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Integers

How can we store integers using bits?

E.g., using k = 3 bits, can do bit sequences
000, 001, . . . , 111

There are 2 · 2 · 2 = 23 = 8 different such sequences.

For general k, there are 2k such sequences.

In R, k = 32 bits (4 bytes) are used for integers.
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Integers

Which numbers should these bit sequences correspond to?

Obvious idea: the numbers with binary representation given by the
respective bit sequences. I.e.,

000: 0∗ 22 + 0∗ 21 + 0∗ 20 = 0
001: 0∗ 22 + 0∗ 21 + 1∗ 20 = 1

...
...

111: 1∗ 22 + 1∗ 21 + 1∗ 20 = 7

This would give the 8 numbers from 0 to 7.

But what about negative integers?

Three possibilities: (a) sign and magnitude, (b) bias, (c) two’s
complement.
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Sign and magnitude

See also https://en.wikipedia.org/wiki/Signed_number_

representations#Signed_magnitude_representation.

Take one bit for the sign, and the rest as before.

E.g., using 3 bits:

σβ1β0↔±(β1 ∗ 21 + β0 ∗ 20).

This would give the numbers

−3,−2,−1,−0,0,1,2,3

Note: there are two ways to represent 0!
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Sign and magnitude

For general k:

σβk−2 · · ·β0↔±
k−2
∑

=0

β2.

Why k − 2?

Can do 2k − 1 different numbers: 2k−1 − 1 positive and negative ones
each, and zero in two different ways. Check:

(2k−1 − 1) + (2k−1 − 1) + 1 = 2(2k−1 − 1) + 1 = 2k − 2 + 1 = 2k − 1.

Simple, but not used “in practice”.
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Biased scheme

See also https://en.wikipedia.org/wiki/Offset_binary.

Idea: “put zero in the middle”.

But how? An even number of numbers has no middle!

In our case with k = 3, biasing by 3 gives

(0 − 3) = −3, (1 − 3) = −2, . . . , (7 − 3) = 4.

Numbers are taken as

β2β1β0↔
2
∑

=0

β2 − 3,

where 3 = 22 − 1 = 2k−1 − 1.
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Biased scheme

For general k: bias by 2k−1 − 1, and take numbers as

βk−1 · · ·β0↔
k−1
∑

=0

β2 − (2k−1 − 1).

The smallest such number is

0 − (2k−1 − 1) = −(2k−1 − 1).

The largest such number is

(2k − 1) − (2k−1 − 1) = 2k−1(2 − 1) = 2k−1.
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Biased scheme

We need this later for specifically for k = 11.

There are 211 = 2048 different bit sequences, “initially” corresponding
to 0, . . . , 2047.

Biasing by 210 − 1 = 1023 these become

(0 − 1023) = −1023, . . . , (2047 − 1023) = 1024.
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Two’s complement scheme

See alse https://en.wikipedia.org/wiki/Two%27s_complement.

Interpret bit sequences of length k as remainder classes modulo 2k.

In our case with k = 3 so that 23 = 8: when doing integer division by 8, a
remainder of 7 is equivalent to a remainer of −1. (If we add 1 to 7, we
get 8, and no remainder.)

So we can do

0,1,2,3,4↔−4,5↔−3,6↔−2,7↔−1.

The corresponding bit sequences are:
000, 001, 010, 011, 100, 101, 110, 111.

So all sequences with the highest bit on are taken as the negative of
their “two’s complement”.
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Two’s complement scheme

Note that for the bit sequences with the highest bit on, the remaining
bits correspond to the numbers 0, 1, 2 and 3, which we take as -4, -3, -2,
and -1: i.e., from which we subtract 4!

So in our case:

β2β1β0↔
1
∑

=0

β2 − β2 · 4
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Two’s complement scheme

In general, using k bits:

βk−1 · · ·β0↔
k−2
∑

=0

β2 − βk−1 · 2k−1.

The smallest such number is

10 · · ·0↔
k−2
∑

=0

0 · 2 − 1 · 2k−1 = −2k−1.

The largest such number is

01 . . .1↔
k−2
∑

=0

1 · 2 − 0 · 2k−1 = 2k−1 − 1.
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Two’s complement scheme

How can we see that
∑k−2

=0 1 · 2
 = 2k−1 − 1?

1. Elegant: this is the largest binary number one can do using k − 1 bits,
which is one less than 2k−1.

2. Brute force using geometric sum: if q 6= 1 we have

n−1
∑

=0

q =
qn − 1

q − 1
,

hence with q = 2 and n = k − 1

k−2
∑

=0

1 · 2 =
2k−1 − 1

2 − 1
= 2k−1 − 1.
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Two’s complement scheme

Two’s complement is what digital computers actually use for integer
arithmetic. See the Wikipedia article for reasons why.

R uses k = 32 bits and two’s complement with one modification:
10 · · ·0↔ NA_integer_ (the integer missing value).

So the 232 = 4294967296 bit sequences have one zero, one NA, and
(232 − 2)/2 = 231 − 1 = 2147483647 positive and negative integers
each.

The smallest such integer is −(231 − 1), the largest is 231 − 1.
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Two’s complement scheme

Trying to add one to the largest integer in integer arithmetic is not
possible:

R> (imax <- .Machine$integer.max)

[1] 2147483647

R> imax + 1L

[1] NA

Similarly,

R> as.integer(c(2^31 - 1, 2^31))

[1] 2147483647 NA
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Doubles

R uses double precision floating point numbers (“doubles”) for its
numeric computations.

This is what is commonly used as a fixed precision model for the real
numbers.

This is a standardized model: IEEE 754 (e.g.,
https://en.wikipedia.org/wiki/IEEE_754); equivalently,
ISO/IEC/IEEE 60559 (but 754 is easier to remember).
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Floating point numbers

E.g., 123.45 is a decimal floating point number everyone understands
to be the same as

123.45 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2.

One can also write this as

123.45 = 12345 · 10−2 = 1.2345 · 102.

The last is the normalized form.

The sequence of (here, decimal) digits 12345 is called the significand
(or mantissa), the 2 is the exponent (or characteristic) of the number.
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Floating point number systems

A floating point number system is characterized by four integers: b
(base or radix), p (precision), and emin and emx (minimal and maximal
exponents).

It consists of numbers of the form

 = ±
�

δ0 +
δ1

b1
+ · · · +

δp−1

bp−1

�

be,

where emin ≤ e ≤ emx and for 0 ≤  ≤ p − 1,

δ ∈ {0, . . . , b − 1}.

The number is normalized if δ0 6= 0.
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Floating point number systems

In decimal, the base is b = 10, and the digits go from 0 to 9.

In octal? Base is b = 8, digits go from 0 to 7.

In hexadecimal? Base is b = 16, digits are 0, . . . , 9, a, . . . f. Or 0, . . . , 9,
A, . . . , F.

In binary? Base is b = 2, digits are 0 or 1 (bits again).

Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!
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Note that in binary, if the number is normalized, we must have δ0 = 1.
So if we know it is normalized, we do not have to store δ0!
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IEEE 754

Clearly, all floating point numbers can be represented by the triple

(sign,exponent, significnd).

IEEE 754 is a standard for base 2 which says: for double precision, use
64 bits (8 bytes) overall, split as

sign: 1 bit, exponent: 11 bits, significand: 52 bits.

In principle, the exponent is represented using the biased scheme (see
before). So the exponent range would be

−1023,−1022, . . . ,1023,1024

but the smallest (all 0 bits) and the largest (all 1 bits) exponents are
special!
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IEEE 754

Representing binary floating point numbers in IEEE 754 works as
follows:

(a) Exponent neither all 0 bits or all 1 bits: this is the normalized number

σ
�

1 +
δ1

2
+ · · · +

δ52

252

�

2e.

(b) Exponents all 0 bits: this is the de-normalized number

σ
�

0 +
δ1

2
+ · · · +

δ52

252

�

2−1022.

(c) Exponent all 1 bits: if all bits in the significand are 0, this is ±∞;
otherwise, it is a NaN.
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Representing binary floating point numbers in IEEE 754 works as
follows:
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σ
�

1 +
δ1
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+ · · · +

δ52
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�

2e.
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σ
�
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�
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IEEE 754

Note that for both normalized and de-normalized numbers, δ0 never gets
stored: so the signficand is represented by the bit sequence δ1 · · · δ52.

The standard layout for the double precision representation is

σ ε10 · · ·ε0 δ1 · · · δ52

Let’s try some examples.
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IEEE 754

Question: which IEEE 754 floating point number does

σ 1 · · ·1 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 1 bits, significand has all 0 bits, so
by rule (c), σ∞ (i.e., ±∞).

Note that this is how get two infinities!

For connaisseurs: two-point compactification of the real numbers.
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Question: which IEEE 754 floating point number does

σ 0 · · ·0 0 · · ·0

correspond to?

Answer: this is easy. Exponent has all 0 bits, so by rule (b), this is a
denormalized number, which has δ0 = 0 and for general δ1, . . . , δ52 is
given by

σ

� 52
∑

=1

δ

2

�

2−1022.

Here, all δ are 0, hence is the sum, and we get σ 0 (i.e., ±0).

Note that this is how get two zeroes! (Remember Unit 1!)
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Question: what is the smallest positive de-normalized number we can
do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 0 . . .01. The number is thus
represented as

1 0 · · ·0 0 · · ·01

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−522−1022 = 2−1074.

In decimal:

R> 2^(-1074)

[1] 4.940656e-324
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Question: what is the largest positive de-normalized number we can do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 1 . . .1. The number is thus
represented as

1 0 · · ·0 1 · · ·1

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−1022
52
∑

=1

2− = · · · = 2−1022(1 − 2−52),

as
∑52

=1 2
− = 2−52

∑51
=0 2

 = 2−52(252 − 1) = 1 − 2−52 (brute force, can
also go elegant).

Slide 27



IEEE 754

Question: what is the largest positive de-normalized number we can do?

Answer: this is easy. By rule (b), all bits in the exponent must be 0, and
the smallest significand we can get is 1 . . .1. The number is thus
represented as

1 0 · · ·0 1 · · ·1

and its value is
� 52
∑

=1

δ

2

�

2−1022 = 2−1022
52
∑

=1

2− = · · · = 2−1022(1 − 2−52),

as
∑52

=1 2
− = 2−52

∑51
=0 2

 = 2−52(252 − 1) = 1 − 2−52 (brute force, can
also go elegant).

Slide 27



IEEE 754

Question: what is the smallest positive normalized number we can do?

Answer: this is easy. We must make

� the exponent as small as possible, i.e., 0 . . .01 which will correspond
to −1022 (all 0 would not be normalized!)

� the significand as small as possible, i.e., 0 . . .0.

The number is thus represented as

1 0 · · ·01 0 · · ·0
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The value of this number is
�

1 +
52
∑

=1

0

2

�

2−1022 = 2−1022.

Note that this nicely continues above the de-normalized numbers, for
which we already determined the positive ones to lie in the range from
2−1074 to 2−1022(1 − 2−52)!

In R:

R> c(2^(-1022), .Machine$double.xmin)

[1] 2.225074e-308 2.225074e-308
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Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
make

� the exponent as large as possible, i.e., 1 . . .10 which will correspond
to 1023 (all 1 would not be normalized!)

� the significand as large as possible, i.e., 1 . . .1.

The number is thus represented as

1 1 · · ·10 1 · · ·1
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Question: what is the largest positive number we can do?

Answer: this is easy. It must be a normalized number, and we must
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The value of this number is
�

1 +
52
∑

=1

1

2

�

21023 = (1 + 1 − 2−52)21023 = 21024(1 − 2−53)

In R,

R> c(2^1023 * (2 - 2^(-52)), .Machine$double.xmax)

[1] 1.797693e+308 1.797693e+308
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The value of this number is
�

1 +
52
∑

=1

1

2

�
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However,

R> 2^1024 * (1 - 2^(-53))

[1] Inf

Why?
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Question: how can we represent 1?

Answer. This is . . . hmm, easy again.

This must be a normalized number for which

1 =

�

1 +
52
∑

=1

δ

2

�

2e.

So we must have δ1 = · · · = δ52 = 0 and e = 0, with exponent bits giving
1023 before biasing.

Thus, the representation must be

1 01 · · ·1 0 · · ·0
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Question: what is the smallest positive number greater than 1?

Answer: this is easy again. This must be like 1, but with δ52 flipped from
0 to 1.

This has representation

1 01 · · ·1 0 · · ·01

and value

1 + 2−52
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What we have just shown is: modulo rounding effects,
ε = 2−52 is the smallest positive floating-point number  such that
1 +  6= 1!

In R,

R> c(2^(-52), .Machine$double.eps)

[1] 2.220446e-16 2.220446e-16

So
the maximal precision we can expect for floating point computations
is 16 decimal digits after the comma (52 binary digits).
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To illustrate:

R> (1 + 2^(-52)) == 1

[1] FALSE

R> (1 + 2^(-53)) == 1

[1] TRUE

So the basic rule

1 +  = 1 ⇒  = 0

does not hold in floating point arithmetic!
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Similarly,

R> x <- 1
R> y <- 2^(-53)
R> (x + y) + y == x + (y + y)

[1] FALSE

So the basic rule ( + y) + z =  + (y + z) (law of associativity) does not
hold in floating point arithmetic!

Why?
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To illustrate the rounding effects:

R> 1 + 2^(-53) == 1

[1] TRUE

R> 1 + (2^(-53) + 2^(-54)) == 1

[1] FALSE

R> 1 + (2^(-53) + 2^(-105)) == 1

[1] FALSE

R> 1 + (2^(-53) + 2^(-106)) == 1

[1] TRUE

Why?
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Question: what is the largest positive number less than 1?

Answer: this is . . . hmm, not quite so easy.

It must be a normalized number.

1 obviously is the smallest number we can do with exponent 0.

So we are looking for the largest number with exponent −1, i.e., 1022
before biasing.

Thus, the representation must be

1 01 · · ·10 1 · · ·1
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The value of this number is
�

1 +
52
∑

=1

1

2

�

2−1 = (1 + 1 − 2−52)2−1 = 1 − 2−53.

What we have just shown is: modulo rounding effects,
ε = 2−53 is the smallest positive floating-point number  such that
1 −  6= 1!

In R,

R> c(2^(-53), .Machine$double.neg.eps)

[1] 1.110223e-16 1.110223e-16
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