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Finite Bayesian mixture models

Types of applications include

Semi-parametric density approximation.
Model-based clustering.

Areas of applications are numerous.

Many possible extensions and variants possible taking specific
data structures into account.

The finite mixture model is given by

yi ∼
K∑

k=1

πk fk(yi |θk).



Prior distributions

A prior needs to be specified for the full set of parameters
consisting of:

the component weights πk , k = 1, . . . .K ;
the component-specific parameters θk , k = 1, . . . ,K ;
the parameters for hyperpriors ϑ.

The prior is given by

p(π,Θ,ϑ),

with Θ = {θ1, . . . ,θK}.



Prior characteristics

No conjugate prior for mixture models is available.

In general proper priors are required to obtain proper posteriors.

Assume prior independence between component weights and
component-specific parameters.

Use exchangeable or conditionally exchangeable prior for
component weights and / or component-specific parameters.

Use conditionally conjugate priors given component memberships.



Informative versus non-informative priors

The mixture likelihood is known to be prone to have

Multiple (spurious) modes and
Be unbounded at the boundary of the parameter space.

Model-based clustering is an ill-posed problem:

The data might be compatible with several different cluster
structures.
Certain cluster structures might not be of interest.

For model-based clustering (weakly) informative priors are often
advocated because they allow to

Include prior knowledge about cluster structure;
Regularize the likelihood.



Kiefer-Wolfowitz example

We consider the following mixture of two normal distributions:

p(y |η2, µ, σ
2
2) = (1− η2)fN (yi |µ, 1) + η2fN (y |µ, σ2

2).

η2 is assumed fixed with
η2 = 0.2

and µ and σ2
2 are unknown.

Kiefer and Wolfowitz (1956) used that as an example to show that
each observation in an arbitrary data set of arbitrary size N
generates a singularity in the mixture likelihood function.

We simulated N = 20 observations from the model with

µ = 0 σ2
2 = 4.



Kiefer-Wolfowitz example / 2

Likelihood of the data:
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Kiefer-Wolfowitz example / 3

Log-likelihood of the data with respect to log(σ):
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Kiefer-Wolfowitz example / 4

Non-normalized posterior for prior σ2 ∼ G−1(2.5, 1):
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Genuine multimodality

We consider the following mixture of two normal distributions:

p(y |η2, µ1, µ2) = (1− η2)fN (yi |µ1, 1) + η2fN (y |µ2, 1).

η2 is assumed fixed with

η2 6= 0.5.

Marin et al. (2005) used that as an example to indicate genuine
multimodality. Label switching is not an issue for η2 6= 0.5 known.

We simulated N = 500 observations from the model with

µ1 = 0, µ2 = 2.5, η2 = 0.3.



Genuine multimodality / 2
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Non-informative priors for univariate mixtures

Jeffreys priors for mixtures most often lead to improper posteriors.

Jeffreys priors for the weights conditionally on the parameter
mixture components are derived.

Assumption that priors on weights and component
parameters are independent is not supported.
Richardson and Green (1997) use RJMCMC for univariate
Gaussian mixtures. They note that:

A prior allowing for higher component specific variances
leads to more weight on more components a-posteriori.
Reducing the variance of a flat prior on the component
means leads first to an increase of the number of
components, but then decreases their number.



Non-informative priors for univariate mixtures / 2

Reparametrization of the Gaussian mixture models allows for

Improper priors for the overall mean and variance.
Restricts the parameters defining the components to a
compact sense.

The Gaussian mixture likelihood is unbounded for zero component
specific variances with mean equal to an observation and contains
spurious modes:

Standard inverse gamma priors on the component specific
variances eliminates these spurious modes.
Uniform priors for the reparametrization might not have this
effect.



Non-informative priors for univariate mixtures / 3

Reparametrized prior with µ, σ ∝ 1/σ and uniform priors on the
component-specific parameters:

m
u

−2

0

2

sigma

0
1

2
3

4
5

6

p(y)

0e+00

2e−14

4e−14

6e−14

8e−14

1e−13



Anchored Bayesian Gaussian mixture models

Fixing the component memberships of data points to solve the
label switching problems has been previously proprosed and used
also in a post-processing step.

The proposed approach allows to select these points in an
automatic and principled way not relying on manual selection.

Selecting the number of anchor points used seems to require
additional investigations with preliminary results available.

Anchoring requires the number of components to be known
a-priori.

Diebolt and Robert (1994) indicated that improper priors in the
mixture case might only be used in case only partitions are
considered with a sufficient number of observations assigned to
them. Anchoring points ensures a certain minimum number of
observations.



Anchored Bayesian Gaussian mixture models / 2

Fixing component memberships assumes that the prior and
posterior probabilities of some observations to be in the same
component is deterministically either zero or one.

Resolving label switching is needed in model-based
clustering applications where grouping structure is implicitly
assumed to be present.
If the influence of this prior anchoring is strong in addition to
remove label switching, no clear grouping structure might be
present.

Multi-modality of the mixture likelihood after resolving label
switching is known to be an issue. These “genuine” different
modes might correspond to different grouping structures requiring
different anchoring points.



Heterogeneous reciprocal graphical models

Model developed for a specific application with known groups is
adapted to be used with latent groups.

Component model is specific to the application and uses
specifically designed priors to induce sparsity.

Non-local priors with thresholding are used to induce sparsity:

How is the threshold selected?
How do these priors perform compared to other sparsity
priors?

In principle the same model and priors are uesd regardless of if
the groups are manifest or latent.

Difference in assumptions on dependency structure between
groups.
This indicates more structure required to identify latent
groups.



Heterogeneous reciprocal graphical models / 2

In the finite mixture case a Dirichlet distribution for the weights is
combined with a geometric distribution for the number of
components K :

How are the parameters for the Dirichlet selected?
What is the influence of the distribution used for the number
of components?

Finite as well as infinite mixtures are considered:

How can their performance be compared?
Could priors be selected to match their behavior?



Summary

Choice of priors depends on application type.

Models derived for heterogeneous populations with known groups
can be used assuming unobserved heterogeneity. Slight
adaptations to the priors needed to induce identifiability.

Standard approaches assume independent priors between
component weights and component specific distributions.

Theoretical and empirical results suggest that there is dependency
between these sets of parameters.

Rousseau and Mengersen (2011) suggest that the parameter for
the prior on the weights needs to be selected depending on the
dimensionality of the component specific parameters / the data.
More work needed to identify how parameter choices depend on
the dimensionality of the data for other priors.

More insights needed to the impact of prior choices on results and
to guide their choice.
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