
Object-Oriented
Programming

Kurt Hornik

October 8, 2018

Outline

� Motivation

� S3 Classes

� S4 Classes

� Reference Classes

Slide 2

Needs in data analysis

� Support structural thinking (numeric vectors, factors, data frames,
results of fitting a model, . . .)

� Support functional thinking (“generic” functions)
� Allow for simple extensibility (printing, plotting, summarizing, . . .)

Slide 3

Needs in data analysis

� Support structural thinking (numeric vectors, factors, data frames,
results of fitting a model, . . .)

� Support functional thinking (“generic” functions)

� Allow for simple extensibility (printing, plotting, summarizing, . . .)

Slide 3

Needs in data analysis

� Support structural thinking (numeric vectors, factors, data frames,
results of fitting a model, . . .)

� Support functional thinking (“generic” functions)
� Allow for simple extensibility (printing, plotting, summarizing, . . .)

Slide 3

Outline

� Motivation

� S3 Classes

� S4 Classes

� Reference Classes

Slide 4

Basic idea

� Specify the class via the class attribute

� Have a way of making a function “generic”
� The “method” of generic foo for class bar is called foo.bar
� Allow for default methods called foo.default

Slide 5

Basic idea

� Specify the class via the class attribute
� Have a way of making a function “generic”

� The “method” of generic foo for class bar is called foo.bar
� Allow for default methods called foo.default

Slide 5

Basic idea

� Specify the class via the class attribute
� Have a way of making a function “generic”
� The “method” of generic foo for class bar is called foo.bar

� Allow for default methods called foo.default

Slide 5

Basic idea

� Specify the class via the class attribute
� Have a way of making a function “generic”
� The “method” of generic foo for class bar is called foo.bar
� Allow for default methods called foo.default

Slide 5

Outline

� Motivation

� S3 Classes
� Classes

� Generic and Method Functions

� Group Methods

� Odds and ends

� S4 Classes

� Reference Classes
Slide 6

Manipulating the class info

� Function class() gets the class attribute, and there is a replacement
function for setting it:
R> x <- 1 : 3
R> x

[1] 1 2 3

R> class(x) <- "bar"
R> x

[1] 1 2 3
attr(,"class")
[1] "bar"

� If e.g. class(x) is c("bar", "baz", "grr"), then x belongs to class
bar and inherits from baz, then grr, etc.

� Function unclass() removes the class(es)

Slide 7

Manipulating the class info

� Function class() gets the class attribute, and there is a replacement
function for setting it:
R> x <- 1 : 3
R> x

[1] 1 2 3

R> class(x) <- "bar"
R> x

[1] 1 2 3
attr(,"class")
[1] "bar"

� If e.g. class(x) is c("bar", "baz", "grr"), then x belongs to class
bar and inherits from baz, then grr, etc.

� Function unclass() removes the class(es)

Slide 7

Manipulating the class info

� Function class() gets the class attribute, and there is a replacement
function for setting it:
R> x <- 1 : 3
R> x

[1] 1 2 3

R> class(x) <- "bar"
R> x

[1] 1 2 3
attr(,"class")
[1] "bar"

� If e.g. class(x) is c("bar", "baz", "grr"), then x belongs to class
bar and inherits from baz, then grr, etc.

� Function unclass() removes the class(es)

Slide 7

Manipulating the class info

� Function class() gets the class attribute, and there is a replacement
function for setting it:
R> x <- 1 : 3
R> x

[1] 1 2 3

R> class(x) <- "bar"
R> x

[1] 1 2 3
attr(,"class")
[1] "bar"

� If e.g. class(x) is c("bar", "baz", "grr"), then x belongs to class
bar and inherits from baz, then grr, etc.

� Function unclass() removes the class(es)

Slide 7

Outline

� Motivation

� S3 Classes
� Classes

� Generic and Method Functions

� Group Methods

� Odds and ends

� S4 Classes

� Reference Classes
Slide 8

Method dispatch

� A generic function tries to find methods for its primary argument

� First, using the GENERIC.CLASS naming convention for each class the
primary arg inherits from

� If no such method found, try GENERIC.default (default method)
� If not found either: error.

Slide 9

Method dispatch

� A generic function tries to find methods for its primary argument
� First, using the GENERIC.CLASS naming convention for each class the

primary arg inherits from

� If no such method found, try GENERIC.default (default method)
� If not found either: error.

Slide 9

Method dispatch

� A generic function tries to find methods for its primary argument
� First, using the GENERIC.CLASS naming convention for each class the

primary arg inherits from
� If no such method found, try GENERIC.default (default method)

� If not found either: error.

Slide 9

Method dispatch

� A generic function tries to find methods for its primary argument
� First, using the GENERIC.CLASS naming convention for each class the

primary arg inherits from
� If no such method found, try GENERIC.default (default method)
� If not found either: error.

Slide 9

Creating generics

Typically via UseMethod(). E.g.,

R> foo <- function(x, ...) UseMethod("foo")
R> foo

function(x, ...) UseMethod("foo")

Slide 10

Creating methods

Simply create functions obeying the GENERIC.CLASS naming convention.
E.g.,

R> foo.bar <- function(x, ...) cat("I am here\n")
R> foo.bar

function(x, ...) cat("I am here\n")

Basic dispatch by calling the generic:

R> foo(x)

I am here

Slide 11

Explicitly invoking inheritance

Function NextMethod() can be used within methods to call the next
method. E.g.,

R> test <- function(x) UseMethod("test")
R> test.c1 <- function(x) { cat("c1\n"); NextMethod(); x }
R> test.c2 <- function(x) { cat("c2\n"); NextMethod(); x }
R> test.c3 <- function(x) { cat("c3\n"); NextMethod(); x }
R> x <- 1
R> class(x) <- c("c1", "c2")

What will happen?

R> test(x)

Slide 12

Dispatching on other arguments

Specify argument for dispatch in the UseMethod() call. E.g.,

foo <- function(x, y, ...) UseMethod("foo", y)

Slide 13

Testing and coercion

No “formal” testing (predicate) for and coercion to S3 classes. By
convention, is.bar() and as.bar(). E.g.,

R> is.bar <- function(x) inherits(x, "bar")
R> as.bar <- function(x) if(is.bar(x)) x else bar(x)

(assuming that bar() creates objects of class "bar").

Slide 14

Outline

� Motivation

� S3 Classes
� Classes

� Generic and Method Functions

� Group Methods

� Odds and ends

� S4 Classes

� Reference Classes
Slide 15

Motivation

Issues:

� How can we e.g. add or compare objects of a certain class?
� Or more generally, e.g. compare with objects not in the same class?

Need a dispatch mechanism for “operators” (such as "<") which works
in both arguments!

Slide 16

Group methods

Mechanism:

� Operators grouped in three categories (Math, Ops, Summary)

� Invoked if the operands correspond to the same method, or one to a
method that takes precedence; otherwise, the default method is used.

� Class methods dominate group methods.
� Dispatch info available: .Method, .Generic, .Group, .Class

Slide 17

Group methods

Mechanism:

� Operators grouped in three categories (Math, Ops, Summary)
� Invoked if the operands correspond to the same method, or one to a

method that takes precedence; otherwise, the default method is used.

� Class methods dominate group methods.
� Dispatch info available: .Method, .Generic, .Group, .Class

Slide 17

Group methods

Mechanism:

� Operators grouped in three categories (Math, Ops, Summary)
� Invoked if the operands correspond to the same method, or one to a

method that takes precedence; otherwise, the default method is used.
� Class methods dominate group methods.

� Dispatch info available: .Method, .Generic, .Group, .Class

Slide 17

Group methods

Mechanism:

� Operators grouped in three categories (Math, Ops, Summary)
� Invoked if the operands correspond to the same method, or one to a

method that takes precedence; otherwise, the default method is used.
� Class methods dominate group methods.
� Dispatch info available: .Method, .Generic, .Group, .Class

Slide 17

Existing group methods

Math abs sign sqrt floor ceiling trunc round signif
exp log cos sin tan acos asin atan
cosh sinh tanh acosh asinh atanh
lgamma gamma gammaCody digamma
trigamma tetragamma pentagamma
cumsum cumprod cummax cummin

Ops + - * / ^ %% %/%
& | !
== != < <= >= >

Summary all any sum prod min max range

Slide 18

Outline

� Motivation

� S3 Classes
� Classes

� Generic and Method Functions

� Group Methods

� Odds and ends

� S4 Classes

� Reference Classes
Slide 19

Internal generics

In addition to UseMethod dispatch and group methods, some functions
dispatch “internally” (DispatchOrEval() in the underlying C code of
builtin functions):

� subscripting and subassigning ([, [[, $)
� length dim dimnames c unlist
� as.character as.vector
� many is.xxx functions for builtins data types xxx

Slide 20

Strengths and weaknesses

� Simple and powerful as long as the naming convention is adhered to

� No formal class structure (can have objects with class c("foo", "U")
and c("foo", "V"), no structural integrity, . . .)

� No flexible dispatch on several arguments

(Some of these weaknesses disappear for code in namespaces.)

Slide 21

Strengths and weaknesses

� Simple and powerful as long as the naming convention is adhered to
� No formal class structure (can have objects with class c("foo", "U")

and c("foo", "V"), no structural integrity, . . .)

� No flexible dispatch on several arguments

(Some of these weaknesses disappear for code in namespaces.)

Slide 21

Strengths and weaknesses

� Simple and powerful as long as the naming convention is adhered to
� No formal class structure (can have objects with class c("foo", "U")

and c("foo", "V"), no structural integrity, . . .)
� No flexible dispatch on several arguments

(Some of these weaknesses disappear for code in namespaces.)

Slide 21

Outline

� Motivation

� S3 Classes

� S4 Classes

� Reference Classes

Slide 22

Basics

� Every object has exactly one class

� All objects in a class must have the same structure
� All methods for a new-style generic must have exactly the same

formal arguments (could be ...)
� Can dispatch according to the signature of arbitrarily many arguments

Slide 23

Basics

� Every object has exactly one class
� All objects in a class must have the same structure

� All methods for a new-style generic must have exactly the same
formal arguments (could be ...)

� Can dispatch according to the signature of arbitrarily many arguments

Slide 23

Basics

� Every object has exactly one class
� All objects in a class must have the same structure
� All methods for a new-style generic must have exactly the same

formal arguments (could be ...)

� Can dispatch according to the signature of arbitrarily many arguments

Slide 23

Basics

� Every object has exactly one class
� All objects in a class must have the same structure
� All methods for a new-style generic must have exactly the same

formal arguments (could be ...)
� Can dispatch according to the signature of arbitrarily many arguments

Slide 23

Outline

� Motivation

� S3 Classes

� S4 Classes
� Classes and Inheritance

� Generic and Method Functions

� Group Methods

� Reference Classes

Slide 24

Basics

Classes are created by setClass():

� First arg is the name of the class
� Arg representation specifies the slots

R> setClass("fungi",
+ representation(x = "numeric", y = "numeric",
+ species = "character"))

Slide 25

Basics

Classes are created by setClass():

� First arg is the name of the class

� Arg representation specifies the slots

R> setClass("fungi",
+ representation(x = "numeric", y = "numeric",
+ species = "character"))

Slide 25

Basics

Classes are created by setClass():

� First arg is the name of the class
� Arg representation specifies the slots

R> setClass("fungi",
+ representation(x = "numeric", y = "numeric",
+ species = "character"))

Slide 25

Basics (ctd.)

Creation can use existing classes:

R> setClass("xyloc",
+ representation(x = "numeric",
+ y = "numeric"))
R> setClass("fungi",
+ representation("xyloc",
+ species = "character"))

Slide 26

Basics (ctd.)

Existing classes can be examined using getClass():

R> getClass("fungi")

Class "fungi" [in ".GlobalEnv"]

Slots:

Name: species x y
Class: character numeric numeric

Extends: "xyloc"

Slide 27

Basics (ctd.)

New instances can be created using new()

R> f1 <- new("fungi", x = runif(5), y = runif(5),
+ species = sample(letters[1:3], 5, replace = TRUE))

Slide 28

Basics (ctd.)

Such instances can be inspected by typing their name (which calls
show() instead of print())

R> f1

An object of class "fungi"
Slot "species":
[1] "c" "a" "c" "b" "a"

Slot "x":
[1] 0.53827758 0.72234531 0.04228939 0.46204104 0.20706792

Slot "y":
[1] 0.69083106 0.07209983 0.51760378 0.12305639 0.45677010

Slide 29

Basics (ctd.)

The slots can be accessed using @:

R> f1@x

[1] 0.53827758 0.72234531 0.04228939 0.46204104 0.20706792

Slide 30

Basics (ctd.)

Typically, there would be a creator function:

R> fungi <- function(x, y, species)
+ new("fungi", x = x, y = y, species = species)

so that users do not need to call new() themselves.

Slide 31

Basics (ctd.)

Using the creator:

R> f2 <- fungi(runif(3), runif(3), letters[1 : 3])
R> f2

An object of class "fungi"
Slot "species":
[1] "a" "b" "c"

Slot "x":
[1] 0.3760097 0.0144067 0.6897521

Slot "y":
[1] 0.6598063 0.6988959 0.7950575

Slide 32

Validity checking

Can specify restrictions for “valid” objects via the validity argument to
setClass or via setValidity (note: sets to the value of the current
version.)

R> ## A valid "xyloc" object has the same number
R> ## of x and y values:
R> .valid_xyloc_object <- function(object) {
+ nx <- length(object@x)
+ ny <- length(object@y)
+ if(nx == ny)
+ TRUE
+ else
+ sprintf("Unequal x, y lengths: %d, %d", nx, ny)
+ }

Slide 33

Validity checking

R> setValidity("xyloc", .valid_xyloc_object)

Class "xyloc" [in ".GlobalEnv"]

Slots:

Name: x y
Class: numeric numeric

Known Subclasses: "fungi"

R> xy1 <- new("xyloc", x = runif(5), y = runif(5))
R> xy2 <- tryCatch(new("xyloc", x = runif(5), y = runif(3)),
+ error = identity)
R> strwrap(conditionMessage(xy2))

[1] "invalid class \"xyloc\" object: Unequal x, y lengths: 5, 3"

Slide 34

Validity checking

R> ## We can still do bad things "directly":
R> xy1@y <- 3
R> ## However, now validObject() will throw an error ...
R> tc <- tryCatch(validObject(xy1), error = identity)
R> tc

<simpleError in validObject(xy1): invalid class "xyloc" object: Unequal x, y lengths: 5, 1>

R> conditionMessage(tc)

[1] "invalid class \"xyloc\" object: Unequal x, y lengths: 5, 1"

Slide 35

Prototypes

� Classes have prototypes stored with their definition

� Default prototype: for each slot a new object of that class
� Other prototypes might be more appropriate; can be specified via
prototype arg to setClass()

Slide 36

Prototypes

� Classes have prototypes stored with their definition
� Default prototype: for each slot a new object of that class

� Other prototypes might be more appropriate; can be specified via
prototype arg to setClass()

Slide 36

Prototypes

� Classes have prototypes stored with their definition
� Default prototype: for each slot a new object of that class
� Other prototypes might be more appropriate; can be specified via
prototype arg to setClass()

Slide 36

Virtual classes

� Usually have neither representation nor prototype

� Useful by inheritance between classes
� Can be created using "VIRTUAL" when specifying the representation

Slide 37

Virtual classes

� Usually have neither representation nor prototype
� Useful by inheritance between classes

� Can be created using "VIRTUAL" when specifying the representation

Slide 37

Virtual classes

� Usually have neither representation nor prototype
� Useful by inheritance between classes
� Can be created using "VIRTUAL" when specifying the representation

Slide 37

Inheritance

Class A inherits from (or extends) class B if is(x, "B") is true
whenever is(x, "A") is.

Can be determined using function extends():

R> extends("fungi", "xyloc")

[1] TRUE

Slide 38

Inheritance

Class A inherits from (or extends) class B if is(x, "B") is true
whenever is(x, "A") is.

Can be determined using function extends():

R> extends("fungi", "xyloc")

[1] TRUE

Slide 38

Testing and coercion

� Use general-purpose functions is() and as() for testing and
coercion:
R> is(f1, "xyloc")

[1] TRUE

R> as(c(1, 2, 3, 4.4), "integer")

[1] 1 2 3 4

� Corresponding information obtained from the class definition, or via
setIs() and setAs()

Slide 39

Testing and coercion

� Use general-purpose functions is() and as() for testing and
coercion:
R> is(f1, "xyloc")

[1] TRUE

R> as(c(1, 2, 3, 4.4), "integer")

[1] 1 2 3 4

� Corresponding information obtained from the class definition, or via
setIs() and setAs()

Slide 39

Outline

� Motivation

� S3 Classes

� S4 Classes
� Classes and Inheritance

� Generic and Method Functions

� Group Methods

� Reference Classes

Slide 40

Method dispatch

� Explicit setting of methods for certain signatures (the classes of the
arguments used in the dispatch)

� Can use several arguments in the dispatch
� Can determine the method dispatched to with selectMethod()

Slide 41

Method dispatch

� Explicit setting of methods for certain signatures (the classes of the
arguments used in the dispatch)

� Can use several arguments in the dispatch

� Can determine the method dispatched to with selectMethod()

Slide 41

Method dispatch

� Explicit setting of methods for certain signatures (the classes of the
arguments used in the dispatch)

� Can use several arguments in the dispatch
� Can determine the method dispatched to with selectMethod()

Slide 41

Creating generics

Typically by setting a method (which automatically makes a function
generic with the old definition as the default method).

Or explicitly using setGeneric().

Slide 42

Creating methods

By using setMethod():

R> setMethod("show", "fungi",
+ function(object) cat("I am just a fungus.\n"))
R> f1

I am just a fungus.

(Note: sets to the value of the current version if a named function is
used.)

For more complicated signatures:

R> setMethod("plot", c("numeric", "factor"),)

Slide 43

Outline

� Motivation

� S3 Classes

� S4 Classes
� Classes and Inheritance

� Generic and Method Functions

� Group Methods

� Reference Classes

Slide 44

Basics

� Partially different from the Green Book (e.g., currently no
getGroupMembers())

� Mechanism “similar” to S3 group methods
� Can construct arbitrary groups using setGroupGeneric()

Slide 45

Group methods

Math log, sqrt, log10, cumprod, abs, acos, acosh, asin,
asinh, atan, atanh, ceiling, cos, cosh, cumsum, exp,
floor, gamma, lgamma, sin, sinh, tan, tanh, trunc

Math2 round signif
Ops Arith Compare [Logic]
Arith + - * / ^ %% %/%
Compare == != < <= >= >
Summary max, min, range, prod, sum, any, all
Complex Arg, Conj, Im, Mod, Re

Slide 46

Outline

� Motivation

� S3 Classes

� S4 Classes

� Reference Classes

Slide 47

Basics

Main differences between reference classes and S3 and S4:

� Refclass objects use message-passing OO
� Refclass objects are mutable: the usual R copy on modify semantics

do not apply

Thus, the refclass object system behaves more like Java or C#.

Use them only where mutable state is absolutely required!

Slide 48

Basics

A reference class has three main components, given by three
arguments to setRefClass:

� contains, the classes which the class inherits from.

� fields are the equivalent of slots in S4. They can be specified as a
vector of field names, or a named list of field types.

� methods are functions that operate within the context of the object
and can modify its fields.

Slide 49

Basics

A reference class has three main components, given by three
arguments to setRefClass:

� contains, the classes which the class inherits from.
� fields are the equivalent of slots in S4. They can be specified as a

vector of field names, or a named list of field types.

� methods are functions that operate within the context of the object
and can modify its fields.

Slide 49

Basics

A reference class has three main components, given by three
arguments to setRefClass:

� contains, the classes which the class inherits from.
� fields are the equivalent of slots in S4. They can be specified as a

vector of field names, or a named list of field types.
� methods are functions that operate within the context of the object

and can modify its fields.

Slide 49

Example

A simple reference class for bank accounts with methods for withdrawal
and deposit:

R> setRefClass("Account",
+ fields = list(balance = "numeric"),
+ methods =
+ list(deposit =
+ function(amount) {
+ ## The following string documents the method
+ "Deposit the given amount from the account"
+ balance <<- balance + amount
+ },
+ withdraw =
+ function(amount) {
+ "Withdraw the given amount from the account"
+ balance <<- balance - amount
+ }))

Slide 50

Example

What is returned by setRefClass, or can be retrieved by getRefClass,
is a reference class generator:

R> (Account <- getRefClass("Account"))

Generator for class "Account":

Class fields:

Name: balance
Class: numeric

Class Methods:
"withdraw", "deposit", "field", "trace", "getRefClass",
"initFields", "copy", "callSuper", ".objectPackage", "export",
"untrace", "getClass", "show", "usingMethods", ".objectParent",
"import"

Reference Superclasses:
"envRefClass"

Slide 51

Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods
� help() for getting help about methods
� fields() to get a list of fields defined for class
� lock() locks the named fields so that their value can only be set once

Slide 52

Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods

� help() for getting help about methods
� fields() to get a list of fields defined for class
� lock() locks the named fields so that their value can only be set once

Slide 52

Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods
� help() for getting help about methods

� fields() to get a list of fields defined for class
� lock() locks the named fields so that their value can only be set once

Slide 52

Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods
� help() for getting help about methods
� fields() to get a list of fields defined for class

� lock() locks the named fields so that their value can only be set once

Slide 52

Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods
� help() for getting help about methods
� fields() to get a list of fields defined for class
� lock() locks the named fields so that their value can only be set once

Slide 52

Example

We can use the generator to create an account object:

R> a1 <- Account$new(balance = 100)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 100

We can ask the generator for help:

R> Account$help("withdraw")

Call:
$withdraw(amount)

Withdraw the given amount from the account
Slide 53

Example

We can then make deposits and withdrawals:

R> a1$withdraw(50)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 50

To access the balance:

R> a1$balance

[1] 50

R> a1$field("balance")

[1] 50
Slide 54

Example

The most important property of refclass objects is that they are
mutable, or equivalently they have reference semantics:

R> a2 <- a1
R> a2$deposit(10)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 60

(In the example, copies will always refer to the same account.)

Slide 55

Cool stuff

R> setRefClass("Dist")
R> setRefClass("DistUniform",
+ c("a", "b"),
+ "Dist",
+ methods =
+ list(mean =
+ function() {
+ (a + b) / 2
+ }))
R> DistUniform <- getRefClass("DistUniform")
R> U01 <- DistUniform$new(a = 0, b = 1)
R> U01$mean()

[1] 0.5

(Could add other sub-classes for observed or simulated values.)

Slide 56

	Motivation
	S3 Classes
	Classes
	Generic and Method Functions
	Group Methods
	Odds and ends

	S4 Classes
	Classes and Inheritance
	Generic and Method Functions
	Group Methods

	Reference Classes

