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Needs in data analysis

� Support structural thinking (numeric vectors, factors, data frames,
results of fitting a model, . . . )

� Support functional thinking (“generic” functions)
� Allow for simple extensibility (printing, plotting, summarizing, . . . )
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Basic idea

� Specify the class via the class attribute

� Have a way of making a function “generic”
� The “method” of generic foo for class bar is called foo.bar
� Allow for default methods called foo.default
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Manipulating the class info

� Function class() gets the class attribute, and there is a replacement
function for setting it:
R> x <- 1 : 3
R> x

[1] 1 2 3

R> class(x) <- "bar"
R> x

[1] 1 2 3
attr(,"class")
[1] "bar"

� If e.g. class(x) is c("bar", "baz", "grr"), then x belongs to class
bar and inherits from baz, then grr, etc.

� Function unclass() removes the class(es)
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Method dispatch

� A generic function tries to find methods for its primary argument

� First, using the GENERIC.CLASS naming convention for each class the
primary arg inherits from

� If no such method found, try GENERIC.default (default method)
� If not found either: error.
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Creating generics

Typically via UseMethod(). E.g.,

R> foo <- function(x, ...) UseMethod("foo")
R> foo

function(x, ...) UseMethod("foo")
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Creating methods

Simply create functions obeying the GENERIC.CLASS naming convention.
E.g.,

R> foo.bar <- function(x, ...) cat("I am here\n")
R> foo.bar

function(x, ...) cat("I am here\n")

Basic dispatch by calling the generic:

R> foo(x)

I am here
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Explicitly invoking inheritance

Function NextMethod() can be used within methods to call the next
method. E.g.,

R> test <- function(x) UseMethod("test")
R> test.c1 <- function(x) { cat("c1\n"); NextMethod(); x }
R> test.c2 <- function(x) { cat("c2\n"); NextMethod(); x }
R> test.c3 <- function(x) { cat("c3\n"); NextMethod(); x }
R> x <- 1
R> class(x) <- c("c1", "c2")

What will happen?

R> test(x)
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Dispatching on other arguments

Specify argument for dispatch in the UseMethod() call. E.g.,

foo <- function(x, y, ...) UseMethod("foo", y)
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Testing and coercion

No “formal” testing (predicate) for and coercion to S3 classes. By
convention, is.bar() and as.bar(). E.g.,

R> is.bar <- function(x) inherits(x, "bar")
R> as.bar <- function(x) if(is.bar(x)) x else bar(x)

(assuming that bar() creates objects of class "bar").
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Motivation

Issues:

� How can we e.g. add or compare objects of a certain class?
� Or more generally, e.g. compare with objects not in the same class?

Need a dispatch mechanism for “operators” (such as "<") which works
in both arguments!
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Group methods

Mechanism:

� Operators grouped in three categories (Math, Ops, Summary)

� Invoked if the operands correspond to the same method, or one to a
method that takes precedence; otherwise, the default method is used.

� Class methods dominate group methods.
� Dispatch info available: .Method, .Generic, .Group, .Class
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Existing group methods

Math abs sign sqrt floor ceiling trunc round signif
exp log cos sin tan acos asin atan
cosh sinh tanh acosh asinh atanh
lgamma gamma gammaCody digamma
trigamma tetragamma pentagamma
cumsum cumprod cummax cummin

Ops + - * / ^ %% %/%
& | !
== != < <= >= >

Summary all any sum prod min max range
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Internal generics

In addition to UseMethod dispatch and group methods, some functions
dispatch “internally” (DispatchOrEval() in the underlying C code of
builtin functions):

� subscripting and subassigning ([, [[, $)
� length dim dimnames c unlist
� as.character as.vector
� many is.xxx functions for builtins data types xxx
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Strengths and weaknesses

� Simple and powerful as long as the naming convention is adhered to

� No formal class structure (can have objects with class c("foo", "U")
and c("foo", "V"), no structural integrity, . . . )

� No flexible dispatch on several arguments

(Some of these weaknesses disappear for code in namespaces.)
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Basics

� Every object has exactly one class

� All objects in a class must have the same structure
� All methods for a new-style generic must have exactly the same

formal arguments (could be ...)
� Can dispatch according to the signature of arbitrarily many arguments
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Basics

Classes are created by setClass():

� First arg is the name of the class
� Arg representation specifies the slots

R> setClass("fungi",
+ representation(x = "numeric", y = "numeric",
+ species = "character"))
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Basics (ctd.)

Creation can use existing classes:

R> setClass("xyloc",
+ representation(x = "numeric",
+ y = "numeric"))
R> setClass("fungi",
+ representation("xyloc",
+ species = "character"))
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Basics (ctd.)

Existing classes can be examined using getClass():

R> getClass("fungi")

Class "fungi" [in ".GlobalEnv"]

Slots:

Name: species x y
Class: character numeric numeric

Extends: "xyloc"
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Basics (ctd.)

New instances can be created using new()

R> f1 <- new("fungi", x = runif(5), y = runif(5),
+ species = sample(letters[1:3], 5, replace = TRUE))
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Basics (ctd.)

Such instances can be inspected by typing their name (which calls
show() instead of print())

R> f1

An object of class "fungi"
Slot "species":
[1] "c" "a" "c" "b" "a"

Slot "x":
[1] 0.53827758 0.72234531 0.04228939 0.46204104 0.20706792

Slot "y":
[1] 0.69083106 0.07209983 0.51760378 0.12305639 0.45677010
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Basics (ctd.)

The slots can be accessed using @:

R> f1@x

[1] 0.53827758 0.72234531 0.04228939 0.46204104 0.20706792
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Basics (ctd.)

Typically, there would be a creator function:

R> fungi <- function(x, y, species)
+ new("fungi", x = x, y = y, species = species)

so that users do not need to call new() themselves.
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Basics (ctd.)

Using the creator:

R> f2 <- fungi(runif(3), runif(3), letters[1 : 3])
R> f2

An object of class "fungi"
Slot "species":
[1] "a" "b" "c"

Slot "x":
[1] 0.3760097 0.0144067 0.6897521

Slot "y":
[1] 0.6598063 0.6988959 0.7950575
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Validity checking

Can specify restrictions for “valid” objects via the validity argument to
setClass or via setValidity (note: sets to the value of the current
version.)

R> ## A valid "xyloc" object has the same number
R> ## of x and y values:
R> .valid_xyloc_object <- function(object) {
+ nx <- length(object@x)
+ ny <- length(object@y)
+ if(nx == ny)
+ TRUE
+ else
+ sprintf("Unequal x, y lengths: %d, %d", nx, ny)
+ }
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Validity checking

R> setValidity("xyloc", .valid_xyloc_object)

Class "xyloc" [in ".GlobalEnv"]

Slots:

Name: x y
Class: numeric numeric

Known Subclasses: "fungi"

R> xy1 <- new("xyloc", x = runif(5), y = runif(5))
R> xy2 <- tryCatch(new("xyloc", x = runif(5), y = runif(3)),
+ error = identity)
R> strwrap(conditionMessage(xy2))

[1] "invalid class \"xyloc\" object: Unequal x, y lengths: 5, 3"
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Validity checking

R> ## We can still do bad things "directly":
R> xy1@y <- 3
R> ## However, now validObject() will throw an error ...
R> tc <- tryCatch(validObject(xy1), error = identity)
R> tc

<simpleError in validObject(xy1): invalid class "xyloc" object: Unequal x, y lengths: 5, 1>

R> conditionMessage(tc)

[1] "invalid class \"xyloc\" object: Unequal x, y lengths: 5, 1"
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Prototypes

� Classes have prototypes stored with their definition

� Default prototype: for each slot a new object of that class
� Other prototypes might be more appropriate; can be specified via
prototype arg to setClass()
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Virtual classes

� Usually have neither representation nor prototype

� Useful by inheritance between classes
� Can be created using "VIRTUAL" when specifying the representation
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Inheritance

Class A inherits from (or extends) class B if is(x, "B") is true
whenever is(x, "A") is.

Can be determined using function extends():

R> extends("fungi", "xyloc")

[1] TRUE
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Testing and coercion

� Use general-purpose functions is() and as() for testing and
coercion:
R> is(f1, "xyloc")

[1] TRUE

R> as(c(1, 2, 3, 4.4), "integer")

[1] 1 2 3 4

� Corresponding information obtained from the class definition, or via
setIs() and setAs()
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Method dispatch

� Explicit setting of methods for certain signatures (the classes of the
arguments used in the dispatch)

� Can use several arguments in the dispatch
� Can determine the method dispatched to with selectMethod()
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Creating generics

Typically by setting a method (which automatically makes a function
generic with the old definition as the default method).

Or explicitly using setGeneric().
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Creating methods

By using setMethod():

R> setMethod("show", "fungi",
+ function(object) cat("I am just a fungus.\n"))
R> f1

I am just a fungus.

(Note: sets to the value of the current version if a named function is
used.)

For more complicated signatures:

R> setMethod("plot", c("numeric", "factor"), .......)
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Basics

� Partially different from the Green Book (e.g., currently no
getGroupMembers())

� Mechanism “similar” to S3 group methods
� Can construct arbitrary groups using setGroupGeneric()
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Group methods

Math log, sqrt, log10, cumprod, abs, acos, acosh, asin,
asinh, atan, atanh, ceiling, cos, cosh, cumsum, exp,
floor, gamma, lgamma, sin, sinh, tan, tanh, trunc

Math2 round signif
Ops Arith Compare [Logic]
Arith + - * / ^ %% %/%
Compare == != < <= >= >
Summary max, min, range, prod, sum, any, all
Complex Arg, Conj, Im, Mod, Re
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Basics

Main differences between reference classes and S3 and S4:

� Refclass objects use message-passing OO
� Refclass objects are mutable: the usual R copy on modify semantics

do not apply

Thus, the refclass object system behaves more like Java or C#.

Use them only where mutable state is absolutely required!
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Basics

A reference class has three main components, given by three
arguments to setRefClass:

� contains, the classes which the class inherits from.

� fields are the equivalent of slots in S4. They can be specified as a
vector of field names, or a named list of field types.

� methods are functions that operate within the context of the object
and can modify its fields.
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Example

A simple reference class for bank accounts with methods for withdrawal
and deposit:

R> setRefClass("Account",
+ fields = list(balance = "numeric"),
+ methods =
+ list(deposit =
+ function(amount) {
+ ## The following string documents the method
+ "Deposit the given amount from the account"
+ balance <<- balance + amount
+ },
+ withdraw =
+ function(amount) {
+ "Withdraw the given amount from the account"
+ balance <<- balance - amount
+ }))
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Example

What is returned by setRefClass, or can be retrieved by getRefClass,
is a reference class generator:

R> (Account <- getRefClass("Account"))

Generator for class "Account":

Class fields:

Name: balance
Class: numeric

Class Methods:
"withdraw", "deposit", "field", "trace", "getRefClass",
"initFields", "copy", "callSuper", ".objectPackage", "export",
"untrace", "getClass", "show", "usingMethods", ".objectParent",
"import"

Reference Superclasses:
"envRefClass"
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Example

The reference class generator has methods:

� new() for creating new objects of that class. Takes named arguments
specifying initial values for the fields.

� methods() for modifying existing or adding new methods
� help() for getting help about methods
� fields() to get a list of fields defined for class
� lock() locks the named fields so that their value can only be set once
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Example

We can use the generator to create an account object:

R> a1 <- Account$new(balance = 100)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 100

We can ask the generator for help:

R> Account$help("withdraw")

Call:
$withdraw(amount)

Withdraw the given amount from the account
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Example

We can then make deposits and withdrawals:

R> a1$withdraw(50)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 50

To access the balance:

R> a1$balance

[1] 50

R> a1$field("balance")

[1] 50
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Example

The most important property of refclass objects is that they are
mutable, or equivalently they have reference semantics:

R> a2 <- a1
R> a2$deposit(10)
R> a1

Reference class object of class "Account"
Field "balance":
[1] 60

(In the example, copies will always refer to the same account.)
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Cool stuff

R> setRefClass("Dist")
R> setRefClass("DistUniform",
+ c("a", "b"),
+ "Dist",
+ methods =
+ list(mean =
+ function() {
+ (a + b) / 2
+ }))
R> DistUniform <- getRefClass("DistUniform")
R> U01 <- DistUniform$new(a = 0, b = 1)
R> U01$mean()

[1] 0.5

(Could add other sub-classes for observed or simulated values.)
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