
Computing Unit 2:
Numbers

Kurt Hornik

October 7, 2021

Outline

� Integers

� Doubles

Slide 2

Integers

How can we store integers using bits?

E.g., using k = 3 bits, can do bit sequences
000, 001, . . . , 111

There are 2 · 2 · 2 = 23 = 8 different such sequences.

For general k, there are 2k such sequences.

In R, k = 32 bits (4 bytes) are used for integers.

Slide 3

Integers

How can we store integers using bits?

E.g., using k = 3 bits, can do bit sequences
000, 001, . . . , 111

There are 2 · 2 · 2 = 23 = 8 different such sequences.

For general k, there are 2k such sequences.

In R, k = 32 bits (4 bytes) are used for integers.

Slide 3

Integers

How can we store integers using bits?

E.g., using k = 3 bits, can do bit sequences
000, 001, . . . , 111

There are 2 · 2 · 2 = 23 = 8 different such sequences.

For general k, there are 2k such sequences.

In R, k = 32 bits (4 bytes) are used for integers.

Slide 3

Integers

How can we store integers using bits?

E.g., using k = 3 bits, can do bit sequences
000, 001, . . . , 111

There are 2 · 2 · 2 = 23 = 8 different such sequences.

For general k, there are 2k such sequences.

In R, k = 32 bits (4 bytes) are used for integers.

Slide 3

Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.

Slide 4

Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.

Slide 4

Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.

Slide 4

Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.

Slide 4

Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.

Slide 4

Sign and magnitude

See also https://en.wikipedia.org/wiki/Signed_number_

representations#Signed_magnitude_representation.

Take one bit for the sign, and the rest as before.

E.g., using 3 bits:

σβ1β0↔±(β1 ∗ 21 + β0 ∗ 20).

This would give the numbers

−3,−2,−1,−0,0,1,2,3

Note: there are two ways to represent 0!

Slide 5

https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation
https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation

Sign and magnitude

See also https://en.wikipedia.org/wiki/Signed_number_

representations#Signed_magnitude_representation.

Take one bit for the sign, and the rest as before.

E.g., using 3 bits:

σβ1β0↔±(β1 ∗ 21 + β0 ∗ 20).

This would give the numbers

−3,−2,−1,−0,0,1,2,3

Note: there are two ways to represent 0!

Slide 5

https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation
https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation

Sign and magnitude

See also https://en.wikipedia.org/wiki/Signed_number_

representations#Signed_magnitude_representation.

Take one bit for the sign, and the rest as before.

E.g., using 3 bits:

σβ1β0↔±(β1 ∗ 21 + β0 ∗ 20).

This would give the numbers

−3,−2,−1,−0,0,1,2,3

Note: there are two ways to represent 0!

Slide 5

https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation
https://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation

Sign and magnitude

For general k:

σβk−2 · · ·β0↔±
k−2
∑

=0

β2.

Why k − 2?

Can do 2k − 1 different numbers: 2k−1 − 1 positive and negative ones
each, and zero in two different ways. Check:

(2k−1 − 1) + (2k−1 − 1) + 1 = 2(2k−1 − 1) + 1 = 2k − 2 + 1 = 2k − 1.

Simple, but not used “in practice”.

Slide 6

Sign and magnitude

For general k:

σβk−2 · · ·β0↔±
k−2
∑

=0

β2.

Why k − 2?

Can do 2k − 1 different numbers: 2k−1 − 1 positive and negative ones
each, and zero in two different ways. Check:

(2k−1 − 1) + (2k−1 − 1) + 1 = 2(2k−1 − 1) + 1 = 2k − 2 + 1 = 2k − 1.

Simple, but not used “in practice”.

Slide 6

Sign and magnitude

For general k:

σβk−2 · · ·β0↔±
k−2
∑

=0

β2.

Why k − 2?

Can do 2k − 1 different numbers: 2k−1 − 1 positive and negative ones
each, and zero in two different ways. Check:

(2k−1 − 1) + (2k−1 − 1) + 1 = 2(2k−1 − 1) + 1 = 2k − 2 + 1 = 2k − 1.

Simple, but not used “in practice”.

Slide 6

Biased scheme

See also https://en.wikipedia.org/wiki/Offset_binary.

Idea: “put zero in the middle”.

But how? An even number of numbers has no middle!

In our case with k = 3, biasing by 3 gives

(0 − 3) = −3, (1 − 3) = −2, . . . , (7 − 3) = 4.

Numbers are taken as

β2β1β0↔
2
∑

=0

β2 − 3,

where 3 = 22 − 1 = 2k−1 − 1.

Slide 7

https://en.wikipedia.org/wiki/Offset_binary

Biased scheme

See also https://en.wikipedia.org/wiki/Offset_binary.

Idea: “put zero in the middle”.

But how? An even number of numbers has no middle!

In our case with k = 3, biasing by 3 gives

(0 − 3) = −3, (1 − 3) = −2, . . . , (7 − 3) = 4.

Numbers are taken as

β2β1β0↔
2
∑

=0

β2 − 3,

where 3 = 22 − 1 = 2k−1 − 1.

Slide 7

https://en.wikipedia.org/wiki/Offset_binary

Biased scheme

See also https://en.wikipedia.org/wiki/Offset_binary.

Idea: “put zero in the middle”.

But how? An even number of numbers has no middle!

In our case with k = 3, biasing by 3 gives

(0 − 3) = −3, (1 − 3) = −2, . . . , (7 − 3) = 4.

Numbers are taken as

β2β1β0↔
2
∑

=0

β2 − 3,

where 3 = 22 − 1 = 2k−1 − 1.

Slide 7

https://en.wikipedia.org/wiki/Offset_binary

Biased scheme

For general k: bias by 2k−1 − 1, and take numbers as

βk−1 · · ·β0↔
k−1
∑

=0

β2 − (2k−1 − 1).

The smallest such number is

0 − (2k−1 − 1) = −(2k−1 − 1).

The largest such number is

(2k − 1) − (2k−1 − 1) = 2k−1(2 − 1) = 2k−1.

Slide 8

Biased scheme

For general k: bias by 2k−1 − 1, and take numbers as

βk−1 · · ·β0↔
k−1
∑

=0

β2 − (2k−1 − 1).

The smallest such number is

0 − (2k−1 − 1) = −(2k−1 − 1).

The largest such number is

(2k − 1) − (2k−1 − 1) = 2k−1(2 − 1) = 2k−1.

Slide 8

Biased scheme

For general k: bias by 2k−1 − 1, and take numbers as

βk−1 · · ·β0↔
k−1
∑

=0

β2 − (2k−1 − 1).

The smallest such number is

0 − (2k−1 − 1) = −(2k−1 − 1).

The largest such number is

(2k − 1) − (2k−1 − 1) = 2k−1(2 − 1) = 2k−1.

Slide 8

Biased scheme

We need this later for specifically for k = 11.

There are 211 = 2048 different bit sequences, “initially” corresponding
to 0, . . . , 2047.

Biasing by 210 − 1 = 1023 these become

(0 − 1023) = −1023, . . . , (2047 − 1023) = 1024.

Slide 9

Biased scheme

We need this later for specifically for k = 11.

There are 211 = 2048 different bit sequences, “initially” corresponding
to 0, . . . , 2047.

Biasing by 210 − 1 = 1023 these become

(0 − 1023) = −1023, . . . , (2047 − 1023) = 1024.

Slide 9

Biased scheme

We need this later for specifically for k = 11.

There are 211 = 2048 different bit sequences, “initially” corresponding
to 0, . . . , 2047.

Biasing by 210 − 1 = 1023 these become

(0 − 1023) = −1023, . . . , (2047 − 1023) = 1024.

Slide 9

Two’s complement scheme

See alse https://en.wikipedia.org/wiki/Two%27s_complement.

Interpret bit sequences of length k as remainder classes modulo 2k.

In our case with k = 3 so that 23 = 8: when doing integer division by 8, a
remainder of 7 is equivalent to a remainer of −1. (If we add 1 to 7, we
get 8, and no remainder.)

So we can do

0,1,2,3,4↔−4,5↔−3,6↔−2,7↔−1.

The corresponding bit sequences are:
000, 001, 010, 011, 100, 101, 110, 111.

So all sequences with the highest bit on are taken as the negative of
their “two’s complement”.

Slide 10

https://en.wikipedia.org/wiki/Two%27s_complement

Two’s complement scheme

See alse https://en.wikipedia.org/wiki/Two%27s_complement.

Interpret bit sequences of length k as remainder classes modulo 2k.

In our case with k = 3 so that 23 = 8: when doing integer division by 8, a
remainder of 7 is equivalent to a remainer of −1. (If we add 1 to 7, we
get 8, and no remainder.)

So we can do

0,1,2,3,4↔−4,5↔−3,6↔−2,7↔−1.

The corresponding bit sequences are:
000, 001, 010, 011, 100, 101, 110, 111.

So all sequences with the highest bit on are taken as the negative of
their “two’s complement”.

Slide 10

https://en.wikipedia.org/wiki/Two%27s_complement

Two’s complement scheme

See alse https://en.wikipedia.org/wiki/Two%27s_complement.

Interpret bit sequences of length k as remainder classes modulo 2k.

In our case with k = 3 so that 23 = 8: when doing integer division by 8, a
remainder of 7 is equivalent to a remainer of −1. (If we add 1 to 7, we
get 8, and no remainder.)

So we can do

0,1,2,3,4↔−4,5↔−3,6↔−2,7↔−1.

The corresponding bit sequences are:
000, 001, 010, 011, 100, 101, 110, 111.

So all sequences with the highest bit on are taken as the negative of
their “two’s complement”.

Slide 10

https://en.wikipedia.org/wiki/Two%27s_complement

Two’s complement scheme

See alse https://en.wikipedia.org/wiki/Two%27s_complement.

Interpret bit sequences of length k as remainder classes modulo 2k.

In our case with k = 3 so that 23 = 8: when doing integer division by 8, a
remainder of 7 is equivalent to a remainer of −1. (If we add 1 to 7, we
get 8, and no remainder.)

So we can do

0,1,2,3,4↔−4,5↔−3,6↔−2,7↔−1.

The corresponding bit sequences are:
000, 001, 010, 011, 100, 101, 110, 111.

So all sequences with the highest bit on are taken as the negative of
their “two’s complement”.
Slide 10

https://en.wikipedia.org/wiki/Two%27s_complement

Two’s complement scheme

Note that for the bit sequences with the highest bit on, the remaining
bits correspond to the numbers 0, 1, 2 and 3, which we take as -4, -3, -2,
and -1: i.e., from which we subtract 4!

So in our case:

β2β1β0↔
1
∑

=0

β2 − β2 · 4

Slide 11

Two’s complement scheme

Note that for the bit sequences with the highest bit on, the remaining
bits correspond to the numbers 0, 1, 2 and 3, which we take as -4, -3, -2,
and -1: i.e., from which we subtract 4!

So in our case:

β2β1β0↔
1
∑

=0

β2 − β2 · 4

Slide 11

Two’s complement scheme

In general, using k bits:

βk−1 · · ·β0↔
k−2
∑

=0

β2 − βk−1 · 2k−1.

The smallest such number is

10 · · ·0↔
k−2
∑

=0

0 · 2 − 1 · 2k−1 = −2k−1.

The largest such number is

01 . . .1↔
k−2
∑

=0

1 · 2 − 0 · 2k−1 = 2k−1 − 1.

Slide 12

Two’s complement scheme

In general, using k bits:

βk−1 · · ·β0↔
k−2
∑

=0

β2 − βk−1 · 2k−1.

The smallest such number is

10 · · ·0↔
k−2
∑

=0

0 · 2 − 1 · 2k−1 = −2k−1.

The largest such number is

01 . . .1↔
k−2
∑

=0

1 · 2 − 0 · 2k−1 = 2k−1 − 1.

Slide 12

Two’s complement scheme

In general, using k bits:

βk−1 · · ·β0↔
k−2
∑

=0

β2 − βk−1 · 2k−1.

The smallest such number is

10 · · ·0↔
k−2
∑

=0

0 · 2 − 1 · 2k−1 = −2k−1.

The largest such number is

01 . . .1↔
k−2
∑

=0

1 · 2 − 0 · 2k−1 = 2k−1 − 1.

Slide 12

Two’s complement scheme

How can we see that
∑k−2

=0 1 · 2
 = 2k−1 − 1?

1. Elegant: this is the largest binary number one can do using k − 1 bits,
which is one less than 2k−1.

2. Brute force using geometric sum: if q 6= 1 we have

n−1
∑

=0

q =
qn − 1

q − 1
,

hence with q = 2 and n = k − 1

k−2
∑

=0

1 · 2 =
2k−1 − 1

2 − 1
= 2k−1 − 1.

Slide 13

Two’s complement scheme

How can we see that
∑k−2

=0 1 · 2
 = 2k−1 − 1?

1. Elegant: this is the largest binary number one can do using k − 1 bits,
which is one less than 2k−1.

2. Brute force using geometric sum: if q 6= 1 we have

n−1
∑

=0

q =
qn − 1

q − 1
,

hence with q = 2 and n = k − 1

k−2
∑

=0

1 · 2 =
2k−1 − 1

2 − 1
= 2k−1 − 1.

Slide 13

Two’s complement scheme

How can we see that
∑k−2

=0 1 · 2
 = 2k−1 − 1?

1. Elegant: this is the largest binary number one can do using k − 1 bits,
which is one less than 2k−1.

2. Brute force using geometric sum: if q 6= 1 we have

n−1
∑

=0

q =
qn − 1

q − 1
,

hence with q = 2 and n = k − 1

k−2
∑

=0

1 · 2 =
2k−1 − 1

2 − 1
= 2k−1 − 1.

Slide 13

Two’s complement scheme

Two’s complement is what digital computers actually use for integer
arithmetic. See the Wikipedia article for reasons why.

R uses k = 32 bits and two’s complement with one modification:
10 · · ·0↔ NA_integer_ (the integer missing value).

So the 232 = 4294967296 bit sequences have one zero, one NA, and
(232 − 2)/2 = 231 − 1 = 2147483647 positive and negative integers
each.

The smallest such integer is −(231 − 1), the largest is 231 − 1.

Slide 14

Two’s complement scheme

Two’s complement is what digital computers actually use for integer
arithmetic. See the Wikipedia article for reasons why.

R uses k = 32 bits and two’s complement with one modification:
10 · · ·0↔ NA_integer_ (the integer missing value).

So the 232 = 4294967296 bit sequences have one zero, one NA, and
(232 − 2)/2 = 231 − 1 = 2147483647 positive and negative integers
each.

The smallest such integer is −(231 − 1), the largest is 231 − 1.

Slide 14

Two’s complement scheme

Two’s complement is what digital computers actually use for integer
arithmetic. See the Wikipedia article for reasons why.

R uses k = 32 bits and two’s complement with one modification:
10 · · ·0↔ NA_integer_ (the integer missing value).

So the 232 = 4294967296 bit sequences have one zero, one NA, and
(232 − 2)/2 = 231 − 1 = 2147483647 positive and negative integers
each.

The smallest such integer is −(231 − 1), the largest is 231 − 1.

Slide 14

Two’s complement scheme

Two’s complement is what digital computers actually use for integer
arithmetic. See the Wikipedia article for reasons why.

R uses k = 32 bits and two’s complement with one modification:
10 · · ·0↔ NA_integer_ (the integer missing value).

So the 232 = 4294967296 bit sequences have one zero, one NA, and
(232 − 2)/2 = 231 − 1 = 2147483647 positive and negative integers
each.

The smallest such integer is −(231 − 1), the largest is 231 − 1.

Slide 14

Two’s complement scheme

Trying to add one to the largest integer in integer arithmetic is not
possible:

R> (imax <- .Machine$integer.max)

[1] 2147483647

R> imax + 1L

[1] NA

Similarly,

R> as.integer(c(2^31 - 1, 2^31))

[1] 2147483647 NA

Slide 15

Two’s complement scheme

Trying to add one to the largest integer in integer arithmetic is not
possible:

R> (imax <- .Machine$integer.max)

[1] 2147483647

R> imax + 1L

[1] NA

Similarly,

R> as.integer(c(2^31 - 1, 2^31))

[1] 2147483647 NA

Slide 15

Outline

� Integers

� Doubles

Slide 16

Doubles

R uses double precision floating point numbers (“doubles”) for its
numeric computations.

This is what is commonly used as a fixed precision model for the real
numbers.

This is a standardized model: IEEE 754 (e.g.,
https://en.wikipedia.org/wiki/IEEE_754); equivalently,
ISO/IEC/IEEE 60559 (but 754 is easier to remember).

Slide 17

https://en.wikipedia.org/wiki/IEEE_754

Floating point numbers

E.g., 123.45 is a decimal floating point number everyone understands
to be the same as

123.45 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2.

One can also write this as

123.45 = 12345 · 10−2 = 1.2345 · 102.

The last is the normalized form.

The sequence of (here, decimal) digits 12345 is called the significand
(or mantissa), the 2 is the exponent (or characteristic) of the number.

Slide 18

Floating point numbers

E.g., 123.45 is a decimal floating point number everyone understands
to be the same as

123.45 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2.

One can also write this as

123.45 = 12345 · 10−2 = 1.2345 · 102.

The last is the normalized form.

The sequence of (here, decimal) digits 12345 is called the significand
(or mantissa), the 2 is the exponent (or characteristic) of the number.

Slide 18

Floating point numbers

E.g., 123.45 is a decimal floating point number everyone understands
to be the same as

123.45 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2.

One can also write this as

123.45 = 12345 · 10−2 = 1.2345 · 102.

The last is the normalized form.

The sequence of (here, decimal) digits 12345 is called the significand
(or mantissa), the 2 is the exponent (or characteristic) of the number.

Slide 18

Floating point number systems

A floating point number system is characterized by four integers: b
(base or radix), p (precision), and emin and emx (minimal and maximal
exponents).

It consists of numbers of the form

 = ±
�

δ0 +
δ1

b1
+ · · · +

δp−1

bp−1

�

be,

where emin ≤ e ≤ emx and for 0 ≤ ≤ p − 1,

δ ∈ {0, . . . , b − 1}.

The number is normalized if δ0 6= 0.

Slide 19

Floating point number systems

A floating point number system is characterized by four integers: b
(base or radix), p (precision), and emin and emx (minimal and maximal
exponents).

It consists of numbers of the form

 = ±
�

δ0 +
δ1

b1
+ · · · +

δp−1

bp−1

�

be,

where emin ≤ e ≤ emx and for 0 ≤ ≤ p − 1,

δ ∈ {0, . . . , b − 1}.

The number is normalized if δ0 6= 0.

Slide 19

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal?

Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal?

Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary?

Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!

Slide 20

IEEE 754

Clearly, all floating point numbers can be represented by the triple

(sign,exponent, significnd).

IEEE 754 is a standard for base 2 which says: for double precision, use
64 bits (8 bytes) overall, split as

sign: 1 bit, exponent: 11 bits, significand: 52 bits.

In principle, the exponent is represented using the biased scheme (see
before). So the exponent range would be

−1023,−1022, . . . ,1023,1024

but the smallest (all 0 bits) and the largest (all 1 bits) exponents are
special!

Slide 21

IEEE 754

Clearly, all floating point numbers can be represented by the triple

(sign,exponent, significnd).

IEEE 754 is a standard for base 2 which says: for double precision, use
64 bits (8 bytes) overall, split as

sign: 1 bit, exponent: 11 bits, significand: 52 bits.

In principle, the exponent is represented using the biased scheme (see
before). So the exponent range would be

−1023,−1022, . . . ,1023,1024

but the smallest (all 0 bits) and the largest (all 1 bits) exponents are
special!
Slide 21

IEEE 754

Representing binary floating point numbers in IEEE 754 works as
follows:

(a) Exponent neither all 0 bits or all 1 bits: this is the normalized number

σ
�

1 +
δ1

2
+ · · · +

δ52

252

�

2e.

(b) Exponents all 0 bits: this is the de-normalized number

σ
�

0 +
δ1

2
+ · · · +

δ52

252

�

2−1022.

(c) Exponent all 1 bits: if all bits in the significand are 0, this is ±∞;
otherwise, it is a NaN.

Slide 22

IEEE 754

Representing binary floating point numbers in IEEE 754 works as
follows:

(a) Exponent neither all 0 bits or all 1 bits: this is the normalized number

σ
�

1 +
δ1

2
+ · · · +

δ52

252

�

2e.

(b) Exponents all 0 bits: this is the de-normalized number

σ
�

0 +
δ1

2
+ · · · +

δ52

252

�

2−1022.

(c) Exponent all 1 bits: if all bits in the significand are 0, this is ±∞;
otherwise, it is a NaN.

Slide 22

IEEE 754

Representing binary floating point numbers in IEEE 754 works as
follows:

(a) Exponent neither all 0 bits or all 1 bits: this is the normalized number

σ
�

1 +
δ1

2
+ · · · +

δ52

252

�

2e.

(b) Exponents all 0 bits: this is the de-normalized number

σ
�

0 +
δ1

2
+ · · · +

δ52

252

�

2−1022.

(c) Exponent all 1 bits: if all bits in the significand are 0, this is ±∞;
otherwise, it is a NaN.

Slide 22

IEEE 754

Note that for both normalized and de-normalized numbers, δ0 never gets
stored: so the signficand is represented by the bit sequence δ1 · · · δ52.

The standard layout for the double precision representation is

σ ε10 · · ·ε0 δ1 · · · δ52

Let’s try some examples.

Slide 23

IEEE 754

Question: which IEEE 754 floating point number does

σ 1 · · ·1 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 1 bits, significand has all 0 bits, so
by rule (c), σ∞ (i.e., ±∞).

Note that this is how get two infinities!

For connaisseurs: two-point compactification of the real numbers.

Slide 24

IEEE 754

Question: which IEEE 754 floating point number does

σ 1 · · ·1 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 1 bits, significand has all 0 bits, so
by rule (c), σ∞ (i.e., ±∞).

Note that this is how get two infinities!

For connaisseurs: two-point compactification of the real numbers.

Slide 24

IEEE 754

Question: which IEEE 754 floating point number does

σ 1 · · ·1 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 1 bits, significand has all 0 bits, so
by rule (c), σ∞ (i.e., ±∞).

Note that this is how get two infinities!

For connaisseurs: two-point compactification of the real numbers.

Slide 24

IEEE 754

Question: which IEEE 754 floating point number does

σ 1 · · ·1 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 1 bits, significand has all 0 bits, so
by rule (c), σ∞ (i.e., ±∞).

Note that this is how get two infinities!

For connaisseurs: two-point compactification of the real numbers.

Slide 24

IEEE 754

Question: which IEEE 754 floating point number does

σ 0 · · ·0 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 0 bits, so by rule (b), this is a
denormalized number, which has δ0 = 0 and for general δ1, . . . , δ52 is
given by

σ

� 52
∑

=1

δ

2

�

2−1022.

Here, all δ are 0, hence is the sum, and we get σ 0 (i.e., ±0).

Note that this is how get two zeroes! (Remember Unit 1!)

Slide 25

IEEE 754

Question: which IEEE 754 floating point number does

σ 0 · · ·0 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 0 bits, so by rule (b), this is a
denormalized number, which has δ0 = 0 and for general δ1, . . . , δ52 is
given by

σ

� 52
∑

=1

δ

2

�

2−1022.

Here, all δ are 0, hence is the sum, and we get σ 0 (i.e., ±0).

Note that this is how get two zeroes! (Remember Unit 1!)

Slide 25

IEEE 754

Question: which IEEE 754 floating point number does

σ 0 · · ·0 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 0 bits, so by rule (b), this is a
denormalized number, which has δ0 = 0 and for general δ1, . . . , δ52 is
given by

σ

� 52
∑

=1

δ

2

�

2−1022.

Here, all δ are 0, hence is the sum, and we get σ 0 (i.e., ±0).

Note that this is how get two zeroes! (Remember Unit 1!)
Slide 25

IEEE 754

Question: what is the smallest positive de-normalized number we can
do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 0 . . .01. The number is thus
represented as

1 0 · · ·0 0 · · ·01

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−522−1022 = 2−1074.

In decimal:

R> 2^(-1074)

[1] 4.940656e-324

Slide 26

IEEE 754

Question: what is the smallest positive de-normalized number we can
do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 0 . . .01. The number is thus
represented as

1 0 · · ·0 0 · · ·01

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−522−1022 = 2−1074.

In decimal:

R> 2^(-1074)

[1] 4.940656e-324

Slide 26

IEEE 754

Question: what is the smallest positive de-normalized number we can
do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 0 . . .01. The number is thus
represented as

1 0 · · ·0 0 · · ·01

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−522−1022 = 2−1074.

In decimal:

R> 2^(-1074)

[1] 4.940656e-324Slide 26

IEEE 754

Question: what is the largest positive de-normalized number we can do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 1 . . .1. The number is thus
represented as

1 0 · · ·0 1 · · ·1

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−1022
52
∑

=1

2− = · · · = 2−1022(1 − 2−52),

as
∑52

=1 2
− = 2−52

∑51
=0 2

 = 2−52(252 − 1) = 1 − 2−52 (brute force, can
also go elegant).

Slide 27

IEEE 754

Question: what is the largest positive de-normalized number we can do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 1 . . .1. The number is thus
represented as

1 0 · · ·0 1 · · ·1

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−1022
52
∑

=1

2− = · · · = 2−1022(1 − 2−52),

as
∑52

=1 2
− = 2−52

∑51
=0 2

 = 2−52(252 − 1) = 1 − 2−52 (brute force, can
also go elegant).

Slide 27

IEEE 754

Question: what is the smallest positive normalized number we can do?

Answer: this is easy. We must make

� the exponent as small as possible, i.e., 0 . . .01 which will correspond
to −1022 (all 0 would not be normalized!)

� the significand as small as possible, i.e., 0 . . .0.

The number is thus represented as

1 0 · · ·01 0 · · ·0

Slide 28

IEEE 754

Question: what is the smallest positive normalized number we can do?

Answer: this is easy. We must make

� the exponent as small as possible, i.e., 0 . . .01 which will correspond
to −1022 (all 0 would not be normalized!)

� the significand as small as possible, i.e., 0 . . .0.

The number is thus represented as

1 0 · · ·01 0 · · ·0

Slide 28

IEEE 754

Question: what is the smallest positive normalized number we can do?

Answer: this is easy. We must make

� the exponent as small as possible, i.e., 0 . . .01 which will correspond
to −1022 (all 0 would not be normalized!)

� the significand as small as possible, i.e., 0 . . .0.

The number is thus represented as

1 0 · · ·01 0 · · ·0

Slide 28

IEEE 754

Question: what is the smallest positive normalized number we can do?

Answer: this is easy. We must make

� the exponent as small as possible, i.e., 0 . . .01 which will correspond
to −1022 (all 0 would not be normalized!)

� the significand as small as possible, i.e., 0 . . .0.

The number is thus represented as

1 0 · · ·01 0 · · ·0

Slide 28

IEEE 754

The value of this number is
�

1 +
52
∑

=1

0

2

�

2−1022 = 2−1022.

Note that this nicely continues above the de-normalized numbers, for
which we already determined the positive ones to lie in the range from
2−1074 to 2−1022(1 − 2−52)!

In R:

R> c(2^(-1022), .Machine$double.xmin)

[1] 2.225074e-308 2.225074e-308

Slide 29

IEEE 754

The value of this number is
�

1 +
52
∑

=1

0

2

�

2−1022 = 2−1022.

Note that this nicely continues above the de-normalized numbers, for
which we already determined the positive ones to lie in the range from
2−1074 to 2−1022(1 − 2−52)!

In R:

R> c(2^(-1022), .Machine$double.xmin)

[1] 2.225074e-308 2.225074e-308

Slide 29

IEEE 754

The value of this number is
�

1 +
52
∑

=1

0

2

�

2−1022 = 2−1022.

Note that this nicely continues above the de-normalized numbers, for
which we already determined the positive ones to lie in the range from
2−1074 to 2−1022(1 − 2−52)!

In R:

R> c(2^(-1022), .Machine$double.xmin)

[1] 2.225074e-308 2.225074e-308

Slide 29

IEEE 754

Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
make

� the exponent as large as possible, i.e., 1 . . .10 which will correspond
to 1023 (all 1 would not be normalized!)

� the significand as large as possible, i.e., 1 . . .1.

The number is thus represented as

1 1 · · ·10 1 · · ·1

Slide 30

IEEE 754

Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
make

� the exponent as large as possible, i.e., 1 . . .10 which will correspond
to 1023 (all 1 would not be normalized!)

� the significand as large as possible, i.e., 1 . . .1.

The number is thus represented as

1 1 · · ·10 1 · · ·1

Slide 30

IEEE 754

Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
make

� the exponent as large as possible, i.e., 1 . . .10 which will correspond
to 1023 (all 1 would not be normalized!)

� the significand as large as possible, i.e., 1 . . .1.

The number is thus represented as

1 1 · · ·10 1 · · ·1

Slide 30

IEEE 754

Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
make

� the exponent as large as possible, i.e., 1 . . .10 which will correspond
to 1023 (all 1 would not be normalized!)

� the significand as large as possible, i.e., 1 . . .1.

The number is thus represented as

1 1 · · ·10 1 · · ·1

Slide 30

IEEE 754

The value of this number is
�

1 +
52
∑

=1

1

2

�

21023 = (1 + 1 − 2−52)21023 = 21024(1 − 2−53)

In R,

R> c(2^1023 * (2 - 2^(-52)), .Machine$double.xmax)

[1] 1.797693e+308 1.797693e+308

Slide 31

IEEE 754

The value of this number is
�

1 +
52
∑

=1

1

2

�

21023 = (1 + 1 − 2−52)21023 = 21024(1 − 2−53)

In R,

R> c(2^1023 * (2 - 2^(-52)), .Machine$double.xmax)

[1] 1.797693e+308 1.797693e+308

Slide 31

IEEE 754

However,

R> 2^1024 * (1 - 2^(-53))

[1] Inf

Why?

Slide 32

IEEE 754

Question: how can we represent 1?

Answer. This is . . . hmm, easy again.

This must be a normalized number for which

1 =

�

1 +
52
∑

=1

δ

2

�

2e.

So we must have δ1 = · · · = δ52 = 0 and e = 0, with exponent bits giving
1023 before biasing.

Thus, the representation must be

1 01 · · ·1 0 · · ·0

Slide 33

IEEE 754

Question: how can we represent 1?

Answer. This is . . . hmm, easy again.

This must be a normalized number for which

1 =

�

1 +
52
∑

=1

δ

2

�

2e.

So we must have δ1 = · · · = δ52 = 0 and e = 0, with exponent bits giving
1023 before biasing.

Thus, the representation must be

1 01 · · ·1 0 · · ·0

Slide 33

IEEE 754

Question: how can we represent 1?

Answer. This is . . . hmm, easy again.

This must be a normalized number for which

1 =

�

1 +
52
∑

=1

δ

2

�

2e.

So we must have δ1 = · · · = δ52 = 0 and e = 0, with exponent bits giving
1023 before biasing.

Thus, the representation must be

1 01 · · ·1 0 · · ·0

Slide 33

IEEE 754

Question: how can we represent 1?

Answer. This is . . . hmm, easy again.

This must be a normalized number for which

1 =

�

1 +
52
∑

=1

δ

2

�

2e.

So we must have δ1 = · · · = δ52 = 0 and e = 0, with exponent bits giving
1023 before biasing.

Thus, the representation must be

1 01 · · ·1 0 · · ·0

Slide 33

IEEE 754

Question: what is the smallest positive number greater than 1?

Answer: this is easy again. This must be like 1, but with δ52 flipped from
0 to 1.

This has representation

1 01 · · ·1 0 · · ·01

and value

1 + 2−52

Slide 34

IEEE 754

Question: what is the smallest positive number greater than 1?

Answer: this is easy again. This must be like 1, but with δ52 flipped from
0 to 1.

This has representation

1 01 · · ·1 0 · · ·01

and value

1 + 2−52

Slide 34

IEEE 754

Question: what is the smallest positive number greater than 1?

Answer: this is easy again. This must be like 1, but with δ52 flipped from
0 to 1.

This has representation

1 01 · · ·1 0 · · ·01

and value

1 + 2−52

Slide 34

IEEE 754

What we have just shown is: modulo rounding effects,
ε = 2−52 is the smallest positive floating-point number such that
1 + 6= 1!

In R,

R> c(2^(-52), .Machine$double.eps)

[1] 2.220446e-16 2.220446e-16

So
the maximal precision we can expect for floating point computations
is 16 decimal digits after the comma (52 binary digits).

Slide 35

IEEE 754

What we have just shown is: modulo rounding effects,
ε = 2−52 is the smallest positive floating-point number such that
1 + 6= 1!

In R,

R> c(2^(-52), .Machine$double.eps)

[1] 2.220446e-16 2.220446e-16

So
the maximal precision we can expect for floating point computations
is 16 decimal digits after the comma (52 binary digits).

Slide 35

IEEE 754

What we have just shown is: modulo rounding effects,
ε = 2−52 is the smallest positive floating-point number such that
1 + 6= 1!

In R,

R> c(2^(-52), .Machine$double.eps)

[1] 2.220446e-16 2.220446e-16

So
the maximal precision we can expect for floating point computations
is 16 decimal digits after the comma (52 binary digits).

Slide 35

IEEE 754

To illustrate:

R> (1 + 2^(-52)) == 1

[1] FALSE

R> (1 + 2^(-53)) == 1

[1] TRUE

So the basic rule

1 + = 1 ⇒ = 0

does not hold in floating point arithmetic!

Slide 36

IEEE 754

To illustrate:

R> (1 + 2^(-52)) == 1

[1] FALSE

R> (1 + 2^(-53)) == 1

[1] TRUE

So the basic rule

1 + = 1 ⇒ = 0

does not hold in floating point arithmetic!

Slide 36

IEEE 754

Similarly,

R> x <- 1
R> y <- 2^(-53)
R> (x + y) + y == x + (y + y)

[1] FALSE

So the basic rule (+ y) + z = + (y + z) (law of associativity) does not
hold in floating point arithmetic!

Why?

Slide 37

IEEE 754

Similarly,

R> x <- 1
R> y <- 2^(-53)
R> (x + y) + y == x + (y + y)

[1] FALSE

So the basic rule (+ y) + z = + (y + z) (law of associativity) does not
hold in floating point arithmetic!

Why?

Slide 37

IEEE 754

Similarly,

R> x <- 1
R> y <- 2^(-53)
R> (x + y) + y == x + (y + y)

[1] FALSE

So the basic rule (+ y) + z = + (y + z) (law of associativity) does not
hold in floating point arithmetic!

Why?

Slide 37

IEEE 754

To illustrate the rounding effects:

R> 1 + 2^(-53) == 1

[1] TRUE

R> 1 + (2^(-53) + 2^(-54)) == 1

[1] FALSE

R> 1 + (2^(-53) + 2^(-105)) == 1

[1] FALSE

R> 1 + (2^(-53) + 2^(-106)) == 1

[1] TRUE

Why?
Slide 38

IEEE 754

Question: what is the largest positive number less than 1?

Answer: this is . . . hmm, not quite so easy.

It must be a normalized number.

1 obviously is the smallest number we can do with exponent 0.

So we are looking for the largest number with exponent −1, i.e., 1022
before biasing.

Thus, the representation must be

1 01 · · ·10 1 · · ·1

Slide 39

IEEE 754

Question: what is the largest positive number less than 1?

Answer: this is . . .

hmm, not quite so easy.

It must be a normalized number.

1 obviously is the smallest number we can do with exponent 0.

So we are looking for the largest number with exponent −1, i.e., 1022
before biasing.

Thus, the representation must be

1 01 · · ·10 1 · · ·1

Slide 39

IEEE 754

Question: what is the largest positive number less than 1?

Answer: this is . . . hmm, not quite so easy.

It must be a normalized number.

1 obviously is the smallest number we can do with exponent 0.

So we are looking for the largest number with exponent −1, i.e., 1022
before biasing.

Thus, the representation must be

1 01 · · ·10 1 · · ·1

Slide 39

IEEE 754

Question: what is the largest positive number less than 1?

Answer: this is . . . hmm, not quite so easy.

It must be a normalized number.

1 obviously is the smallest number we can do with exponent 0.

So we are looking for the largest number with exponent −1, i.e., 1022
before biasing.

Thus, the representation must be

1 01 · · ·10 1 · · ·1

Slide 39

IEEE 754

The value of this number is
�

1 +
52
∑

=1

1

2

�

2−1 = (1 + 1 − 2−52)2−1 = 1 − 2−53.

What we have just shown is: modulo rounding effects,
ε = 2−53 is the smallest positive floating-point number such that
1 − 6= 1!

In R,

R> c(2^(-53), .Machine$double.neg.eps)

[1] 1.110223e-16 1.110223e-16

Slide 40

IEEE 754

The value of this number is
�

1 +
52
∑

=1

1

2

�

2−1 = (1 + 1 − 2−52)2−1 = 1 − 2−53.

What we have just shown is: modulo rounding effects,
ε = 2−53 is the smallest positive floating-point number such that
1 − 6= 1!

In R,

R> c(2^(-53), .Machine$double.neg.eps)

[1] 1.110223e-16 1.110223e-16

Slide 40

IEEE 754

The value of this number is
�

1 +
52
∑

=1

1

2

�

2−1 = (1 + 1 − 2−52)2−1 = 1 − 2−53.

What we have just shown is: modulo rounding effects,
ε = 2−53 is the smallest positive floating-point number such that
1 − 6= 1!

In R,

R> c(2^(-53), .Machine$double.neg.eps)

[1] 1.110223e-16 1.110223e-16

Slide 40

	Integers
	Doubles

