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abstract

The paper proposes an additive cascade model of volatility components
defined over different time periods. This volatility cascade leads to a simple
AR-type model in the realized volatility with the feature of considering different
volatility components realized over different time horizons and thus termed
Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). In spite
of the simplicity of its structure and the absence of true long-memory proper-
ties, simulation results show that the HAR-RV model successfully achieves the
purpose of reproducing the main empirical features of financial returns (long
memory, fat tails, and self-similarity) in a very tractable and parsimonious way.
Moreover, empirical results show remarkably good forecasting performance.
(JEL: C13, C22, C51, C53)

keywords: high-frequency data, long-memory models, realized volatility,
volatility forecast

1 INTRODUCTION

Financial data present a series of well-known stylized facts that pose serious chal-
lenges to standard econometric models. The autocorrelations of the square and ab-
solute returns show very strong persistence that last for long time periods (months).
Return distributions at different horizons show fat tails and tail crossover, i.e.,
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return probability density functions are leptokurtic with shapes depending on
the time scale and present a very slow convergence to the normal distribution as
time scales increase. Financial data also show evidence of scaling and multiscal-
ing (i.e., different scaling exponents for different powers of the absolute returns).1

Standard GARCH and stochastic volatility models are not able to reproduce all
of these features. The observed data contain noticeable fluctuations in the size of
price changes at all time scales, while standard GARCH and stochastic volatility
short-memory models appear like white noise once aggregated over longer time
periods (no scaling behavior). Hence, growing interest in long-memory processes
has recently emerged in financial econometrics.

Long-memory volatility is usually obtained by employing fractional difference
operators as in the FIGARCH models of returns or ARFIMA models of realized
volatility. Fractional integration achieves long memory in a parsimonious way by
imposing a set of infinite-dimensional restrictions on the infinite variable lags.
Those restrictions are transmitted by the fractional difference operators. However,
fractionally integrated models also pose some problems. Fractional integration is a
convenient mathematical trick but lacks a clear economic interpretation. Comte and
Renault (1998) argue that the fractional difference filter (1 − L)d introduces some
artificial mixing between long- and short-term characteristics that makes it difficult
to disentangle them. Fractionally integrated models are nontrivial to estimate and
not easily extendible to multivariate processes.2 Moreover, the application of the
fractional difference operator requires a long build-up period which results in the
loss of many observations. Finally, these kinds of models are able to reproduce only
the unifractal (or monofractal) type of scaling but not the multiscaling behavior
found in the empirical data.

An alternative approach views the long-memory and multiscaling features
observed in the data as an apparent behavior generated from a process which is not
really long memory or multiscaling. If the aggregation level is not large enough
compared to the lowest frequency component of the model, truly asymptotic short-
memory and monoscaling models can, in fact, be mistaken for long-memory and
multiscaling ones. In other words, the usual tests employed on the empirical data
can indicate the presence of long memory and multiscaling even when none exists,
just because the largest aggregation level we are able to consider is actually not
large enough. For instance, LeBaron (2001) shows that a very simple additive model

1Evidence of scaling (fractal) and multiscaling (multifractal) behavior in financial data has been found
(though without explicitly referring to the multiscaling or multifractal terminology) by Ding, Granger,
and Engle (1993), Andersen and Bollerslev (1997), Lobato and Savin (1998), and Dacorogna, Gençay,
Müller, Olsen, and Pictet (2001).

2These shortcomings are evident in the FIGARCH case. But, also for ARFIMA models, it has been shown
that the heuristic method of estimating d separately via a Geweke–Porter-Hudak (GPH) method, for
instance, gives notably biased and inefficient estimates especially in the presence of large AR or MA
roots (which seems to be our case). As argued in Comte and Renault (1998), this difficulty is an artifact
of the standard parameterization of the ARFIMA model. Joint ML estimation of all the parameters in
ARFIMA (p,d,q ) models, though more efficient, makes the estimation procedure more complex and even
more difficult to extend to the multivariate case.
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defined as the sum of only three different AR(1) processes displays a decaying
memory pattern that can be mistaken for a hyperbolic one (provided that the
longest component has a half-life that is long relative to the tested aggregation
ranges).3 This means that the set of stochastic processes able to generate the stylized
facts found in the data is much larger than commonly thought.

Since it is empirically very difficult to statistically discern between true long-
memory processes and simple component models with few time scales and given
that the latter are much easier to estimate and interpret, we follow this alternative
view by proposing a simple component model for conditional volatility which is
able to reproduce the main empirical features observed in the data while remaining
parsimonious and easy to estimate. Inspired by the HARCH model of Müller et al.
(1997) and Dacorogna et al. (1998) and by the asymmetric propagation of volatility
between long and short time horizons, we propose an additive cascade model of
different volatility components each of which is generated by the actions of differ-
ent types of market participants. This additive volatility cascade leads to a simple
AR-type model in the realized volatility with the feature of considering volatilities
realized over different time horizons. We thus term this model, Heterogeneous
Autoregressive model of Realized Volatility (HAR-RV). Surprisingly, in spite of its
simplicity and the fact that it does not formally belong to the class of long-memory
models, the HAR-RV model is able to reproduce the same volatility persistence
observed in the empirical data as well as many of the other main stylized facts of
financial data.

The rest of the paper is organized as follows. Section 2 introduces the notation
and derivation of the model and shows the properties of the simulated HAR-
RV series. Section 3 describes the data set employed in the empirical study and
presents the estimation and forecasting results of the model compared with some
benchmark models. Section 4 concludes.

2 THE MODEL

2.1 Notation

In this section we introduce the notation for integrated latent volatilities and real-
ized volatilities aggregated over different time horizons. Let us start by considering
the standard continuous time process

dp(t) = μ(t)dt + σ (t)dW(t), (1)

where p(t) is the logarithm of instantaneous price, μ(t) is cadlág finite variation
process, W(t) is a standard Brownian motion, and σ (t) is a stochastic process
independent of W(t). For this diffusion process, the integrated variance associated

3The appearance of long memory as a combination of short-memory processes is not surprising given the
result of Granger (1980), which shows that the sum of an infinite number of short-memory processes can
give rise to long memory. However, what is surprising is that those results can be mimicked with only
three different time scales.

 at V
ienna U

niversity L
ibrary of E

conom
ics and B

usiness A
dm

inistration on A
pril 21, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


CORSI | A Simple Approximate Long-Memory Model of Realized Volatility 177

with day t is the integral of the instantaneous variance over the one-day interval
[t − 1d , t], where a full-trading day is represented by the time interval 1d ,

I V(d)
t =

∫ t

t−1d
σ 2(ω)dω. (2)

Some authors refer to this quantity as integrated volatility, while we will devote
this term to the square root of the integrated variance, i.e., in our notation, the
integrated volatility is σ

(d)
t = (I V(d)

t )1/2.
As shown in a series of seminal papers by Andersen, Bollerslev, Diebold,

and Labys (2001), Andersen, Bollerslev, Diebold, and Ebens (2001), and Barndorff-
Nielsen and Shephard (2002a, 2002b), the integrated variance I V(d)

t can be ap-
proximated to an arbitrary precision using the sum of intraday squared returns.
Importantly, Andersen, Bollerslev, Diebold, and Labys (2003) showed that direct
time series modeling of realized volatility strongly outperforms, in terms of out-
of-sample forecasting, the popular GARCH and stochastic volatility models. The
standard definition (for an equally spaced return series) of the realized volatility
over a time interval of one day is

RV(d)
t =

√√√√M−1∑
j=0

r2
t− j ·�, (3)

where � = 1d/M, and rt− j ·� = p (t − j · �) − p (t − ( j + 1) · �) defines continu-
ously compounded �-frequency returns, that is, intraday returns sampled at time
interval � (here, the subscript t indexes the day, while j indexes the time within
the day t).

In the following, we will also consider latent integrated volatility and realized
volatility viewed over different time horizons longer than one day. In order to allow
direct comparison among quantities defined over various time horizons, these
multiperiod volatilities are normalized sums of the one-period realized volatilities
(i.e., a simple average of the daily quantities). For example, in our notation, a
weekly realized volatility at time t is given by the average4

RV(w)
t = 1

5

(
RV(d)

t + RV(d)
t−1d + · · · + RV(d)

t−4d

)
. (4)

In particular, we will make use of weekly and monthly aggregation periods. Indi-
cating the aggregation period as an upper script, the notation for weekly integrated
and realized volatility is, respectively, σ

(w)
t and RV(w)

t , while a monthly aggrega-
tion is denoted by σ

(m)
t and RV(m)

t . In the following, irrespective of their actual

4Note that because of Jensen’s inequality, the aggregated volatility, as defined here, cannot be exactly
interpreted as the realized volatility over the specific time interval. However, the difference is immaterial
in empirical applications, while this definition will allow for a much simpler interpretation of the HAR
model in terms of a restricted AR(22) model, as discussed below.
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frequency, all return and volatility quantities are intended to be annualized to
facilitate comparison among different frequencies.

2.2 Motivations

The motivating idea stems from the so-called Heterogeneous Market Hypothesis
presented by Müller et al. (1993), which recognizes the presence of heterogeneity
across traders. This view of financial markets can be related to the “Fractal Market
Hypothesis” of Peters (1994), the “Interacting Agent View” of Lux and Marchesi
(1999) and Alfarano and Lux (2007), and the “Agent-based” model of LeBaron
(2006). The idea of multiple components in the volatility process has also been
suggested by Andersen and Bollerslev (1997) in their “Mixture of Distribution
Hypothesis.” In this latter view, the multicomponent structure stems from the
heterogeneous nature of the information arrivals.

In financial markets, heterogeneity may arise for various reasons: differences
in agents’ endowments, institutional constraints, and risk profiles dissimilarity
in processing information, temporal horizons, geographical locations, and so on.
Here, we concentrate on the heterogeneity that originates from the difference in
the time horizons. Typically, a financial market is composed of participants having
a large spectrum of trading frequency. At one end of the spectrum we have deal-
ers, market makers, and intraday speculators, with very high intraday frequency
as a trading horizon. At the other end, there are institutional investors, such as
insurance companies and pension funds who trade much less frequently and pos-
sibly for larger amounts. The main idea is that agents with different time horizons
perceive, react to, and cause different types of volatility components. Simplifying
a bit, we can identify three primary volatility components: the short-term traders
with daily or higher trading frequency, the medium-term investors who typically
rebalance their positions weekly, and the long-term agents with a characteristic
time of one or more months. Although this categorization finds its justification
in the simple observation of financial markets and has a clear and appealing eco-
nomic interpretation, it has been mainly overlooked in econometric modeling. A
noteworthy exception is the HARCH model of Müller et al. (1997) and Dacorogna
et al. (1998).5

Studying the interrelations of volatility, measured over different time horizons,
allows one to reveal the dynamics of the different market components. It has been
recently observed that volatility over longer time intervals has a stronger influence
on volatility over shorter time intervals than conversely. This asymmetric behavior
of volatility has been confirmed employing different statistical tools.6

5The HARCH process belongs to the wide ARCH family, but differs from all other ARCH-type processes
in the unique property of considering squared returns aggregated over different intervals. The hetero-
geneous set of return interval sizes leads to the name HARCH for “Heterogeneous interval ARCH,” but
the first “H” may also stand for “Heterogeneous market.”

6Müller et al. (1997) employ a lead–lag correlation analysis of “fine” and “coarse” volatility to investi-
gate causal relation in a Granger sense. Arneodo, Muzy, and Sornette (1998) and Gençay and Selçuk
(2004) perform a wavelets analysis, while Lynch and Zumbach (2003) clearly visualize the asymmetric
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The overall pattern that emerges is a volatility cascade from low frequencies
to high frequencies. This can be economically explained by noticing that for short-
term traders the level of long-term volatility matters because it determines the
expected future size of trends and risk. Then, on the one hand, short-term traders
react to changes in long-term volatility by revising their trading behavior and
thereby causing short-term volatility. On the other hand, the level of short-term
volatility does not affect the trading strategies of long-term traders. This hierarchi-
cal structure has induced some authors to propose a formal analogy between FX
dynamics and the motion of turbulent fluid where a multiplicative energy cascade
from large to small spatial scales is present.7 More recently, Calvet and Fisher (2004,
2007) proposed a multifrequency model obtained as a multiplicative product of
a large number of Markov-switching processes operating at different frequencies
(expressed in terms of different probability transitions).

Motivated by the theoretical ability of simple models with only a few relevant
components to replicate the statistical behavior of financial data, and from the
empirical observation that heterogeneous market structure generates volatility
cascades, we propose a volatility cascade model with three heterogeneous volatility
components.

2.3 The HAR-RV Model

Defining the latent partial volatility σ̃
(·)
t as the volatility generated by a certain market

component, the proposed model can be described as an additive cascade of partial
volatilities, each having an “almost AR(1)” structure.8 To simplify, we consider a
hierarchical model with only three volatility components corresponding to time
horizons of one day (1d), one week (1w), and one month (1m) denoted respectively
by σ̃

(d)
t , σ̃

(w)
t , and σ̃

(m)
t . Obviously, more components could easily be added. By the

same token, for the sake of the exposition, the model here is presented (and subse-
quently employed) for the realized volatility (i.e., the square-root transformation
of the variance), but analogous models could be written for the variance or for its
logarithmic transformation.

The high-frequency return process is determined by the highest frequency
volatility component in the cascade (the daily one in this simplified case) with

propagation of volatility by plotting the level of correlation between the volatility first difference and the
realized volatility.

7Borrowing from the Kolmogorov model of hydrodynamic turbulence, multiplicative cascade processes
for volatility have been proposed by Ghashaghaie et al. (1996) and Breymann et al. (2000). Although these
types of models are able, in theory, to reproduce the main features of the financial data, their empirical
estimation still remains an open question.

8Since on the right-hand side it is not the lagged latent volatility that appears but rather the corresponding
realized volatility, the process is not, strictly speaking, a true AR(1). The fact that the realized volatility is
a close proxy for the latent one makes this process similar to an AR(1). More formally, this model could
be classified in the broad class of hidden Markov models (an application of hidden Markov models to
volatility forecasting is in Rossi and Gallo [2006]).
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σ̃
(d)
t = σ

(d)
t the daily integrated volatility. Then the return process is

rt = σ
(d)
t εt (5)

with εt ∼ NI D(0, 1). The model for the unobserved partial volatility processes
σ̃

(·)
t at each level of the cascade is assumed to be a function of the past realized

volatility experienced at the same time scale (the “AR(1)” component) and, due
to the asymmetric propagation of volatility, of the expectation of the next-period
values of the longer-term partial volatilities (the hierarchical component). For the
longest time scale (monthly), only the “AR(1)” structure remains. Then the model
reads

σ̃
(m)
t+1m = c(m) + φ(m) RV(m)

t + ω̃
(m)
t+1m,

σ̃
(w)
t+1w = c(w) + φ(w) RV(w)

t + γ (w)
Et

[
σ̃

(m)
t+1m

] + ω̃
(w)
t+1w,

σ̃
(d)
t+1d = c(d) + φ(d) RV(d)

t + γ (d)
Et

[
σ̃

(w)
t+1w

] + ω̃
(d)
t+1d ,

where RV(d)
t , RV(w)

t , and RV(m)
t are respectively the daily, weekly, and monthly (ex

post) observed realized volatilities as previously described, while the volatility in-
novations ω̃

(m)
t+1m, ω̃

(w)
t+1w, and ω̃

(d)
t+1d are contemporaneously and serially independent

zero-mean nuisance variates with an appropriately truncated left tail to guarantee
the positivity of partial volatilities.9

The economic interpretation is that each volatility component in the cascade
corresponds to a market component that forms expectations for the next period’s
volatility based on the observation of the current realized volatility and on the
expectation for the longer horizon volatility (which is known to affect the future
level of their relevant volatility).

By straightforward recursive substitutions of the partial volatilities and recall-
ing that σ̃

(d)
t = σ

(d)
t , such a cascade model can be simply written as

σ
(d)
t+1d = c + β (d) RV(d)

t + β (w) RV(w)
t + β (m) RV(m)

t + ω̃
(d)
t+1d . (6)

Equation (6) can be seen as a three-factor stochastic volatility model, where
the factors are directly the past realized volatilities viewed at different frequencies.
From this process for the latent volatility, it is easy to derive the functional form
for a time series model in terms of realized volatilities by simply noticing that, ex
post, σ

(d)
t+1d can be written as

σ
(d)
t+1d = RV(d)

t+1d + ω
(d)
t+1d , (7)

9An alternative way to ensure positiveness of partial volatilities would be to write the model in terms of
the log of RV.
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where ω
(d)
t subsumes both latent daily volatility measurement and estimation er-

rors. Equation (7) links our ex post volatility estimate RV(d)
t+1d to the contempora-

neous measure of daily latent volatility σ
(d)
t+1d .10

Substituting Equation (7) in Equation (6) and recalling that measurement er-
rors on the dependent variable can be absorbed into the disturbance term of the
regression, we obtain a very simple time series representation of the proposed
cascade model,

RV(d)
t+1d = c + β (d) RV(d)

t + β (w) RV(w)
t + β (m) RV(m)

t + ωt+1d , (8)

with ωt+1d = ω̃
(d)
t+1d − ω

(d)
t+1d . Equation (8) has a simple autoregressive structure in

the realized volatility but with the feature of considering volatilities realized over
different interval sizes; it could then be labeled as HAR(3)-RV. In general, denoting
l and h, respectively, the lowest and highest frequency in the cascade, Equation (8)
is an AR( l

h ) model reparameterized in a parsimonious way by imposing eco-
nomically meaningful restrictions (which take the form of a step function for the
autoregressive weights).11

2.4 Simulation Results

The purpose of this section is to show that, in spite of its simplicity, the proposed
model is able to produce rich dynamics for returns and volatilities which closely
reproduce what we observe in empirical data. These dynamics are generated by the
heterogeneous reaction of the different market components to a given price change,
which in turn affects the future size of price changes. This causes a complex process
by which the market reacts to its own price history with different reaction times.
Thus, market volatilities feed on themselves.12

To assess the ability of the model to replicate the main stylized facts of the
empirical data, we compare the time series returns and volatilities produced by the
simulation of the HAR(3)-RV model with those of the USD/CHF series (described
in Section 3.1). In order to give the model the time aggregation necessary to unfold
its dynamics at the daily level, the HAR(3)-RV process is simulated at the frequency
of two hours (2h) (corresponding to M = 12 for a full 24-hour trading day). The

10The presence of a mean-zero error term ω
(d)
t+1d in Equation (7) makes it clear that we are not treating realized

volatility as an error-free measure of latent volatility. Note that the consistency of the realized volatility
is not enough to state that ω

(d)
t is a mean-zero error term. Unbiased estimators of latent volatilities and

hence a proper finite sample treatment of microstructure effects are needed.
11In this sense, the HAR can be related to the MIDAS regression of Ghysels, Santa-Clara, and Valkanov

(2006), Ghysels, Sinko, and Valkanov (2006), and Forsberg and Ghysels (2007), although the standard
MIDAS with the estimated Beta function lag polynomial cannot reproduce the HAR step function
weights.

12This mechanism is sometimes called “price-driven volatility” in contrast to the “event-driven volatility”
consistent with the EMH and the “error-driven volatility” due to over- and underreaction of the market
to incoming information.
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Figure 1 Comparison of actual (top) and simulated (bottom) daily returns series.

simulated model then reads

r (2h)
t = σ

(d)
t εt , (9)

σ
(d)
t+2h = c + β (d) RV(d)

t + β (w) RV(w)
t + β (m) RV(m)

t + ω
(d)
t+2h . (10)

The parameters of the model (β (·)) are simply calibrated to obtain realistic results.
They are β (d) = 0.36, β (w) = 0.28, and β (m) = 0.28.

The analysis begins with a simple visual inspection of a sample of the two
time series for the returns (Figure 1) and the realized volatilities (Figure 2). In both
Figures 1 and 2, the upper panels show a sample of the empirical data for
USD/CHF, while the lower panels display a visually very similar sample real-
ization of the simulated process.

Figure 3 summarizes the character of the simulated and actual return distri-
bution for 1-, 5-, and 22-day intervals. In these and the subsequent comparison
figures, the number of observations for the real and simulated data differ sub-
stantially. The 14 years of USD/CHF yields 3599 daily observations, while the
HAR(3)-RV process is simulated for a period corresponding to 150,000 daily ob-
servations (approximately 600 years).

Table 1 reports the values of the kurtosis of the distributions corresponding
to the three aggregation intervals. This table clearly shows how the simple HAR
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Figure 2 Comparison of actual (top) and simulated (bottom) daily RV series.
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Figure 3 Comparison of actual (dotted) and simulated (solid) probability density functions of
returns for different time horizons. From left to right: daily, weekly, and monthly.

Table 1 Kurtosis.

Daily returns Weekly returns Monthly returns

USD/CHF 4.74 3.82 3.24
HAR(3)-RV 4.89 3.90 3.50

Note. Comparison of actual and simulated kurtosis of returns over different time horizons.
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Figure 4 Comparison of actual (dotted) and simulated (solid) autocorrelations of daily realized
volatility.

model for the realized volatility is able to reproduce not only the excess of kurtosis
of the daily returns, but also the empirical cross-over from fat tail to thin tail
distributions as the aggregation interval increases.

However, what we are mainly interested in, is the ability of the model to
reproduce the volatility persistence of empirical data. Figure 4 shows the actual
autocorrelation function of USD/CHF daily realized volatility13 together with the
autocorrelation of HAR daily realized volatility simulated over a period corre-
sponding to 600 years. This figure shows that the purpose of reproducing the
long memory of the empirical volatility seems to have been fully achieved. It is
important to remark that theoretically the HAR model for volatility is a short-
memory process, which asymptotically should not exhibit hyperbolic decay of the
autocorrelation. However, for the aggregation interval considered, the simulated
model shows a volatility memory that is at least as long as that of empirical data
(and it could even be made much longer, with an appropriate choice of the parame-
ters). Also the partial autocorrelation functions share quite a remarkable agreement
(Figure 5).

Similar results are also achieved for the distributions of the daily realized
volatilities (Figure 6) and the scaling behavior of periodograms (Figure 7) which
display a high degree of linearity (typical of true self-similar processes) for both
empirical and simulated data.

13Computed with the two scales estimator of Zhang, Aı̈t-Sahalia, and Mykland (2005) as described in
Section 3.1.
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Figure 5 Comparison of actual (top) and simulated (bottom) partial autocorrelations of daily
realized volatility.
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Figure 6 Comparison of actual (dotted) and simulated (solid) distributions of daily realized
volatility.
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Figure 7 Comparison of actual (top) and simulated (bottom) periodograms of daily returns on
log–log plane.

3 EMPIRICAL ANALYSIS

3.1 Data

Our data set consists of long tick-by-tick series for USD/CHF, S&P500 Futures,
and 30-year US Treasury Bond Futures. The USD/CHF series covers 14 years from
December 1989 to December 2003 of tick-by-tick spot log–arithmic middle prices.
Log mid prices are computed as averages of the logarithmic bid and ask quotes
obtained from the Reuters FXFX screen. In order to avoid explicitly modeling the
seasonal behavior of trading activity induced by the weekend, we exclude all the
realized volatility taking place from Friday 21:00 GMT to Sunday 22:00 GMT. For
the S&P500 Futures, we dispose of all transactions from January 1990 to July 2007,
while for the T-Bond Futures our data series is from January 1990 to October 2003.

For all three series, we compute daily tick-by-tick realized volatility estimates
employing the two scales estimator proposed by Zhang, Aı̈t-Sahalia, and Mykland
(2005) with the slower frequency of ten ticks returns. As previously described, the
daily realized volatility is aggregated at weekly and monthly scales according to
Equation (4) in order to have comparable realized volatility measures over different
horizons.
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Table 2 HAR(3) estimation.

RV(d)
t+1d = c + β(d) RV(d)

t + β(w) RV(w)
t + β(m) RV(m)

t + ωt+1d

USD/CHF S&P500 T-Bond
c 1.121 0.781 1.494

(5.404) (4.065) (6.475)
βd 0.352 0.372 0.039

(13.501) (9.858) (1.672)
βw 0.323 0.343 0.412

(7.509) (7.263) (8.941)
βm 0.235 0.224 0.361

(6.301) (6.467) (7.987)

Notes. In-sample estimation results of the least squares regression of HAR(3) model for USD/CHF
exchange data from December 1989 to December 2003 (3599 daily observations), S&P500 Futures from
January 1990 to July 2007 (4344 observations), and T-Bond Futures from January 1990 to October 2003
(3391 observations). Reported in parentheses are the t-statistics based on standard errors computed with
Newey–West correction for serial correlation of order 5.

3.2 Estimation

Following the recent literature on realized volatility, we can consider all the terms
in Equation (8) as observed and then easily estimate its parameters β (·) by applying
simple linear regression. Standard OLS regression estimators are consistent and
normally distributed. In order to account for the possible presence of serial corre-
lation in the data, the Newey–West covariance correction for serial correlation is
employed.

Table 2 reports the results of the estimation of the HAR-RV model of Equation
(8) for three series. From the values of the t-statistics, it is clear that all the three
realized volatilities aggregated over the three different horizons are all highly
significant. The only exception is the coefficient of daily realized volatility for
the T-Bond. This result may be due to the fact that the time series of the T-Bond
realized volatility seems to show a higher level of noise than that of the S&P
and USD/CHF,14 due to a lower mean tick arrival frequency and a higher impact
of market microstructure. The noisier estimation of the daily realized volatility
induces a lack of significance of the daily volatility component, while weekly and
monthly realized volatilities, being averages over longer periods, arguably contain
less noise and more information on the volatility process and, hence, receive higher
weights from the model.

It is worth noticing that if we accept the interpretation that realized volatilities
aggregated over different horizons are reasonable proxies for volatilities generated
by the corresponding market components, an interesting by-product of this sim-
ple OLS regression is a direct estimate of the market component weights, that is,

14This is confirmed by the comparison of the autocorrelation functions and the much lower R2s of the
HAR estimation.
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Table 3 Goodness-of-fit tests.

USD/CHF S&P500 T-Bond

F-test 2.801 3.498 4.585
(1.910) (1.909) (1.912)

AIC
AR(22) 1.929 2.577 1.898
HAR(3) 1.928 2.579 1.903

BIC
AR(22) 1.969 2.611 1.938
HAR(3) 1.935 2.585 1.910

Note. Results of the F-test for multiple hypothesis testing between the unrestricted AR(22) model and
the restricted HAR(3) model (1% critical values in parentheses) and their respective Akaike information
criterion (AIC) and Bayesian information criterion (BIC).

a ready evaluation of the contribution of each market component to the overall
market activity. For instance, in the USD/CHF and S&P500 series, it seems that
the importance of the market components decreases with the horizon of the ag-
gregation. Moreover, if a moving window regression is performed, a time series
evolution of such weights is easily attained as well.

As mentioned above, the HAR-RV process is an autoregressive model repa-
rameterized in a parsimonious way by imposing economically meaningful re-
strictions. We can then evaluate if those restrictions are valid by comparing the
restricted HAR model with the unrestricted AR one. Since the HAR model consid-
ered here employs monthly realized volatility (which corresponds to 22 working
days), the corresponding unrestricted autoregressive model is an AR(22). A mul-
tiple hypothesis test based on the difference between restricted and unrestricted
residual sums of squares is then computed. The results of these F-tests, together
with the information criteria measures for the two models, are reported in Table 3.
The F-tests turn out to be significant for the three series,15 while looking at the
information criteria gives less clear-cut results: the Akaike information criteria of
the unrestricted AR(22) models and those of the HAR(3) are very similar, while on
the basis of the Bayesian information criterion (which imposes larger penalty for
additional coefficients), the HAR(3) is clearly preferred.

3.3 Forecast

The in-sample one-day-ahead forecasts of the model are shown in Figure 8 and
Table 4. These forecasts are obtained by first estimating the parameters of the

15Given the high number of restrictions (19) and observations, rejection of the joint test F could somehow
be expected. The detailed cause of the rejection of the restrictions is asset dependent. For the S&P, it is
probably due to the absence of some minor but still significant frequencies (two days and biweekly). For
USD/CHF it is, instead, due to a periodic increase of the regression coefficient every five lags (one week)
i.e., coefficients at lag 5, 10, 15, 20 turn out to be slightly higher. For the T-Bond, the reason seems more
related to the high instability of the coefficients at higher lags (greater than three weeks).
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Table 4 One-day-ahead in-sample performance.

USD/CHF S&P500 T-Bond

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

AR(1) 2.803 1.938 0.493 3.927 2.542 0.648 2.770 2.080 0.109
AR(3) 2.675 1.830 0.539 3.690 2.364 0.691 2.683 2.010 0.166
ARFIMA(5, d, 0) 2.649 1.765 0.559 3.611 2.316 0.703 2.580 1.919 0.237
HAR(3) 2.607 1.757 0.565 3.605 2.305 0.707 2.576 1.905 0.236

Notes. Comparison of the in-sample performances of the one-day-ahead forecasts of AR(1), AR(3),
ARFIMA(5, d, 0), and HAR(3) models for USD/CHF exchange data, S&P500 Futures, and T-Bond Fu-
tures. The parameters of the ARFIMA(5, d, 0) model are estimated with a two-step procedure where the
fractional coefficient d is first estimated on the full sample with the GPH algorithm followed by an AR(5)
fit. Performance measures are the root mean square error (RMSE), the mean absolute error (MAE), and
the R2 of the Mincer–Zarnowitz regressions.

models on the full sample and then performing a series of static one-step-ahead
forecasts. The visual impression of a quite accurate forecast shown in the top and
middle panels of Figure 8 is confirmed by the remarkably high R2 of the regression
in Table 4. From the right panels of Figure 8, which displays the time series of the
forecasting errors, the presence of a significant heteroskedasticity in the residuals
is apparent. This remark has led Corsi, Mittnik, Pigorsch, and Pigorsch (2008) to
consider more sophisticated estimation procedures that, being able to take into
account this GARCH effect in the volatility residuals, may increase the estimation
efficiency of the HAR-RV model.

For comparison purposes other models are added: the AR(1) and AR(3) model
of realized volatility as well as a fractionally integrated model for realized volatility
as employed by Andersen, Bollerslev, Diebold, and Labys (2003). They propose a
fractional differentiation of the realized volatility series with a fractional coefficient
d estimated on the full sample through the GPH algorithm followed by an AR(5)
fit. Hence, the model is an ARFIMA(5, d , 0) estimated with a two-step procedure.

In Table 4, the forecasting performances are evaluated on the basis of root
mean square error (RMSE) and mean absolute error (MAE). Moreover, following
the analysis of Andersen and Bollerslev (1998), Andersen, Bollerslev, and Diebold
(2007), and Aı̈t-Sahalia and Mancini (2008), Table 4 also reports the results of the
R2 of the Mincer-Zarnowitz regressions

RV(d)
t = b0 + b1Et−1

[(
R̂V

(d)
t

)]
+ error, (11)

that is, a regression of the ex post realized volatility on a constant and the various
model forecasts based on time t − 1 information. In Table 4, the difference in
forecasting performance between the standard short-memory models and the ones
able to capture the persistence of the empirical data is evident.

Table 5 and Figure 9 report the results for out-of-sample forecasts of the re-
alized volatility in which the models are reestimated daily on a moving window
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Figure 8 Comparisons of actual (dotted) and 1-day-ahead in-sample prediction (solid) of the HAR
model for daily realized volatilities (left panels) and the corresponding residuals (right panels).
Top: USD/CHF exchange data from December 1989 to July 2003. Middle: S&P500 Futures from
January 1990 to July 2007. Bottom: US Treasury Bond Futures from January 1990 to October 2003.

of 1000 observations. An exception is made for the ARFIMA model for which
the fractional difference coefficients d are first estimated on the whole sample
and employed to fractionally differentiate the realized volatility series. For the
fractional difference operator, we choose the standard cutoff limits of the Taylor
expansion of 1000, which for values of d around 0.4 induces a cutoff error of about
4%. After fractional differentiation, the optimal length of the moving window
used in the estimation of the AR parameters turns out to be about 250 days. The
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Table 5 Out-of-sample forecasts.

1 day 1 week 2 weeks

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

USD/CHF
AR(1) 2.540 1.796 0.497 2.699 2.089 0.213 2.764 2.178 0.038
AR(3) 2.459 1.699 0.530 2.194 1.673 0.523 2.406 1.909 0.316
ARFIMA 2.430 1.674 0.546 1.864 1.362 0.611 1.812 1.360 0.576
HAR(3) 2.377 1.622 0.551 1.878 1.361 0.609 1.829 1.381 0.570

S&P500
AR(1) 4.170 2.669 0.640 4.878 3.550 0.323 5.273 4.012 0.166
AR(3) 3.953 2.518 0.680 3.783 2.583 0.613 4.381 3.184 0.408
ARFIMA 4.085 2.762 0.651 3.409 2.403 0.678 3.502 2.478 0.633
HAR(3) 3.873 2.475 0.696 3.352 2.237 0.698 3.539 2.437 0.627

T-Bond
AR(1) 2.746 2.044 0.152 1.971 1.505 0.076 1.797 1.388 0.075
AR(3) 2.672 1.984 0.197 1.820 1.396 0.246 2.406 1.909 0.316
ARFIMA 2.587 1.914 0.256 1.505 1.140 0.442 1.371 1.024 0.445
HAR(3) 2.568 1.886 0.264 1.516 1.153 0.440 1.401 1.052 0.438

Notes. Comparison of the out-of-sample performances of the 1-day-, 1-week-, and 2-week-ahead forecasts
of the AR(1), AR(3), ARFIMA(5, d, 0), and HAR(3) models for USD/CHF exchange data, S&P500 Futures,
and T-Bond Futures. The AR(1), AR(3), and HAR(3) are daily reestimated on a moving window of 1000
observations. For the ARFIMA(5, d, 0), the coefficient of fractional integration d is preestimated on the
whole sample. After fraction differentiation with a cutoff limit of the Taylor expansion of 1000, the
optimal length of the moving window for the estimation of the AR(5) parameters is around 250 days.
Performance measures are the root mean square error (RMSE), the mean absolute error (MAE), and the
R2 of the Mincer–Zarnowitz regressions. The multistep-ahead forecasts are evaluated comparing the
aggregated realized and predicted volatility over the multiperiod horizon.

forecasting performances are compared over three different time horizons: one
day, one week, and two weeks. The multistep-ahead forecasts are evaluated con-
sidering the aggregated volatility realized and predicted over the multiperiod
horizon. For an h-step-ahead forecast, the target function is then

∑h
j=0 RV(d)

t+ j and
the Mincer–Zarnowitz regression becomes

h∑
j=0

RV(d)
t+ j = b0 + b1Et−h

⎡
⎣ h∑

j=0

R̂V
(d)
t+ j

⎤
⎦ + error. (12)

Out-of-sample, it turns out that the parsimonious HAR(3) model steadily out-
performs the short-memory models at all the three time horizons considered (one
day, one week, and two weeks) and compares similarly to the true long-memory
ARFIMA model. It is noteworthy that though the superior performance of the
ARFIMA and HAR(3) was already apparent at daily horizon, it becomes striking
at weekly and biweekly horizons. The reason is that the AR(1) and AR(3) models

 at V
ienna U

niversity L
ibrary of E

conom
ics and B

usiness A
dm

inistration on A
pril 21, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


192 Journal of Financial Econometrics

USD/CHF
AR(3)

1500 2000 2500 3000 3500
6
8

10
12
14
16
18
20
22
24

actual
forecast

1500 2000 2500 3000 3500
6
8

10
12
14
16
18
20
22
24

1500 2000 2500 3000 3500
6
8

10
12
14
16
18
20
22
24

S&P500

1500 2000 2500 3000 3500 4000
5

10

15

20

25

30

35

40

45

1500 2000 2500 3000 3500 4000
0
5

10
15
20
25
30
35
40
45

1500 2000 2500 3000 3500 4000
5

10

15

20

25

30

35

40

45

T-Bond

1500 2000 2500 3000 3500
4

6

8

10

12

14

16

18

1500 2000 2500 3000 3500
4

6

8

10

12

14

16

18

1500 2000 2500 3000 3500
4

6

8

10

12

14

16

18

ARFIMA(5,d,0) HAR(3)

AR(3) ARFIMA(5,d,0) HAR(3)

AR(3) ARFIMA(5,d,0) HAR(3)

actual
forecast

actual
forecast

actual
forecast

actual
forecast

actual
forecast

actual
forecast

actual
forecast

actual
forecast

Figure 9 Comparison of the out-of-sample performances of 2-week-ahead forecasts of the AR(3),
ARFIMA(5, d, 0), and HAR(3) models for USD/CHF exchange data (top), S&P500 Futures (mid-
dle), and T-Bond Futures (bottom). The continuous line is the aggregated prediction, while the
dotted line is the ex post aggregated realized volatility over a 2-week period. The AR(3) and HAR(3)
are daily reestimated on a moving window of 1000 observations. For the ARFIMA(5, d, 0), the frac-
tional difference parameter d is preestimated on the whole sample. After fraction differentiation
with a cutoff limit of 1000, the optimal length of the moving window for the estimation of the
AR(5) parameters is around 250 days.

have a memory which is too short compared to the forecasting horizon and hence
converge too quickly to their unconditional mean for longer forecasting horizons.

This explanation is confirmed by Figure 9 which compares the dynamic be-
havior of the different models for the two-week forecasting periods. For this time
horizon, the importance of long memory becomes manifest. What is surprising is
the ability of the HAR-RV model to attain these results with only a few parameters.

Confronting the results of the HAR(3) and ARFIMA(5,d ,0), Table 5 shows that
the performances of the two models are comparable (with a slight advantage for the
HAR model for daily and weekly horizons and for the ARFIMA for the biweekly
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horizon).16 However, it should be noted that while the HAR model is extremely
simple and straightforward to implement (even on a daily moving window), the
ARFIMA model is much more cumbersome and complicated (especially on moving
windows). Moreover, ARFIMA model estimation and forecasts are quite sensitive
to the choice of the Taylor expansion cutoff limit of the fractional difference operator
and, for the GPH estimation of d , also quite sensitive to the choice of the frequency
cut off.

4 CONCLUSIONS

We propose a volatility model in which an additive volatility cascade inspired by
the Heterogeneous Market Hypothesis leads to a simple AR-type model in the
realized volatility. This model has the feature of considering volatilities realized
over different interval sizes. We term this model HAR-RV. The new HAR-RV model
seems to successfully achieve the purpose of modeling the long-memory behavior
of volatility in a very simple and parsimonious way (although not formally be-
longing to the class of long-memory models). Moreover, in spite of the simplicity
of its structure and estimation, the HAR-RV model shows remarkably good fore-
casting performance. Based on the out-of-sample forecasting results for the three
long series of realized volatilities of USD/CHF, S&P500, and T-Bond, the HAR(3)
model steadily outperforms the short-memory models at all the time horizons con-
sidered (one day, one week, and two weeks) and is comparable to the much more
complicated and tedious to estimate long-memory ARFIMA model.

The simplicity of the proposed model allows it to be easily extended in vari-
ous directions. Other statistically and economically significant variables could be
simply added as additional regressors. For example, different measures of jumps
could be included (after separating them from the continuous volatility compo-
nents) as in Andersen et al. (2007) and Corsi, Pirino, and Renò (2008). Leverage
effects can be considered by simply adding lagged positive and negative returns
as regressors (see Corsi and Renò 2008). Extensions of the HAR model to account
for nonlinear effects can be obtained by combining it with smooth transition or
tree-structured models as in McAleer and Medeiros (2008) and Audrino and Corsi
(2008), respectively. The same logic based on heterogeneous components can be
applied to other different models such as the alternative approach to modeling
and forecasting realized volatility proposed in the Multiplicative Error Models
of Engle and Gallo (2006). Moreover, its simple autoregressive structure suggests
a natural way to extend it to the multivariate case by developing a Vector-HAR
model analogous to the standard VAR model as in Bauer and Vorkink (2007).

Received July 7, 2008; revised December 31, 2008; accepted January 14, 2009.

16It should be recalled, however, that the ARFIMA forecasts are not truly out of sample, since the fractional
difference coefficient d is estimated on the whole sample.

 at V
ienna U

niversity L
ibrary of E

conom
ics and B

usiness A
dm

inistration on A
pril 21, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


194 Journal of Financial Econometrics

REFERENCES

Aı̈t-Sahalia, Y., and L. Mancini. 2008. “Out of sample forecasts of quadratic variation.”
Journal of Econometrics 147: 17–33.

Alfarano, S., and T. Lux. 2007. “A noise trader model as a generator of apparent financial
power laws and long memory.” Macroeconomic Dynamics 11: 80–101.

Andersen, T. G., and T. Bollerslev. 1997. “Heterogeneous information arrivals and return
volatility dynamics: Uncovering the long run in high frequency data.” Journal of
Finance 52: 975–1005.

Andersen, T. G., and T. Bollerslev. 1998. “Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts.” International Economic Review 39: 885–905.

Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2007. “Roughing it up: Including jump
components in the measurement, modeling, and forecasting of return volatility.”
The Review of Economic and Statistics 89(4), 701–720.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens. 2001. “The distribution of
stock returns volatilities.” Journal of Financial Economics 61: 43–76.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. 2001. “The distribution of
realized exchange rate volatility.” Journal of the American Statistical Association 96:
42–55.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. 2003. “Modeling and fore-
casting realized volatility.” Econometrica 71: 579–625.

Arneodo, A., J. Muzy, and D. Sornette. 1998. “Causal cascade in stock market from the
‘infrared’ to the ‘ultraviolet’.” European Physical Journal, B 2: 277–282.

Audrino, F., and F. Corsi. 2008. “Modeling tick-by-tick realized correlations.” University
of St. Gallen, Department of Economics, Discussion paper No. 2008-05.

Barndorff-Nielsen, O., and N. Shephard. 2002a. “Econometric analysis of realized
volatility and its use in estimating stochastic volatility models.” Journal of the Royal
Statistical Society, B 64: 253–280.

Barndorff-Nielsen, O., and N. Shephard. 2002b. “Estimating quadratic variation using
realized variance.” Journal of Applied Econometrics 17: 457–477.

Bauer, G., and K. Vorkink. 2007. “Multivariate realized stock market volatility.” Working
paper, Bank of Canada.

Breymann, W., S. Ghashghaie, and P. Talkner. 2000. “A stochastic cascade model
for FX dynamics.” International Journal of Theoretical and Applied Finance 3: 357–
360.

Calvet, L., and A. Fisher. 2004. “How to forecast long-run volatility: Regime switching
and the estimation of multifractal processes.” Journal of Financial Econometrics 2:
49–83.

Calvet, L., and A. Fisher. 2007. “Multifrequency news and stock returns.” Journal of
Financial Economics 86: 178–212.

Comte, F., and E. Renault. 1998. “Long memory in continuous time stochastic volatility
models.” Mathematical Finance 8: 291–323.

Corsi, F., S. Mittnik, C. Pigorsch, and U. Pigorsch. 2008. “The volatility of realized
volatility.” Econometric Reviews 27: 46–78.
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