

JOHANNES KEPLER UNIVERSITY LINZ

Prior Specifications for Finite Bayesian Mixture Models

Discussant: Bettina Grün

JSM 2018

Finite Bayesian mixture models

- Types of applications include
 - Semi-parametric density approximation.
 - Model-based clustering.
- Areas of applications are numerous.
- Many possible extensions and variants possible taking specific data structures into account.
- The finite mixture model is given by

$$\mathbf{y}_i \sim \sum_{k=1}^{K} \pi_k f_k(\mathbf{y}_i | \boldsymbol{\theta}_k).$$

Prior distributions

- A prior needs to be specified for the full set of parameters consisting of:
 - the component weights π_k , $k = 1, \ldots, K$;
 - the component-specific parameters θ_k , k = 1, ..., K;
 - the parameters for hyperpriors ϑ .
- The prior is given by

 $p(\boldsymbol{\pi}, \boldsymbol{\Theta}, \boldsymbol{\vartheta}),$

with $\Theta = \{\theta_1, \ldots, \theta_K\}.$

Prior characteristics

- No conjugate prior for mixture models is available.
- In general proper priors are required to obtain proper posteriors.
- Assume prior independence between component weights and component-specific parameters.
- Use exchangeable or conditionally exchangeable prior for component weights and / or component-specific parameters.
- Use conditionally conjugate priors given component memberships.

Informative versus non-informative priors

- The mixture likelihood is known to be prone to have
 - Multiple (spurious) modes and
 - Be unbounded at the boundary of the parameter space.
- Model-based clustering is an ill-posed problem:
 - The data might be compatible with several different cluster structures.
 - Certain cluster structures might not be of interest.
- For model-based clustering (weakly) informative priors are often advocated because they allow to
 - Include prior knowledge about cluster structure;
 - Regularize the likelihood.

Kiefer-Wolfowitz example

• We consider the following mixture of two normal distributions:

$$p(\boldsymbol{y}|\eta_2, \boldsymbol{\mu}, \sigma_2^2) = (1 - \eta_2) f_{\mathcal{N}}(\boldsymbol{y}_i|\boldsymbol{\mu}, 1) + \eta_2 f_{\mathcal{N}}(\boldsymbol{y}|\boldsymbol{\mu}, \sigma_2^2).$$

η₂ is assumed fixed with

$$\eta_2 = 0.2$$

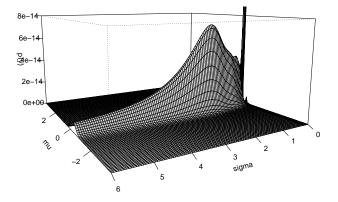
and μ and $\sigma_{\rm 2}^{\rm 2}$ are unknown.

- Kiefer and Wolfowitz (1956) used that as an example to show that each observation in an arbitrary data set of arbitrary size *N* generates a singularity in the mixture likelihood function.
- We simulated N = 20 observations from the model with

$$\mu = \mathbf{0} \qquad \qquad \sigma_2^2 = \mathbf{4}.$$

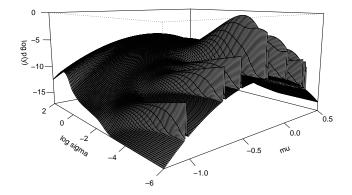
Kiefer-Wolfowitz example / 2

Likelihood of the data:



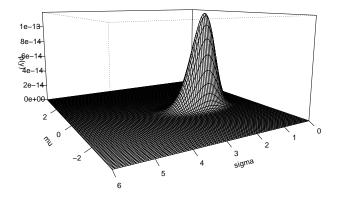
Kiefer-Wolfowitz example / 3

Log-likelihood of the data with respect to $log(\sigma)$:



Kiefer-Wolfowitz example / 4

Non-normalized posterior for prior $\sigma^2 \sim \mathcal{G}^{-1}(2.5, 1)$:



Genuine multimodality

• We consider the following mixture of two normal distributions:

$$p(y|\eta_2, \mu_1, \mu_2) = (1 - \eta_2) f_{\mathcal{N}}(y_i|\mu_1, 1) + \eta_2 f_{\mathcal{N}}(y|\mu_2, 1).$$

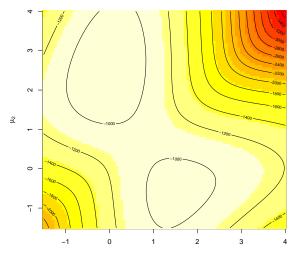
• η_2 is assumed fixed with

$$\eta_2 \neq 0.5.$$

- Marin et al. (2005) used that as an example to indicate genuine multimodality. Label switching is not an issue for η₂ ≠ 0.5 known.
- We simulated N = 500 observations from the model with

$$\mu_1 = 0, \qquad \qquad \mu_2 = 2.5, \qquad \qquad \eta_2 = 0.3.$$

Genuine multimodality / 2



Non-informative priors for univariate mixtures

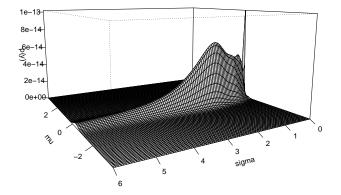
- Jeffreys priors for mixtures most often lead to improper posteriors.
- Jeffreys priors for the weights conditionally on the parameter mixture components are derived.
 - Assumption that priors on weights and component parameters are independent is not supported.
 - Richardson and Green (1997) use RJMCMC for univariate Gaussian mixtures. They note that:
 - A prior allowing for higher component specific variances leads to more weight on more components a-posteriori.
 - Reducing the variance of a flat prior on the component means leads first to an increase of the number of components, but then decreases their number.

Non-informative priors for univariate mixtures / 2

- Reparametrization of the Gaussian mixture models allows for
 - Improper priors for the overall mean and variance.
 - Restricts the parameters defining the components to a compact sense.
- The Gaussian mixture likelihood is unbounded for zero component specific variances with mean equal to an observation and contains spurious modes:
 - Standard inverse gamma priors on the component specific variances eliminates these spurious modes.
 - Uniform priors for the reparametrization might not have this effect.

Non-informative priors for univariate mixtures / 3

Reparametrized prior with $\mu, \sigma \propto 1/\sigma$ and uniform priors on the component-specific parameters:



Anchored Bayesian Gaussian mixture models

- Fixing the component memberships of data points to solve the label switching problems has been previously proprosed and used also in a post-processing step.
- The proposed approach allows to select these points in an automatic and principled way not relying on manual selection.
- Selecting the number of anchor points used seems to require additional investigations with preliminary results available.
- Anchoring requires the number of components to be known a-priori.
- Diebolt and Robert (1994) indicated that improper priors in the mixture case might only be used in case only partitions are considered with a sufficient number of observations assigned to them. Anchoring points ensures a certain minimum number of observations.

Anchored Bayesian Gaussian mixture models / 2

- Fixing component memberships assumes that the prior and posterior probabilities of some observations to be in the same component is deterministically either zero or one.
 - Resolving label switching is needed in model-based clustering applications where grouping structure is implicitly assumed to be present.
 - If the influence of this prior anchoring is strong in addition to remove label switching, no clear grouping structure might be present.
- Multi-modality of the mixture likelihood after resolving label switching is known to be an issue. These "genuine" different modes might correspond to different grouping structures requiring different anchoring points.

Heterogeneous reciprocal graphical models

- Model developed for a specific application with known groups is adapted to be used with latent groups.
- Component model is specific to the application and uses specifically designed priors to induce sparsity.
- Non-local priors with thresholding are used to induce sparsity:
 - How is the threshold selected?
 - How do these priors perform compared to other sparsity priors?
- In principle the same model and priors are uesd regardless of if the groups are manifest or latent.
 - Difference in assumptions on dependency structure between groups.
 - This indicates more structure required to identify latent groups.

Heterogeneous reciprocal graphical models / 2

- In the finite mixture case a Dirichlet distribution for the weights is combined with a geometric distribution for the number of components K:
 - How are the parameters for the Dirichlet selected?
 - What is the influence of the distribution used for the number of components?
- Finite as well as infinite mixtures are considered:
 - How can their performance be compared?
 - Could priors be selected to match their behavior?

Summary

- Choice of priors depends on application type.
- Models derived for heterogeneous populations with known groups can be used assuming unobserved heterogeneity. Slight adaptations to the priors needed to induce identifiability.
- Standard approaches assume independent priors between component weights and component specific distributions.
- Theoretical and empirical results suggest that there is dependency between these sets of parameters.
- Rousseau and Mengersen (2011) suggest that the parameter for the prior on the weights needs to be selected depending on the dimensionality of the component specific parameters / the data. More work needed to identify how parameter choices depend on the dimensionality of the data for other priors.
- More insights needed to the impact of prior choices on results and to guide their choice.

References

- J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through Bayesian sampling. **Journal of the Royal Statistical Society B**, 56: 363–375, 1994.
- J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. **The Annals of Mathematical Statistics**, 27(4):887–906, 1956.
- J.-M. Marin, K. Mengersen, and C. P. Robert. Bayesian modelling and inference on mixtures of distributions. In D. Dey and C. Rao, editors, Bayesian Thinking: Modeling and Computation, volume 25 of Handbook of Statistics, chapter 16, pages 459–507. North–Holland, Amsterdam, 2005.
- S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society B, 59(4):731–792, 1997.
- J. Rousseau and K. Mengersen. Asymptotic behaviour of the posterior distribution in overfitted mixture models. Journal of the Royal Statistical Society B, 73(5):689–710, 2011.