤ 255, matches a sequence of at least m
repetitions of the preceding regexp.

3. {m,n}, 0 ≤m ≤ n ≤ 255, matches a sequence of m
through n (inclusive) repetitions of the preceding regexp.
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