
Computing Lectures

1 R Basics

Introduction to computing/programming using slides.

Using R as a pocket calculator:

• arithmetic operators (+, -, *, /, and ^)

• elementary functions (exp and log, sin and cos)

• Inf and NaN

• pi and options(digits)

• comparison operators (>, >=, <, <=, ==, !=): informally introduce logicals which will be
discussed in more detail in unit 2.

Using variables:

• assignment using <- (“gets”): binding symbols to values)

• inspect the binding (show the value of an object) by typing the symbol (name of the object):
auto-prints. Show that explicitly calling print() has the same effect.

• inspect available bindings (list objects) using ls() or objects()

• remove bindings (“delete objects”) using rm()

Using sequences:

• sequences, also known as vectors, can be combined using c()

• functions seq() and rep() allow efficient creation of certain patterned sequences; shortcut
:

• subsequences can be selected by subscripting via [, using positive (numeric) indices (positions
of elements to select) or negative indices (positions of elements to drop)

• can compute with whole sequences: vectorization

• summary functions: sum, prod, max, min, range

• can also have sequences of character strings

• sequences can also have names: use

R> x <- c(A = 1, B = 2, C = 3)

R> names(x)

[1] "A" "B" "C"

R> ## Change the names.

R> names(x) <- c("d", "e", "f")

R> x
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d e f

1 2 3

R> ## Remove the names.

R> names(x) <- NULL

R> x

[1] 1 2 3

for extracting and replacing the names, aka as getting and setting

Using functions:

• start with the simple standard example

R> hell <- function() writeLines("Hello world.")

to explain the constituents of functions: argument list (formals), body, and environment.
Invocation via

R> hell()

Hello world.

• Introduce basic programming elements: grouping and flow control (conditionals and loops).

• Use e.g.

R> for(i in 1 : pi) cat(i, "\n")

1

2

3

to introduce cat() and the "\n" for the newline, deferring more detailed discussion of string
constants to unit 2.

• Discuss return value of functions, noting that

R> val <- hell()

Hello world.

R> val

NULL

• Use this to introduce NULL (“nothing”).

• Discuss the difference between outputting something and returning something.

• Discuss fundamental principles:

1. Everything in R is an object

2. All computations are function calls which have a value

3. Some function calls are performed for their side effects

Using I/O:
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• Discuss I/O basics: R reads input from an input connection (typically, stdin()) and writes
output and messages to an output and message connection, respectively (typically, stdout()
and stderr(). The latter two can be redirected using sink().

• R code in a file can be read using source()

• Textual representations of R objects (appropriate for reading in via source() can be created
using dump()

• Objects (“data”) can also be saved and loaded in portable machine formats using save()

and load().

• Discuss interaction styles and persistence: editing text files with code and using “inferior” R
process versus “typing at the prompt” (and e.g. saving transcripts)

• Discuss text editors versus word processors

• Explain submitting homework assignments: send R code as plain text attachments

Getting help:

• function help() and question-mark shortcut; mention help.search()

• help.start() for bringing up a web interface with direct access to the manuals.

R environment:

• Discuss (G)UIs and IDEs

• R-aware text editing (indentation, highlighting, . . . )

• Interaction with the editor

• Interaction with the help system

• Transscripts

2 R Data Types

2.1 NULL

2.2 Logicals

Logical constants: TRUE and FALSE . . . and NA.

Discuss: 3-valued logic, missingness.

Logical vectors can be obtained by combining logical constants; by creation via logical() (or
vector(mode = "logical")), or by coercion via as.logical(). Note

R> logical(3)

[1] FALSE FALSE FALSE

R> logical()
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logical(0)

Discuss the difference between an empty sequence (zero-length vector) of a certain mode and NULL

(which is really nothing).

R> typeof(logical())

[1] "logical"

R> length(logical())

[1] 0

Also obtained as the results of comparisons.

Computational model: not single bits as 3-valued logic. (In fact, single bytes are used, which is
very inefficient.)

Basic functions/operators: negation (!), and and or (& and |), comparisons (in particular, == and
!=). Note the truth tables:

R> x <- c(TRUE, FALSE, NA)

R> x

[1] TRUE FALSE NA

R> !x

[1] FALSE TRUE NA

R> outer(x, x, `&`)

[,1] [,2] [,3]

[1,] TRUE FALSE NA

[2,] FALSE FALSE FALSE

[3,] NA FALSE NA

R> outer(x, x, `|`)

[,1] [,2] [,3]

[1,] TRUE TRUE TRUE

[2,] TRUE FALSE NA

[3,] TRUE NA NA

R> outer(x, x, `==`)

[,1] [,2] [,3]

[1,] TRUE FALSE NA

[2,] FALSE TRUE NA

[3,] NA NA NA
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Note in particular that we cannot test for missingness using ==: use is.na instead.

Short-circuit operators && and || to be used where a single (non-missing) truth value is needed
(flow control).

Summary operators: all and any (and can use sum for counting trues).

Recycling: for example,

R> x & FALSE

[1] FALSE FALSE FALSE

General principle for many functions: arguments are recycled to a common length (with a warning
if these resulted in fractional multiples).

Subscripting using logicals: select elements for which subscript is true (recycled as needed).

2.3 Integers

Integer constants: numeric constants with a trailing L. For example:

R> c(32L, 0xffL)

[1] 32 255

(using decimal and hexadecimal constants).

NA_integer_.

Integer vectors can be obtained by combining integer constants; by creation via integer() (or
vector(mode = "integer")), or by coercion via as.integer().

In addition, the various rounding operations (floor and ceiling, trunc and round(digits =

0)) result in integers. Note

R> round(c(0.5, 1.5, 2.5, 3.5))

[1] 0 2 2 4

According to the IEC 60559 standard, rounding .5 is by going to the even digit.

Integers are also obtained from length() and certain seq() invocations.

Computational model: signed 32 bits (4 bytes) (C data type int, not long int which is 64 bits on
64 bit platforms). Different schemes to encode integers (e.g., http://en.wikipedia.org/wiki/
Signed_number_representations):

• In the sign-and-magnitude scheme, one (e.g., the leading) bit is used for the sign, and using
k bits (for R, k = 32)

±bk−2 · · · b1b0 ↔ ±(bk−22k−2 + · · ·+ b121 + b020).

Disadvantage: two representations of 0 (one of which could be used to indicate missingness).
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• In the biased scheme,

bk−1 · · · b1b0 ↔ (bk−12k−1 + · · ·+ b121 + b020)− (2k−1 − 1)

Disadvantage: addition becomes a bit complex.

• In the most popular two’s complement scheme (e.g., http://en.wikipedia.org/wiki/Two%
27s_complement):

– 0, 1, . . . , 2k−1 − 1 are represented the usual way;

– −1,−2, . . . ,−2k−1 are represented by (bit sequences giving the binary representation
of) 2k − 1, 2k − 2, . . . , 2k − 2k−1 = 2k−1.

Or, more compactly: the value corresponding to the bit sequence bk−1 · · · b0 is −bk−12k−1 +∑k−2
i=0 bi2

i.

In R, the smallest possible integer (−231) is then taken as NA_integer_: corresponds to bit
pattern 10 · · · 0 or 0x80000000.

What is the largest possible integer? Using the simple sign-and-magnitude scheme and taking all
bits one leaves

20 + 21 + · · ·+ 230 =
231 − 1

2− 1
= 231 − 1.

for the magnitude, as for two’s complement.

Note

R> .Machine$integer.max

[1] 2147483647

R> as.integer(2^31 - 1)

[1] 2147483647

R> as.integer(2^31)

[1] NA

2.4 Doubles

Numeric constants are similar to C: they consist of an integer part consisting of zero or more
digits, followed optionally by ‘.’ and a fractional part of zero or more digits optionally followed
by an exponent part consisting of an ‘E’ or an ‘e’, an optional sign and a string of zero or more
digits. Either the fractional or the decimal part can be empty, but not both at once. Valid numeric
constants:

R> c(1, 10, 0.1, .2, 1e-7, 1.2e+7)

[1] 1.0e+00 1.0e+01 1.0e-01 2.0e-01 1.0e-07 1.2e+07
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Numeric constants can also be hexadecimal.

Note that R uses the term“numeric”to refer to numeric objects, but not consistently: numeric and
as.numeric identify numeric with double; is.numeric gives true for both doubles and integers.
Ignoring the latter, let us conceptually identify numeric and double.

Double vectors can be obtained by combining numeric constants; by creation via double() or
numeric() (or vector(mode = "numeric")), or by coercion via as.double() or as.numeric().

To make matters even more complicated: NA_real_.

Doubles are floating-point numbers following the double precision (64-bit) IEC 60559 (aka IEEE
754) standard.

In general, a floating-point number system is characterized by four integers: b (base or radix), p
(precision), emin and emax (minimal and maximal exponent) and consists of numbers of the form

x = ±
(
d0 +

d1
b

+ · · ·+ dp−1
bp−1

)
be, 0 ≤ di ≤ b− 1, i = 0, . . . , p− 1; emin ≤ e ≤ emax,

where d0 · · · dp−1 is the mantissa (or significand) and e is the exponent (or characteristic) or the
floating-point number.

A non-zero number is normalized if the leading digit d0 is non-zero.

For IEEE 754, b = 2, p = 53, emin = −1022 and emax = 1023, using a 64-bit (8-byte) representation
with 1 bit for the sign, 52 bits for the mantissa, and 11 bits for the exponent.

Exponents different from all-zero and all-one correspond to normalized numbers, and are inter-
preted using the biased scheme. I.e.,

e10 · · · e1e0 ↔ e10 ∗ 210 + · · · e1 ∗ 2e0 − 1023

so that indeed

emin = (0 ∗ 210 + · · ·+ 0 ∗ 2 + 1)− 1023 = −1022

and

emax = (1 ∗ 210 + · · ·+ 1 ∗ 2 + 0)− 1023 = 1023.

Note that as b = 2, for a normalized number d0 ≡ 1, so the redundant d0 does not need to be
stored: only p− 1 bits are needed for a precision of p by using only the fraction d1 · · · dp−1. Thus,
for normalized numbers

σ|d1 · · · d52|e10 · · · e0 ↔ σ 1.d1 . . . d52 ∗ 2e = σ

(
1 +

d1
2

+ · · ·+ d52
252

)
2e.

Exponents with only zeros are used for denormalized numbers, with interpretation

σ|d1 · · · d52|0 · · · 0↔ σ 0.d1 . . . d52 ∗ 2−1022 = σ

(
d1
2

+ · · ·+ d52
252

)
2−1022.

Note that this gives two (signed) zeros!

Exponents with only ones are used for representing signed infinities (with all di zero) and NaNs.
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What is the largest positive number representable? Take e = 1023 and all mantissa bits 1 to get(
1 +

1

2
+ · · ·+ 1

252

)
21023 = 2−52(253 − 1)21023 = 21023(2− 2−52).

What is the smallest positive number representable? This must be the denormalized number with
only the last mantissa bit 1, giving(

0 + 0 + · · ·+ 0 +
1

252

)
2−1022 = 2−1074.

Consequences of using floating point arithmetic:

• Most numbers cannot be represented exactly.

• Computations can only use up to 52 mantissa bits. Numbers which would differ in a mantissa
bit from 53 upwards are “the same”.

R> 1 == (1 + 2^(-52))

[1] FALSE

R> 1 == (1 + 2^(-53))

[1] TRUE

As

R> c(2^(-52), 2^1023)

[1] 2.220446e-16 8.988466e+307

double precision is roughly equivalent to 16 significant decimal figures, with exponents up
to size ±308.

• In a way,“basically nothing”works as you are used to! I.e., the fundamental laws of arithmetic
do not hold (exactly).

E.g., algebraically

x ∗ n/x− n = 0

but numerically:

R> x <- 1.25

R> y <- 1 / x

R> n <- 1 : 10

R> x * (n * y) - n

[1] 0.000000e+00 0.000000e+00 4.440892e-16 0.000000e+00 0.000000e+00

[6] 8.881784e-16 8.881784e-16 0.000000e+00 0.000000e+00 0.000000e+00

Or, more dramatically, illustrate “catastrophic cancellation” of rounding errors accumulating in
computations. Traditionally, one recommends to use the identity

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

(
n∑
i=1

x2i − nx̄2
)

to “simplify” computation of the sample variance of a sample x1, . . . , xn (“one-pass formula”).
Consider
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R> x <- 1 : 11

R> var(x)

[1] 11

Using

R> V <- function(x) {

+ n <- length(x)

+ (sum(x ^ 2) - n * mean(x) ^ 2) / (n - 1)

+ }

we get

R> V(x)

[1] 11

R> V(x + 1e10)

[1] 0

due to a catastrophic loss in precision.

2.5 Complex Numbers

Complex constants: decimal numeric constant followed by i. (Notice that only purely imaginary
numbers are actual constants.) Valid complex constants: 2i, 4.1i, 1e-2i. NA_complex_.

Creation and coercion via complex() and as.complex().

Also obtained as: sqrt() of complex numbers (but not of reals), note:

R> sqrt(-1)

[1] NaN

R> sqrt(-1+0i)

[1] 0+1i

and by polyroot() which finds the (possibly complex) roots of polynomials.

Basic functions: Re, Im, Mod, Arg, and Conj for the real and imaginary parts, modulus and
argument, and the complex conjugate.

2.6 Strings

String constants: are delimited by a pair of double (or single) quotes and can contain all other
printable characters. Quotes and other special characters are specified using (backslash) escape
sequences:
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\' single quote
\" double quote
\n newline
\r carriage return
\t tab character
\b backspace
\a bell
\f form feed
\v vertical tab
\\ backslash
\NNN character with given octal code
\xNN character with given hex code
\uNNNN Unicode character with given hex code
\UNNNNNNNN Unicode character with given hex code

NA_character_.

Creation and coercion via character and as.character.

Computational model: tricky (bytes versus (wide) characters). Example: do umlaut-a in a UTF-8
locale:

R> sessionInfo()

R version 4.0.2 Patched (2020-06-22 r78735)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Debian GNU/Linux bullseye/sid

Matrix products: default

BLAS: /usr/local/lib/R/lib/libRblas.so

LAPACK: /usr/local/lib/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] compiler_4.0.2 tools_4.0.2

R> Sys.getlocale("LC_CTYPE")

[1] "en_US.UTF-8"

R> ula <- "ä"

R> ula

[1] "ä"
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R> nchar(ula)

[1] 1

R> nchar(ula, type = "bytes")

[1] 2

R> charToRaw(ula)

[1] c3 a4

Slides for computations on character vectors.

Subscripting via character vectors for objects which have names:

R> x <- c(A = 1, B = 2, C = 3)

R> names(x)

[1] "A" "B" "C"

R> x[c("A", "B")]

A B

1 2

2.7 Lists

Lists are “generic vectors”: sequences of elements of arbitrary mode.

In particular, elements can be lists themselves: recursive data type as opposed to atomic ones (as
discussed thus far).

Creation via list() or vector(mode = "list"); coercion via as.list().

Flattening out via unlist().

Subscripting:

• [ extracts sub-lists (using subscripting rules as previously discussed)

• [[ and $ extract single elements (as indicated by their position or name)

lapply() applies functions to the elements of a list, returning a list with the respective values.

2.8 More general-purpose functions for vectors

In addition to length() and subscripting:

unique() and duplicated() extract unique values or indicate the positions of duplicated elements.

match() matches sequence elements.
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2.9 Attributes and associated data types

Objects can have attributes:

• implicit (type, mode, length)

• explicit as lists of attributes (“property lists”) which are handled via the attr() and at-

tributes() getters and setters. Example:

R> x <- c(A = 1, B = 2, C = 3)

R> attributes(x)

$names

[1] "A" "B" "C"

Some data types are simply objects with certain attributes (“structures”): e.g., matrices and arrays
have a dim attribute (and may have a dimnames attribute.

Creation of matrices via matrix(), rbind() and cbind(); diag() for creating diagonal matrices.

R> x <- c(1, 2)

R> y <- c(2, 3)

R> rbind(x)

[,1] [,2]

x 1 2

R> rbind(x, y)

[,1] [,2]

x 1 2

y 2 3

R> cbind(x, y)

x y

[1,] 1 2

[2,] 2 3

R> matrix(1 : 4, 2, 2)

[,1] [,2]

[1,] 1 3

[2,] 2 4

Note that rbind() and cbind() add dimnames, and that by default matrices are created in column
major order. Subscripting and dimnames will be discussed in unit 6.

Some data types are characterized by their class attribute (simple S3 object model): e.g., factors
and data frames (fundamental for data analysis, hence discussed in more detail in Stats course).
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3 R Programming

3.1 Programming

Functions:

• First-class objects (“everything is an object”)

• Can have functions as arguments and/or return values (functional programming; higher-
order functions)

• Discuss default values for arguments

• Return values (always a single object, but could be NULL for nothing, or a list of objects)

• Named versus positional arguments, mention ... arguments

• Briefly recall that functions are “closures” which also have an environment, which matters
for scoping. R has lexical scoping allowing for arbitrarily nested function declarations.

Programming Elements:

Blocks grouping using curly braces ({ and })

Conditionals if/else; mention switch

Loops for and while/repeat as basic constructs; next advances to the next iteration, break

terminates the loop.

Task: Find the first n Fibonacci numbers. The Fibonacci numbers are defined by the second
order recursion

f1 = f2 = 1, fn = fn−1 + fn−2, n > 2.

Straightforward implementation using a for loop:

R> Fib1 <- function(n) {

+ if(n == 1) return(1)

+ fib <- numeric(n)

+ fib[1] <- fib[2] <- 1

+ for(i in seq(3, length.out = n - 2))

+ fib[i] <- fib[i - 1] + fib[i - 2]

+ fib

+ }

Note that we allocate storage first to avoid repeated re-allocation.

Task: Find the primes ≤ n. Use an Eratosthenes-type sieve almost as in the textbook (actually,
basically Exercise 2 on page 58 of the book).

R> Erato1 <- function(n) {

+ if(n <= 1) return(numeric())

+ sieve <- 2 : n
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+ primes <- numeric()

+ while(length(sieve)) {

+ p <- sieve[1]

+ primes <- c(primes, p)

+ sieve <- sieve[(sieve %% p) != 0]

+ }

+ primes

+ }

Task: Find the Fibonacci numbers ≤ n. Use a function version of the code in the textbook
(modulo errors).

R> Fib2 <- function(n = 300) {

+ u <- 1

+ v <- 1

+ ## This is wrong in the book.

+ ## fib <- c(u, v)

+ fib <- u

+ while(v < n) {

+ fib <- c(fib, v)

+ w <- u + v

+ u <- v

+ v <- w

+ }

+ fib

+ }

Note that in general iteratively adding a single element to a vector should be avoided, as this
keeps reallocating memory. Given the exponential growth of fn, this effect can be neglected for
the above.

Task: Functional version of Newton’s method. Newton’s method for finding roots of a differen-
tiable function f is based on the recursion

xn+1 = xn − f(xn)/f ′(xn)

obtained by using the first-order Taylor expansion

f(x) ≈ gn(x) = f(xn) + (x− xn)f ′(xn)

and solving gn(x) = 0.

A simple “functional” (taking f and fprime function arguments, as opposed to using expressions
as in the textbook) version is:

R> newton1 <- function(x, f, fprime, tol = 1e-6) {

+ y <- f(x)

+ while(abs(y) > tol) {

+ x <- x - y / fprime(x)

+ y <- f(x)

+ }

+ x

+ }
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Consider the function

f(x) = x3 + 2x2 − 7

This has a single real root:

R> f <- function(x) x^3 + 2 * x^2 -7

R> curve(f, from = -5, to = 5)

R> abline(h = 0)

−4 −2 0 2 4

−
50

0
50

10
0

15
0

x

f(
x)

All roots:

R> polyroot(c(-7, 0, 2, 1))

[1] 1.428818+0.000000i -1.714409+1.399985i -1.714409-1.399985i

We can find the real root using Newton’s method:

R> fprime <- function(x) 3 * x^2 + 4 * x

R> newton1(1, f, fprime)

[1] 1.428818

Experiment with different starting values to show that this example is particularly well-behaved.

R> newton1(10, f, fprime)

[1] 1.428818

Improvements.

What if we want to know the number of iterations?
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R> newton1a <- function(x, f, fprime, tol = 1e-6, verbose = FALSE) {

+ n <- 0

+ y <- f(x)

+ while(abs(y) > tol) {

+ n <- n + 1

+ if(verbose)

+ cat("Iteration:", n, "\n")

+ x <- x - y / fprime(x)

+ y <- f(x)

+ }

+ x

+ }

R> newton1a(10, f, fprime, verbose = TRUE)

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Iteration: 5

Iteration: 6

Iteration: 7

Iteration: 8

[1] 1.428818

What if we want to use the number of iterations in subsequent computations?

R> newton1b <- function(x, f, fprime, tol = 1e-6, verbose = FALSE) {

+ n <- 0

+ y <- f(x)

+ while(abs(y) > tol) {

+ n <- n + 1

+ if(verbose)

+ cat("Iteration:", n, "\n")

+ x <- x - y / fprime(x)

+ y <- f(x)

+ }

+ list(x = x, n = n)

+ }

R> newton1b(10, f, fprime, verbose = TRUE)

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Iteration: 5

Iteration: 6

Iteration: 7

Iteration: 8

$x

[1] 1.428818

$n

[1] 8
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What if we also want to be able to specify a maximal number of iterations?

R> newton1c <-

+ function(x, f, fprime, tol = 1e-6, verbose = FALSE, maxiter = 100) {

+ n <- 0

+ y <- f(x)

+ while((abs(y) > tol) && (n < maxiter)) {

+ n <- n + 1

+ if(verbose)

+ cat("Iteration:", n, "\n")

+ x <- x - y / fprime(x)

+ y <- f(x)

+ }

+ list(x = x, n = n)

+ }

R> newton1c(10, f, fprime, verbose = TRUE)

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Iteration: 5

Iteration: 6

Iteration: 7

Iteration: 8

$x

[1] 1.428818

$n

[1] 8

Finally, what if we do not want to specify the derivative by hand? See unit 5.

3.2 Debugging

Consider the coefficient of variation example from the textbook.

R> CV <- function(x) sd(x / mean(x))

Unfortunately, the example in the book no longer fails for current versions of R:

R> CV(0)

[1] NA

so there is nothing to fix (the variance functions were changed to return NA rather than an error
in case of insufficient data).

We construct a simple toy problem:

R> check_for_large_CV <- function(x, t = 3) {

+ cv <- CV(x)

+ if(cv > t) writeLines(sprintf("CV is %g > 3", cv))

+ }
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This works fine for n > 1 data points:

R> check_for_large_CV(1 : 100)

R> check_for_large_CV(1 : 2)

but fails for sample size one:

R> check_for_large_CV(1)

Error in if (cv > t) writeLines(sprintf("CV is %g > 3", cv)) :

missing value where TRUE/FALSE needed

Where did the error occur? (If we did not know.)

R> traceback()

1: check_for_large_CV(1)

So the problem is in line

if(cv > t) writeLines(sprintf("CV is %g > 3", cv))

in function check_for_large_CV: as this is a very short function, we can use debug() and step
through.

3.3 Profiling

Timings to illustrate the effects of re-allocation and vectorization:

R> n <- 10000

R> x <- rnorm(n)

R> y <- rnorm(n)

R> system.time({

+ z1 <- numeric()

+ for(i in seq_len(n)) z1 <- c(z1, x[i] + y[i])

+ })

user system elapsed

0.260 0.024 0.284

R> system.time({

+ z2 <- numeric(n)

+ for(i in seq_along(x)) z2[i] <- x[i] + y[i]

+ })

user system elapsed

0.012 0.000 0.011

R> system.time(z3 <- x + y)
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user system elapsed

0 0 0

One can use Rprof() and summaryRprof() to profile the execution of R expression: does not work
for the above because no events get recorded.

3.4 Recursion

Task: Recursive computation of digit sum. Mimick how we would do this by hand: adding e.g.
from right to left can be thought as adding the last digit to the sum of the others. If n is a non-zero
natural (decimal) number, n %% 10 extracts the last digit and n %/% 10 the others, hence:

R> digisum <- function(n) {

+ if(n == 0) return(0)

+ (n %% 10) + Recall(n %/% 10)

+ }

Task: Recursive version of Eratosthenes sieve. Mimick how we would do this by hand:

• Take all numbers from 2 to n as the first candidate list (sieve).

• Recursively take the first element in the list as the next prime, and eliminate all its multiples
from the candidate list.

• Stop recursion when there are no more candidates.

R> Erato2 <- function(n) {

+ ## Use a helper function for the recursion

+ helper <- function(sieve) {

+ if(!length(sieve)) return(integer())

+ prime <- sieve[1]

+ sieve <- sieve[(sieve %% prime) != 0]

+ c(prime, Recall(sieve))

+ }

+ ## Call the helper with the initial sieve.

+ helper(seq(2, length.out = n - 1))

+ }

Task: Recursive versions of finding the n-th Fibonacci number. (Aka the good and the bad, but
no ugly.) An apparently straightforward recursive implementation of the Fibonacci recursion is

R> FibR1 <- function(n) {

+ if((n == 1) || (n == 2)) return(1)

+ Recall(n - 1) + Recall(n - 2)

+ }

This has very poor time complexity:

R> system.time(f25R1 <- FibR1(25))

user system elapsed

0.205 0.001 0.205
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R> f25R1

[1] 75025

In fact, if cn is the number of operations needed to compute fn, then basically cn = cn−1 + cn−2
and hence cn grows at the same exponential rate as the Fibonacci numbers themselves!

We can do much better by using recursion to compute the whole sequence (and maybe only keep
the last element):

R> FibR2 <- function(n) {

+ if(n == 1) return(1)

+ if(n == 2) return(c(1, 1))

+ s <- Recall(n - 1)

+ c(s, s[n - 1] + s[n - 2])

+ }

This has dramatically better run time complexity

R> system.time(f25R2 <- FibR2(25))

user system elapsed

0.008 0.000 0.008

R> f25R2

[1] 1 1 2 3 5 8 13 21 34 55 89 144

[13] 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368

[25] 75025

but is still slower than the explicit loop variant. Discuss why.

To make the second-order recursion work, we need to remember the results we already computed
(“memoization”). In R, we can use a cache in the environment of the function:

R> FibR3 <- local({

+ .cache <- c(1, 1)

+ function(n) {

+ if(n <= length(.cache))

+ .cache[n]

+ else {

+ f <- Recall(n - 1) + Recall(n - 2)

+ .cache[n] <<- f

+ f

+ }

+ }

+ })

This performs much better:

R> system.time(f25R3 <- FibR3(25))

user system elapsed

0 0 0
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3.5 Functional Programming

Use lapply to apply a function to the elements of a (single) list or vector. Discuss that this is
more efficient than using a for loop and collecting results by hand.

R> n <- 10000

R> x <- runif(n)

R> system.time({

+ y1 <- numeric()

+ for(i in seq_len(n)) y1 <- c(y1, x[i]^2)

+ })

user system elapsed

0.175 0.015 0.191

We know that pre-allocating memory is much better:

R> system.time({

+ y2 <- numeric(n)

+ for(i in seq_len(n)) y2[i] <- x[i]^2

+ })

user system elapsed

0.005 0.000 0.005

But it is still better to let lapply create the result.

R> system.time(y3 <- unlist(lapply(x, function(u) u^2)))

user system elapsed

0.01 0.00 0.01

Of course, we should really do

R> system.time(y4 <- x ^ 2)

user system elapsed

0.001 0.000 0.000

Use mapply to apply a function to the corresponding elements of multiple lists or vectors.

Use Reduce to use a binary function to successively combine the elements of a given vector. See
?Reduce for functional versions of function iteration based on Reduce.

4 LATEX, BibTEX and Sweave

4.1 LATEX

History of TEX and LATEX

Logical versus physical markup
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Basic structure: header (preamble) with documentclass, document.

Writing an article: author, title, date; \maketitle.

Sectioning and paragraphs.

Environments: itemize, enumerate, description; tabular and tabbing; theorem etc.

Markup: \emph. Is explicit font or size manipulation really needed for logical markup?

Special insertions: special characters; dots; space after period; accents.

Math: illustrate via e.g.

1

2π

∫ ∞
−∞

( ∞∑
n=0

(−1)n
x2n

2nn!

)
dx+ e

√
−1π = 0.

Cross-references: \label, \ref and \pageref.

Floats: figure and table.

Hyperlinks: \usepackage{hyperref}.

Including graphics via \usepackage{graphics} and \includegraphics.

Writing slides: e.g. simple documentclass slides; much more advanced systems (e.g., texpower).

4.2 BibTEX

Collect bibliographic information into simple plain text databases (.bib) files. Can be edited by
hand, but many information resources can provide bibinfo in BibTeX format:

• obtaining bibentries from CIS

• obtaining bibentries from Wikipedia

• obtaining bibentries from SSRN

• obtaining bibentries from JBF

Integrating info via \cite for citations, \bibliographystyle and \bibliography.

Recommendations:

• use a author-year bibliography style (e.g., plainnat)

• \usepackage{natbib} and use \citet and \citep for textual and parenthetical citations

4.3 Sweave

Integrating R and LATEX via Sweave.

Discuss integrated text documents and literate programming

Discuss Sweave idea: put R code into code chunks; Sweave will then suitably evaluate these (as
well as in-line \Sexpr) and show the results. I.e., .Rnw → .tex via Sweave.

Stangle can extract the code in the code chunks.

Examples: basic in-place output; tabular output in tables; figures.
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Mention that more fancy output can be generated by having R create LATEX output and using
results=tex on the code chunks.

Discuss benefits and usage scenarios.

5 Optimization and Root Finding

Already discussed fixed point and Newton-Raphson methods for finding roots of a univariate
function, and mentioned polyroot() for finding the n (possibly complex) roots of a degree n
polynomial.

One-dimensional root finding can also be performed using the built-in function uniroot().

Obviously, solving f(x) = 0 is equivalent to minimizing f(x)2, or ‖f(x)‖22 =
∑
j fj(x)2 in the

multi-dimensional case. Conversely, global optima of differentiable functions are critical points of
the function, i.e., solve ∇f(x) = 0. So, there is an intimate connection between finding roots and
optimization.

5.1 Univariate optimization via golden search

The textbook is not correct here. It argues that if f is continuous and has a global minimum m
in [a, b] and a ≤ xl ≤ xr ≤ b with f(xl) > f(xl) then m ≥ xl. This is correct if f is convex: if
m ≤ xl then

f(xl) = f(λm+ (1− λ)xr) ≤ λf(m) + (1− λ)f(xr) ≤ f(xr)

which is impossible, but not in general. Consider

R> f <- function(x) {

+ ((1 - x) * (x < 1)

+ + 5 * (x - 1) * (x >= 1) * (x < 2)

+ + (7 - x) * (x >= 2) * (x < 6)

+ + (x >= 6))

+ }

which a global minimum at x = 1:

R> curve(f, -3, 10)
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Using the code from the book:

R> golden <- function(f, a, b, tol = 1e-6) {

+ ratio <- 2 / (sqrt(5) + 1)

+ x1 <- b - ratio * (b - a)

+ x2 <- a + ratio * (b - a)

+ f1 <- f(x1)

+ f2 <- f(x2)

+ while(abs(b - a) > tol) {

+ if(f2 > f1) {

+ b <- x2

+ x2 <- x1

+ f2 <- f1

+ x1 <- b - ratio * (b - a)

+ f1 <- f(x1)

+ } else {

+ a <- x1

+ x1 <- x2

+ f1 <- f2

+ x2 <- a + ratio * (b - a)

+ f2 <- f(x2)

+ }

+ }

+ (a + b) / 2

+ }

we obtain

R> golden(f, 0, 7)

[1] 7
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which is wrong.

What the golden section search really does is construct a sequence of bisections a < xm < b
for which either eventually f(xm) ≤ min(f(a), f(b)) or xm → {a, b}. This does not necessarily
converge to a local minimum, though. If it does and the function is such that every local minimum
is a global one (e.g., if convex), then a global minimum was found.

Note also that in each step the interval length reduces from b− a to

(1− 1/φ)(b− a), 1− 1/φ = 1− 2/(1 +
√

5) =

√
5− 1√
5 + 1

< 1

so decays to zero exponentially fast, and that in can be shown that using the golden ratio gives
the optimal (in terms of shrinkage) bracketing scheme.

5.2 Univariate optimization via Newton’s method

This is really finding the roots of f ′.

5.3 Univariate optimization via optimize

Method uses a combination of golden section search and successive parabolic interpolation, and
was designed for use with continuous functions.

If computed points are always unimodal then optimize() approximates a local minimum.

Example: MLE for Poisson distribution. The density of the Poisson distribution with parameter
λ at (non-negative integer) x is

λx

x!
e−λ

so the likelihood of a sample x1, . . . , xn is

L(λ|x1, . . . , xn) =

n∏
i=1

λxi

xi!
e−λ

and up to an additive constant, the log-likelihood is

LL(λ|x1, . . . , xn) =

n∑
i=1

(xi log(λ)− λ) = s(x1, . . . , xn) log(λ)− nλ

with s(x1, . . . , xn) =
∑n
i=1 xi.

The MLE is obviously given by λ̂ = s/n = x̄.

Numerically:

R> mle_pois <- function(x) {

+ LL <- function(lambda) {

+ sum(x) * log(lambda) - length(x) * lambda

+ }

+ optimize(LL, lower = 0, upper = max(x), maximum = TRUE)

+ }
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(Some finite upper bound is needed.)

To illustrate:

R> x <- rpois(100, 3.2)

R> mle_pois(x)

$maximum

[1] 3.469999

$objective

[1] 84.72164

R> ## Compare to

R> mean(x)

[1] 3.47

5.4 Multivariate optimization

Newton-type methods (as employed by nlm() can be motivated as for the univariate case: if f is
twice continuously differentiable, then

∇f(y) ≈ ∇f(x) +H(x)(y − x),

where∇f and H are the gradient and Hessian of f , respectively. Approximately solving∇f(y) = 0
thus gives

y = x−H(x)−1∇f(x).

Available methods for general-purpose multi-variate optimization are nlm() (Newton-type), op-
tim() (Nelder-Mead, quasi-Newton and conjugate-gradient algorithms, with options for box-
constrained optimization and simulated annealing), and nlminb().

constrOptim() performs minimization under linear constraints using an adaptive barrier (interior
point) algorithm, but needs a feasible starting value.

For linear and non-linear regression, there are better routines (nls() for the latter).

Example: MLE for normal distribution. The density of the normal distribution with parameters
µ and σ2 at x is given by

1√
2πσ

exp

(
(x− µ)2

2σ2

)
so the likelihood of a sample x1, . . . , xn is

L(µ, σ2|x1, . . . , xn) =

n∏
i=1

1√
2πσ

exp

(
(xi − µ)2

2σ2

)
and up to an additive constant, the log-likelihood is

LL(µ, σ2) = −n
2

log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.
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The MLEs are easily obtained as

µ̂ = x̄, σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

(note that the MLE of σ2 is not the sample variance!).

Numerically (minimizing twice the negative log-likelihood):

R> mle_norm <- function(x, p0) {

+ nLL <- function(p) {

+ mu <- p[1]

+ sigmasq <- p[2]

+ length(x) * log(sigmasq) + sum((x - mu) ^ 2) / sigmasq

+ }

+ optim(p0, nLL)

+ }

To illustrate (note that in R the normal distribution is parametrized by the standard deviation σ
and not the variance):

R> x <- rnorm(100, 0.5, 2)

R> mle_norm(x, c(0, 1))

$par

[1] 0.3234268 4.2761782

$value

[1] 245.293

$counts

function gradient

57 NA

$convergence

[1] 0

$message

NULL

R> ## Compare to

R> c(mean(x), sqrt(1 - 1 / length(x)) * sd(x))

[1] 0.3237381 2.0677581

(and note again that sd is not the MLE of σ).

Equivalently, using nlm() which employs a Newton-type method (and always minimizes), without
explicitly providing gradients and hessians, and using the ‘...’ argument instead of writing an
inner function for computing the log-likelihood with starting value (0, 1):

R> nLL2 <- function(p, x) {

+ mu <- p[1]
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+ sigmasq <- p[2]

+ length(x) * log(sigmasq) + sum((x - mu) ^ 2) / sigmasq

+ }

R> nlm(nLL2, c(0, 1), x)

$minimum

[1] 245.293

$estimate

[1] 0.323738 4.275628

$gradient

[1] 1.924150e-05 3.777039e-05

$code

[1] 1

$iterations

[1] 14

5.5 Linear programming

In addition to package lpSolve, there are packages Rglpk, Rsymphony and Rcplex providing in-
terfaces to the GLPK, COIN-OR SYMPHONY and CPLEX (commercial) solvers.

We illustrate some of the examples in the book using Rglpk.

Example 7.3 on page 143. We need to solve

minC = 5x1 + 8x2

subject to the constraints

x1 + x2 ≥ 2, x1 + 2x2 ≥ 3

and

x1, x2 ≥ 0.

Using Rgplk:

R> require("Rglpk")

R> obj <- c(5, 8)

R> mat <- rbind(c(1, 1), c(1, 2))

R> dir <- c(">=", ">=")

R> rhs <- c(2, 3)

R> Rglpk_solve_LP(obj, mat, dir, rhs)

$optimum

[1] 13

$solution
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[1] 1 1

$status

[1] 0

$solution_dual

[1] 0 0

$auxiliary

$auxiliary$primal

[1] 2 3

$auxiliary$dual

[1] 2 3

$sensitivity_report

[1] NA

Example 7.5 on page 145. We need to solve

maxC = 5x1 + 8x2

subject to the constraints

x1 + x2 ≤ 2, x1 + 2x2 = 3

and

x1, x2 ≥ 0.

Using Rglpk:

R> obj <- c(5, 8)

R> mat <- rbind(c(1, 1), c(1, 2))

R> dir <- c("<=", "==")

R> rhs <- c(2, 3)

R> Rglpk_solve_LP(obj, mat, dir, rhs, max = TRUE)

$optimum

[1] 13

$solution

[1] 1 1

$status

[1] 0

$solution_dual

[1] 0 0

$auxiliary
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$auxiliary$primal

[1] 2 3

$auxiliary$dual

[1] 2 3

$sensitivity_report

[1] NA

Example 7.11 on page 150. We need to solve

minC = 2x1 + 3x2 + 4x3 − x4

subject to the constraints

x1 + 2x2 ≥ 9, 3x2 + x3 ≥ 9, x2 + x4 ≤ 10

and

x2, x4 integer.

Using Rglpk:

R> obj <- c(2, 3, 4, -1)

R> mat <- rbind(c(1, 2, 0, 0), c(0, 3, 1, 0), c(0, 1, 0, 1))

R> dir <- c(">=", ">=", "<=")

R> rhs <- c(9, 9, 10)

R> types <- c("C", "I", "C", "I")

R> Rglpk_solve_LP(obj, mat, dir, rhs, types)

$optimum

[1] 8

$solution

[1] 0.0 4.5 0.0 5.5

$status

[1] 0

$solution_dual

[1] 0 0 4 0

$auxiliary

$auxiliary$primal

[1] 9.0 13.5 10.0

$auxiliary$dual

[1] 2 0 -1

$sensitivity_report

[1] NA
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5.6 Quadratic programming

Package quadprog solves quadratic programming problems of the form

−c′x+ x′Dx/2→ min

subject to the constraints

A′x ≥ b.

The portfolio selection problem in the textbook is written in the form

m′x− k

2
x′V x→ max

subject to the constraints

n∑
i=1

xi = 1, x ≥ 0,

i.e., c ↔ m and D ↔ kV (and not kV/2 as implied by example 7.14 which has k = 4 and uses
2V ), and A↔ [e, In].

Revisiting Example 7.14:

R> require("quadprog")

R> D <- matrix(0.002, 3, 3)

R> diag(D) <- 0.010

R> m <- c(0.002, 0.005, 0.010)

R> A <- cbind(rep(1, 3), diag(nrow = 3))

R> b <- c(1, rep(0, 3))

R> ## Note that 'meq' specifies the number of leading equality

R> ## constraints.

R> solve.QP(4 * D, m, A, b, meq = 1)

$solution

[1] 0.21875 0.31250 0.46875

$value

[1] 0.00315625

$unconstrained.solution

[1] -0.01339286 0.08035714 0.23660714

$iterations

[1] 2 0

$Lagrangian

[1] 0.013 0.000 0.000 0.000

$iact

[1] 1

To reproduce the results of Example 7.14:
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R> solve.QP(2 * D, m, A, b, meq = 1)

$solution

[1] 0.1041667 0.2916667 0.6041667

$value

[1] -0.002020833

$unconstrained.solution

[1] -0.02678571 0.16071429 0.47321429

$iterations

[1] 2 0

$Lagrangian

[1] 0.003666667 0.000000000 0.000000000 0.000000000

$iact

[1] 1
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