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Abstract

The R package bayesmix provides the functionality for estimating univariate Gaussian
mixture models with MCMC methods. Within a given model class users can modify the
prior specifications and the initial values for developing a suitable model for their data. Fur-
thermore, tools for analyzing the output of the MCMC simulations as, e.g., diagnostic plots,
are available. The package is intended to be accompanying material for Frühwirth-Schnatter
(2006). With this package the user can comfortably reproduce some of the results presented in
the book. The data sets and functions for generating the initial values and prior specifications
in the book are provided.
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1 Introduction
Finite mixture models are a popular method for modeling unobserved heterogeneity as well as
for semi-parametric approximations of multimodal distributions. Areas of application are, e.g.,
biology, medicine, economics and engineering among many others. For maximum likelihood esti-
mation the Expectation-Maximization (EM) algorithm is most frequently used which is provided
in R for example by package mclust (Fraley and Raftery, 2002, 2006, revised 2009) or package
flexmix (Grün and Leisch, 2008).

Bayesian estimation has become feasible with the advent of Markov chain Monte Carlo
(MCMC) simulation and the R package bayesmix provides facilities for estimating univariate Gaus-
sian finite mixtures with MCMC methods. The model class which can be estimated with bayesmix
is a special case of a graphical model where the nodes and their distributions are fixed and the user
only needs to specify the values of the constant nodes, the data and the initial values. Small vari-
ations of the model are allowed with respect to the segment specific priors. The MCMC sampling
is done using package rjags (Plummer, 2009) which builds on JAGS (Just Another Gibbs Sampler;
Plummer, 2003) and its output can be analyzed in R using functionality from the package coda
(Plummer et al., 2009). In addition to visualization tools for the MCMC chains diagnostic plots
are implemented which can be used to determine the appropriate number of segments or a suitable
variable for ordering the segments. In Bayesian mixture modeling in general it makes a difference
which constraint is imposed for ordering the segments due to label switching.

In Section 2 the model class which can be fitted with this package is described. In Section 3
a short overview on identifiability issues and MCMC estimation of this model class is given. In
Section 4 we give a short description of the implementation and the most important functions. In
Section 5 two different applications on well known data sets are presented. One application is on
modeling heterogeneity in a fish population, while the other is on outlier modeling.
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2 Model class
Finite Gaussian mixture distributions are given by

F (yi) =

K∑
k=1

ηkNormal(yi |µk, σ
2
k),

where ηk ≥ 0,
∑K

k=1 ηk = 1 and Normal(· |µ, σ2) is a Gaussian distribution with mean µ and
variance σ2.

For Bayesian estimation of mixture models MCMC methods (Diebolt and Robert, 1994) are
commonly used. The estimation process is often simplified by using data augmentation as pointed
out by Dempster et al. (1977). For Bayesian estimation a prior distribution on the parameters has
to be specified. The model class which is implemented in bayesmix only allows a certain structure
of the prior distributions. In order to specify a model with another prior distribution the file
containing the BUGS specification of the model has to be modified.

For the prior of ηk it is assumed that

η1, . . . , ηK ∼ Dirichlet(e0,1, . . . , e0.K).

For the priors on the parameters of the Gaussian distributions we distinguish between conditionally
conjugate priors and independence priors, as well as the inclusion of hierarchical priors on the
variances, where also partially proper priors can be specified.

For conditionally conjugate priors we have

σ2
k ∼ InvGamma(

ν0,k
2

,
ν0,kS0,k

2
),

µk |σ2
k ∼ Normal(b0,k, B0,kσ

2
k).

For independence priors

σ2
k ∼ InvGamma(

ν0,k
2

,
ν0,kS0,k

2
),

µk ∼ Normal(b0,k, B0,k).

For the hierarchical prior on the variances we add

S0,k ∼ Gamma(
g0,k
2

,
g0,kG0,k

2
).

If improper priors are specified for µk or σ2
k, the a-posteriori distributions might equally be im-

proper because classes might be empty or include only elements of the same value. In Diebolt
and Robert (1994) it was suggested to reject draws of SN which lead to problems. However,
this is complicated to achieve for bayesmix as JAGS samples each node separately and hence the
classifications are not drawn together. Therefore, it is not recommended to use improper priors on
µk or σ2

k, which is not a severe drawback as the MCMC sampler has a much higher risk of being
trapped at some local mode in such a setting (Frühwirth-Schnatter, 2006).

3 Model estimation

3.1 Identifiability
For mixture models there can be three different kinds of unidentifiability distinguished:

• label switching of the segments

• overfitting

2



• generic unidentifiability

The unidentifiability due to label switching can be eliminated by imposing a restriction on the
ordering of the segments, as, e.g., the constraint that the means of the segment distributions are
ascending. Overfitting leads to identifiability problems, as either the prior probabilities are not
uniquely determined because of two equal segments or the segment distribution is not uniquely
determined because of prior probability η = 0. Generic unidentifiability is not present for finite
mixtures of Gaussian distributions (Teicher, 1963; Titterington et al., 1985). In order to avoid the
problems caused by unidentifiability a constraint implying a unique ordering of the segments can
be specified and the number of segments has to be properly chosen.

3.2 MCMC sampling
The following steps can be distinguished for the MCMC estimation of a mixture of Gaussian
distributions:

1. Sample independently for each observation the group indicator S given the parameters of
the segment distributions.

2. Sample the prior probabilities given the group indicators S.

3. Sample the parameters of the segment distributions given the data and the group indicators
S.

The model class specified in Section 2 ensures that the conditional posterior distributions for each
step can be handled within the conjugate setting.

4 Description of implementation
The package bayesmix uses package rjags to perform the MCMC sampling. rjags builds on JAGS,
a stand-alone C++ program for Bayesian Graphical Modeling. JAGS stands for Just Another
Gibbs Sampler and the motivation of its development was to clone BUGS (Bayesian inference
Using Gibbs Sampling) in order to be able to modify the program if necessary as JAGS is open-
source software. Furthermore, bayesmix uses functionality from package coda, which provides
tools for output analysis and diagnostics of MCMC simulations. bayesmix depends on package
coda because classes introduced in package coda are used for handling the MCMC chains, as e.g.,
to plot them.

bayesmix calls functions jags.model() and coda.samples() from package rjags for the
MCMC sampling. The syntax which JAGS uses for specifying the models is similar to the one
used in WinBUGS. A description of the WinBUGS language can be found in Spiegelhalter et al.
(2003). The differences between WinBUGS and the syntax used by JAGS are described in the JAGS
user manual (Plummer, 2004). The user manual also provides instructions for installing JAGS on
Windows and Linux systems.

bayesmix allows the easy specification of a specific model within the given model class using
BMMmodel() by selecting the appropriate prior structure and values and the initial values. When
specifying the model the information is checked for consistency, as e.g., the dimension of the
variables, and for inadmissible models. Note that it is for example not possible to estimate
hierarchical prior models where the hyper-parameter follows an improper distribution without
specifying an initial value for it. JAGS samples the nodes in a reverse partial ordering of the graph
and therefore, the improper hyper-parameter is sampled after its children. A partial ordering of
the nodes signifies that if a is after b in the ordering there is no path from a to b. A necessary
condition for establishing a partial ordering is that the graph is acyclic.

With JAGScontrol() the number of burn-in and recorded draws, the seed and the recorded
variables are determined. Given the model and the control JAGScall() creates the .bug-file and
makes the MCMC simulations. The wrapper JAGSrun() also takes care of where the .bug-file is
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written to. By calling function JAGScall() it is possible to modify the .bug-file before MCMC
sampling.

The results can be visually analyzed by using trace plots and by plotting the estimated kernel
densities for the MCMC chains. Further diagnostic plots are provided which help to decide on
the appropriate number of segments or on a reasonable constraint for ordering the segments.
BMMposteriori() plots the estimated a-posteriori probabilities for the segments and can be used
for determining how well the mixture defines disjoint clusters in the data.

Other functions allow the random permutation of the segments for each draw or the sorting of
them with respect to a constraint specified for one of the variables. The random permutation of
the draws allows to obtain similar results to those by a random permutation sampler, which has
been proposed for inforcing balanced label switching in cases where the unconstrained likelihood
shall be investigated (Frühwirth-Schnatter, 2001).

5 Application
In the following we demonstrate the use of bayesmix on two examples taken from Frühwirth-
Schnatter (2006). The examples show different possible applications of mixture models. In the
first example the capturing of unobserved heterogeneity is demonstrated, while in the second
example outliers are detected.

5.1 Fishery data
We fit a Gaussian mixture model on the fishery data taken from Titterington et al. (1985). It
consists of data on the lengths of 256 snappers. The heterogeneity in the data comes from the
different age groups a fish might belong to depending if it comes from the current year’s spawning
or the previous, and so on.

We have to load the package and the data.

> library("bayesmix")
> data("fish", package = "bayesmix")

Then we have to specify the model: We choose k = 4 classes and assume an independent prior
between µ and τ , where τ denotes 1/σ2. A hierarchical prior is specified for τ . The parameters
for the prior for µ are b0 = median(fish) and B−1

0 = 0, whereas ν0 = 20 and S0 follows a Γ(0, 0)-
distribution. Furthermore, we choose the default for the initial values which are equal to those
suggested in Frühwirth-Schnatter (2006): equal values for η, corresponding quantiles for µ and
equal values for τ which are determined by taking the inverse of a robust estimate of the variance
(in our case IQR) divided by 1.34 squared.

Hence, the model can be specified by the function BMMmodel():

> model <- BMMmodel(fish, k = 4, initialValues = list(S0 = 2),
+ priors = list(kind = "independence",
+ parameter = "priorsFish", hierarchical = "tau"))

The model specified in the BUGS syntax is given by:

> model

Data for nodes: b0, B0inv, nu0Half, g0Half, g0G0Half, k, N, e, y
Initial values for nodes: eta, mu, tau, S0

Model specification in BUGS language:

var
b0,
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B0inv,
nu0Half,
g0Half,
g0G0Half,
k,
N,
eta[4],

mu[4],
tau[4],
nu0S0Half,
S0,
e[4],

y[256],
S[256];

model {
for (i in 1:N) {

y[i] ~ dnorm(mu[S[i]],tau[S[i]]);
S[i] ~ dcat(eta[]);

}
for (j in 1:k) {

mu[j] ~ dnorm(b0,B0inv);
tau[j] ~ dgamma(nu0Half,nu0S0Half);

}
S0 ~ dgamma(g0Half,g0G0Half);
nu0S0Half <- nu0Half * S0;

eta[] ~ ddirch(e[]);
}

JAGScontrol() is used for specifying the control parameters for the MCMC sampling. We have
to set the number of discarded burn-in draws, the number of monitored draws together with the
names of the monitored variables and a possible seed of the RNG in order to be able to reproduce
the results.

> control <- JAGScontrol(variables = c("mu", "tau", "eta", "S"),
+ burn.in = 3000, n.iter = 2000, seed = 10)

In order to make the MCMC simulation JAGSrun() is called and returns an object of class
"JAGSrun".

> z <- JAGSrun(fish, model = model, control = control)

Compiling model graph
Declaring variables
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 256
Unobserved stochastic nodes: 266
Total graph size: 1047

Initializing model

bayesmix provides diagnostic plots for "JAGSrun" objects in order to estimate the necessary num-
ber of segments and to choose a suitable variable for ordering the segments. Figure 1 indicates
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Figure 1: µ versus σ2 and µk versus µl for k ̸= l

that the segments are rather well separated for µ, as there are no points on the diagonal on the µk

versus µl plot. From the µ versus σ plot it can be seen that σ is not a suitable variable for ordering
the segments, while ordering of the segments with respect to µ is a sensible ordering constraint.
Please note that only the last 1000 observations are plotted to reduce the document size.

Sorting the draws with respect to this constraint leads to the following results for the component
specific parameters:

> zSort <- Sort(z, by = "mu")
> zSort

Call:
JAGSrun(y = fish, model = model, control = control)

Markov Chain Monte Carlo (MCMC) output:
Start = 3001
End = 5000
Thinning interval = 1

Empirical mean, standard deviation and 95% CI for eta
Mean SD 2.5% 97.5%

eta[1] 0.11919 0.02621 0.07455 0.1783
eta[2] 0.50693 0.04422 0.41499 0.5911
eta[3] 0.27434 0.04396 0.18645 0.3647
eta[4] 0.09954 0.02974 0.05367 0.1698

Empirical mean, standard deviation and 95% CI for mu
Mean SD 2.5% 97.5%

mu[1] 3.381 0.16156 3.125 3.726
mu[2] 5.277 0.07195 5.134 5.411
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Figure 2: Posterior classification of the observations where the segments are sorted with respect
to µ.

mu[3] 7.439 0.14116 7.127 7.691
mu[4] 9.977 0.40736 8.939 10.646

Empirical mean, standard deviation and 95% CI for sigma2
Mean SD 2.5% 97.5%

sigma2[1] 0.2974 0.11378 0.1485 0.5816
sigma2[2] 0.3484 0.06468 0.2394 0.4971
sigma2[3] 0.4773 0.16578 0.2444 0.8712
sigma2[4] 0.9835 0.35779 0.5315 1.8928

After sorting the results the a-posteriori class probabilities of each observation can be estimated
by the observed class affiliations over the runs, which can be seen in Figure 2. Furthermore, it
is possible to make inference for the parameters of each segment. In Figure 3 there are, e.g., the
MCMC traces and estimated densities for µ plotted.

Interesting modifications which can be made in the model specifications include the variation
of the segment number k from 3 to 5 and different values for ν0, e.g., 5 and 20. If ν0 is chosen small
the variance of the last segment is rather large which leads to high a-posteriori probabilities for the
last segment of observations which lie between the modes of the precedent segments. Furthermore,
the plot of µk versus µl indicates that µ does not provide a suitable identifiability constraint for
k = 4, 5.

5.2 Darwin’s data
Darwin’s data consists of 15 observations of differences in heights between pairs of self-fertilized
and cross-fertilized plants grown under the same condition. We demonstrate how finite mixture
models can be used for robustifying Bayesian models with respect to outlying values.

For Darwin’s data we fit a location-shift model in order to detect possible outliers. The location-
shift model is a special case of a mixture of two normal distributions because it is a mixture of
two normal distributions with different means but equal variances. For a location-shift model
restrict = "tau" has to be specified for the model when calling JAGSrun().

Furthermore, we want to ensure that there are no empty classes drawn which is specified in
the model by no.empty.classes = TRUE.
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Figure 3: MCMC draws obtained for µ from the sampler under the constraint µ1 < ... < µ4.

We fit two different models, where in the first we assume equal a-priori class probabilities
while in the second we assume that the second class is smaller. Under the assumption that with a
probability of 95% at most 18.1% outliers are present in the data, a prior of (15, 1) for the a-priori
class probabilities is chosen.

> data("darwin", package = "bayesmix")
> k <- 2
> variables <- c("mu", "tau", "eta", "S")
> zBeta1.1 <- JAGSrun(darwin,
+ model = BMMmodel(k = k,
+ priors = list(kind = "independence"),
+ no.empty.classes = TRUE, restrict = "tau"),
+ control = JAGScontrol(variables, n.iter = 3000,
+ burn.in = 1000, seed = 1))

Compiling model graph
Declaring variables
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 17
Unobserved stochastic nodes: 19
Total graph size: 86

Initializing model

> zBeta1.15 <- JAGSrun(darwin,
+ model = BMMmodel(k = k,
+ priors = list(kind = "independence"),
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Figure 4: MCMC traces and posterior densities for µ for the location-shift model with
Dirichlet(1, 1)-prior

+ aprioriWeights = c(15, 1), no.empty.classes = TRUE,
+ restrict = "tau"),
+ control = JAGScontrol(variables, n.iter = 3000,
+ burn.in = 1000, seed = 1))

Compiling model graph
Declaring variables
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 17
Unobserved stochastic nodes: 19
Total graph size: 86

Initializing model

If we compare the results for the symmetric prior with those for the Dirichlet(15, 1)-prior we can
see that label switching occurs frequently for µ for the symmetric prior whereas this is not the
case for the asymmetric one (cp. Figure 4 and 5). The label switching for the symmetric prior
leads to classification probabilities extremely biased towards 0.5 (cp. Figure 7).

6 Conclusions
bayesmix allows a user who “only” wants to estimate finite mixtures of Gaussian distributions to
use rjags and hence JAGS as sampling engine without knowing the BUGS syntax which is used by
JAGS for specifying general Bayesian hierarchical models. bayesmix offers the opportunity to be
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Figure 5: MCMC traces and posterior densities for µ for the location-shift model with
Dirichlet(15, 1)-prior
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Figure 7: Outlier classification for Darwin’s data

a starting point for learning the BUGS syntax as the model specification is written into a separate
file and can be inspected and modified by the user.
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