
Sylvia Frühwirth-Schnatter

Finite Mixture and Markov
Switching Models

Implementation in MATLAB using the package

bayesf Version 2.0

December 2, 2008

Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo

Preface

This package is an update of Version 1.0 of the Matlab package bayesf
released in January 2007. Major changes of Version 2.0 compared to the
previous version are the following:

• Additional distribution families may be selected as component densities in
a finite mixture model, namely exponential distributions, univariate and
multivariate Student-t distributions with unknown, group specific degrees
of freedom and binomial distributions with constant or varying repetition
parameter.

• Finite mixtures of generalized linear models have been added and may be
based on the Poission distribution, a negative binomial distribution with
unknown, group specific degrees of freedom or a binomial distributions
with constant or varying repetition parameter.

• For discrete data, it is now possible to allow for the presence of exposures
and repeated measurements.

Additionally, some bugs have been fixed. Please be aware that the programs
are tested mainly for the data I was interested in. The package may still
contain some coding errors and may not work for your data. Please inform
me about any problem you have by sending an email to

sylvia.fruehwirth-schnatter@jku.at.
Finally, I kindly ask to acknowledge the use of the bayesf package if you use
results obtained by this package in any research report or in any other means
of publication.

Vienna and Linz, December 2008 Sylvia Frühwirth-Schnatter

Contents

1 Getting Started Quickly . 1
1.1 Fitting Finite Mixture Distributions . 1

1.1.1 Defining the Model . 1
1.1.2 Loading the Data . 2
1.1.3 Choosing the Prior . 2
1.1.4 Initializing MCMC . 3
1.1.5 Running MCMC . 3
1.1.6 Bayesian Inference Based on the MCMC Draws 3

1.2 Examples . 5
1.2.1 Fishery Data . 6
1.2.2 Fisher’s Iris Data . 6
1.2.3 Eye Tracking Data . 8
1.2.4 Fabric Fault Data . 9
1.2.5 Lamb Data . 10
1.2.6 GDP Data . 11

2 Finite Mixture Modeling . 13
2.1 Specifying Models . 13

2.1.1 Specifying the Model Structure . 13
2.1.2 Assigning Parameters . 14
2.1.3 Unspecified and Fully Specified Models 14

2.2 Finite Mixture Distributions . 14
2.2.1 Defining a Finite Mixture Distribution 14
2.2.2 Plotting the Density of a Finite Mixture Distribution . . 16
2.2.3 Marginal Densities . 17
2.2.4 Moments of a Finite Mixture Distribution 17
2.2.5 The Point Process Representation of a Finite Mixture

Distribution . 19

VIII Contents

3 Data Handling . 21
3.1 Defining the Data . 21

3.1.1 Data Structures . 21
3.1.2 Classified Data . 22
3.1.3 Data Sets Available in the Package 22

3.2 Data Visualization . 24
3.2.1 Simple Plotting . 24
3.2.2 Empirical Moments . 25
3.2.3 Examples . 27

3.3 Data Simulation . 29

4 Statistical Inference for a Finite Mixture Model with
Known Number of Components . 31
4.1 Classification for Known Component Parameters 31
4.2 Bayesian Estimation . 32

4.2.1 Choosing the Prior for the Parameter of a Mixture
Model . 33

4.2.2 Markov Chain Monte Carlo Bayesian Inference 34
4.2.3 Closed Form Posterior Distributions 35

4.3 Parameter Estimation through Data Augmentation and MCMC 35
4.3.1 Running MCMC . 36
4.3.2 MCMC Output . 38

4.4 Parameter Estimation for Known Allocation 39
4.5 Bayesian Inference Using the Posterior Draws 40

4.5.1 Plotting the Posterior Draws . 40
4.5.2 Estimating the Component Parameters and the

Weight Distribution . 42
4.5.3 Bayesian Clustering . 44
4.5.4 Predictive Density Estimation. 45

5 Statistical Inference for Finite Mixture Models Under
Model Specification Uncertainty . 47
5.1 Mode Hunting in the Mixture Posterior . 47
5.2 Diagnosing Mixtures Through the Method of Moments and

Through Predictive Methods . 47
5.3 Simulation-Based Approximations of the Marginal Likelihood . 49

5.3.1 Getting Started Quickly . 50
5.3.2 Comparing the Estimators . 50
5.3.3 Technical Details . 51

5.4 Model Choice Criteria . 52

6 Finite Mixture Models for Continuous Data 55
6.1 Data Structures . 55
6.2 Finite Mixtures of Normal Distributions . 55

6.2.1 Defining Mixtures of Normal Distributions 56

Contents IX

6.2.2 Getting Started Quickly . 56
6.2.3 Choosing the Prior Distribution for Univariate

Mixtures of Normals . 57
6.2.4 Choosing the Prior Distribution for Multivariate

Mixtures of Normals . 59
6.2.5 Bayesian Inference for a Single Normal Distribution 61
6.2.6 Bayesian Parameter Estimation When the Allocations

are Known . 62
6.2.7 Bayesian Parameter Estimation When the Allocations

are Unknown . 62
6.2.8 Plotting MCMC. 64
6.2.9 Estimating the Component Parameters and the

Weight Distribution . 64
6.2.10 Model Selection Problems for Mixtures of Normals 65
6.2.11 The Structure of the MCMC Output 65

6.3 Finite Mixtures of Student-t Distributions 68
6.3.1 Defining Mixtures of Student-t Distributions 68
6.3.2 Getting Started Quickly . 69
6.3.3 Choosing the Prior Distribution . 70
6.3.4 Bayesian Parameter Estimation When the Allocations

are Unknown . 71
6.3.5 Plotting MCMC. 73
6.3.6 Model Selection Problems for Mixtures of Student-t

distributions . 73
6.3.7 The Structure of the MCMC Output 74

6.4 Finite Mixtures of Exponential Distributions 75
6.4.1 Defining Mixture of Exponential Distributions 75
6.4.2 Getting Started Quickly . 75
6.4.3 Choosing the Prior for Bayesian Estimation 75
6.4.4 Parameter Estimation When the Allocations are

Unknown . 76
6.4.5 Plotting MCMC. 76
6.4.6 Model Selection Problems for Mixtures of Exponentials 76
6.4.7 The MCMC Output for Mixtures of Exponentials 76

7 Finite Mixture Models for Discrete-Valued Data 79
7.1 Data Handling . 79
7.2 Finite Mixtures of Poisson Distributions . 79

7.2.1 Defining Mixtures of Poisson Distributions 80
7.2.2 Getting Started Quickly . 80
7.2.3 Choosing the Prior for Bayesian Estimation 81
7.2.4 Parameter Estimation When the Allocations are

Unknown . 82
7.2.5 Unknown number of components . 83
7.2.6 Bayesian Fitting of a Single Poisson Distribution 83

X Contents

7.2.7 Bayesian Parameter Estimation When the Allocations
are Known . 83

7.2.8 The structure of the MCMC Output 84
7.3 Finite Mixtures of Binomial Distributions 84

7.3.1 Defining Mixtures of Binomial Distributions 84
7.3.2 Getting Started Quickly . 85
7.3.3 Choosing the Prior for Bayesian Estimation 85
7.3.4 Parameter Estimation When the Allocations are

Unknown . 86
7.3.5 Unknown number of components . 87
7.3.6 The structure of the MCMC Output 87

8 Finite Mixtures of Regression Models . 89
8.1 Data Handling . 89
8.2 Finite Mixture of Multiple Regression Models 90

8.2.1 Defining a Finite Mixture Regression Model 90
8.2.2 Getting Started Quickly . 91
8.2.3 Choosing the Prior Distribution . 91
8.2.4 Bayesian Inference When the Allocations Are Unknown 92
8.2.5 The Structure of the MCMC Output 93

8.3 Mixed-Effects Finite Mixtures of Regression Models 93
8.3.1 Defining a Mixed-Effects Finite Mixture Regression

Model . 94
8.3.2 Getting Started Quickly . 94
8.3.3 Choosing Priors for Bayesian Estimation 95
8.3.4 Bayesian Inference When the Allocations Are Unknown 95
8.3.5 MCMC Output . 96

8.4 Finite Mixtures of Generalized Linear Models 97
8.4.1 Defining a Finite Mixture of GLMs 98
8.4.2 Getting Started Quickly . 99
8.4.3 Choosing Priors for Bayesian Estimation 99
8.4.4 Bayesian Inference When the Allocations Are Unknown 100
8.4.5 MCMC Output . 101

8.5 Further Issues . 102
8.5.1 Simulate from a Finite Mixture of Multiple Regression

Models . 102
8.5.2 Plotting MCMC. 103
8.5.3 Simulation-Based Approximations of the Marginal

Likelihood . 103
8.5.4 Parameter Estimation . 103
8.5.5 Clustering . 104
8.5.6 Bayesian Inference When the Allocations Are Known . . 105

Contents XI

9 Markov Switching Models for Time Series Data 107
9.1 Data Handling . 107
9.2 Finite Markov Mixture Models . 108

9.2.1 Defining Finite Markov Mixture Models 108
9.2.2 Getting Started Quickly . 110
9.2.3 Simulate from a Finite Markov Mixture Distribution . . . 110
9.2.4 Some Descriptive Features of Finite Markov Mixture

Distributions . 110
9.3 The Markov Switching Regression Model 111

9.3.1 Defining the Markov Switching Regression Model 111
9.3.2 Getting Started Quickly . 112
9.3.3 Simulate from a Markov Switching Regression Model . . 112

9.4 The Markov Switching Autoregressive Model 112
9.4.1 Defining the Markov Switching Autoregressive Model . . 113
9.4.2 Getting Started Quickly . 114
9.4.3 Simulate from a Markov Switching Autoregressive Model115

9.5 Markov Switching Dynamic Regression Models 115
9.5.1 Defining the Markov Switching Dynamic Regression

Model . 115
9.5.2 Getting Started Quickly . 117
9.5.3 Simulating from the Markov Switching Dynamic

Regression Model . 117
9.6 State Estimation for Known Parameters . 118
9.7 Bayesian Parameter Estimation with Known Number of States 119

9.7.1 Choosing the Prior for the Parameters of a Markov
Mixture Model . 119

9.7.2 Parameter Estimation for Known States 120
9.7.3 Parameter Estimation Through Data Augmentation

and MCMC . 120
9.8 Bayesian Inference Using the Posterior Draws 123

9.8.1 Plotting MCMC. 123
9.8.2 Estimating the State Specific Parameters and the

Transition Matrix . 124
9.8.3 Bayesian Time Series Segmentation and State

Probabilities . 124
9.8.4 Diagnosing Markov Mixture Models 125
9.8.5 Model Choice Criteria . 125
9.8.6 Marginal Likelihoods for Markov Switching Models 126

9.9 Prediction of Time Series Based on Markov Switching Models . 126
9.9.1 Prediction of a Basic Markov Mixture 126
9.9.2 Prediction of an MSAR Model . 127
9.9.3 Prediction of Dynamic Regression Models 127

References . 129

1

Getting Started Quickly

This toolbox has been designed to fit finite mixture models to data using a
Bayesian approach based on Markov chain Monte Carlo (MCMC) methods.
Such an approach basically has three input parameters, namely the data, the
model and the prior and one output parameter, namely the MCMC draws. In
this package, these parameters are defined through structural arrays.

This chapter shows in Section 1.1 how to get started quickly without both-
ering too much about prior choices or tuning MCMC. For illustration, Sec-
tion 1.2 provides six examples, including appropriate Matlab code. More
details appear in later chapters.

1.1 Fitting Finite Mixture Distributions

Fitting finite mixture distributions to data using a Bayesian approach basi-
cally requires five steps:

1. Defining the model
2. Loading the data
3. Choosing the prior
4. Initializing MCMC
5. Running MCMC

1.1.1 Defining the Model

A finite mixture model is a structure array with two obligatory fields: the
number of components (field K) and the density of the mixture components
(field .dist). Table 1.1 shows which distribution families are implemented in
the current version of this package. The following example defines a mixture
of three univariate normal distributions, named model:

2 1 Getting Started Quickly

Table 1.1. Mixture distributions implemented in the current version of the package.

Distribution Family Abbreviation in field .dist

univariate normal ’Normal’

univariate t ’Student’

multivariate normal ’Normult’
multivariate t ’Studmult’

exponential ’Exponential’

Poisson ’Poisson’

binomial ’Binomial’

model.K=3;
model.dist=’Normal’;

Note that the name model may be substituted by any name, e.g. mymodel.
Chapter 2 describes in more detail how a finite mixture model is defined.
Applications to specific distribution families are provided in Chapter 6 for
continuous distributions like mixtures of normal, Student-t and exponential
distributions and in Chapter 7 for discrete distributions like mixtures of Pois-
son and binomial distributions.

More general finite mixture models may be fitted to data using this pack-
age. Chapter 8 discusses in detail finite mixtures of regression models as well
as their extension to mixtures of generalized linear models based on the Pois-
son, the binomial or the negative binomial distribution. Finally, Chapter 9
discusses finite mixture modeling of time series data using hidden Markov
chain models.

1.1.2 Loading the Data

The data have to be stored in a structural array named e.g. data with one
obligatory field, namely data.y containing the observations stored by row.
More details on data handling appear in Chapter 3. Several data sets are
stored under particular names and could be loaded into a structure array
using the function dataget, see also Subsection 3.1.3. Typing, for instance,

data=dataget(’fishery’);

loads the Fishery Data plotted in Figure 3.1 into the structure array data.
Note that the name data could be substituted by any name, e.g. mydata.

1.1.3 Choosing the Prior

The package provides automatic choices of slightly data based proper priors
which are explained in detail in the subsequent chapters. Use the function
priordefine with the model, stored e.g. in model, and the data, stored e.g.
in data, as input arguments to choose this prior:

1.1 Fitting Finite Mixture Distributions 3

prior = priordefine(data,model);

The prior is stored in the structure array prior. More details about the fields
of this structural array appear in Subsection 4.2.1 and later chapters, however,
the package could be run without caring about these details. Note that the
name prior could be substituted by any name, e.g. myprior.

1.1.4 Initializing MCMC

Call the function mcmcstart with the model, stored e.g. in model, and the
data, stored e.g. in data, as input arguments to initialize MCMC:

[data,model,mcmc] = mcmcstart(data,model);

This function automatically selects all necessary starting values and tuning
parameters for MCMC. Starting values for MCMC are stored in model and/or
data. Tuning parameters for MCMC are stored in the structure array mcmc.
Note that the name mcmc could be substituted by any name, e.g. mymcmc.
The automatic choice will produce 5000 MCMC draws after a burn-in of 1000
draws. These values could be easily changed after calling mcmcstart:

[data,model,mcmc] = mcmcstart(data,model);
mcmc.M=10000; mcmc.burinin;

More details about the fields of the structural array mcmc appear in Sec-
tion 4.3.1. To get started quickly, the package could be run without caring
about these details.

1.1.5 Running MCMC

Bayesian inference for finite mixture models using MCMC is carried out by
calling the function mixturemcmc with four input arguments, namely, the data
stored e.g. in data, the model stored e.g. in model, the prior stored e.g. in
prior, and the MCMC tuning parameters stored e.g. in mcmc:

mcmcout= mixturemcmc(data,model,prior,mcmc);

The MCMC draws are stored in the structural array mcmcout. The fields of
this array are explained in detail in Subection 4.3.2. Note that the name
mcmcout could be substituted by any name, e.g. mymcmcout.

1.1.6 Bayesian Inference Based on the MCMC Draws

There exist various ways to explore the MCMC draws stored e.g. in mcmcout.
This section provides a short overview, more details appear in Section 4.5.
The function mcmcplot could be used to plot the MCMC output:

mcmcplot(mcmcout);

Most of these figures are trace plots.

4 1 Getting Started Quickly

0 500 1000 1500 2000 2500 3000 3500 4000 4500
3

4

5

6

7

8

9

10

11

12

Posterior draws for µ
k

k=1
k=2
k=3
k=4

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

µ

σ2

Point process representation −− K=4

Fig. 1.1. Fishery Data, running the demo start fishery K4.m; MCMC draws for
µk (left hand side), point process representation (right hand side)

Parameter Estimation

Call the function mcmcestimate for parameter estimation based on the
MCMC draws:

est = mcmcestimate(mcmcout);

Note that est could be substituted by any name, e.g. myest. est is a structural
array with various fields containing different parameter estimates. Parameter
estimates where a unique labelling has been defined using unsupervised clus-
tering are stored in the field est.ident which has several fields corresponding
to the various parameters. The estimated weight distribution, for instance, is
stored in est.ident.weight, while the component parameters are stored in
the various fields of est.ident.par.

Clustering the Data

To perform clustering based on the MCMC draws call the function mcmcclust:

clust = mcmcclust(data,mcmcout);

Note that clust could be substituted by any name, e.g. myclust. clust is
a structural array with various fields containing different estimators of the
unknown allocations. The minimum classification risk estimator, for instance,
is stored in clust.Sident. Call the function mcmcclustplot to plot the clus-
tered data:

mcmcclustplot(data,clust);

1.2 Examples 5

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Histogram of the fishery data

Fig. 1.2. Fishery Data, running the demo start fishery K4.m; histogram of the
data in comparison to the fitted three component normal mixture distribution

Computing the Marginal Likelihood

To compute the marginal likelihood of a finite mixture model (with fixed
number of components) using the MCMC draws call the function mcmcbf:

marlik = mcmcbf(data,mcmcout);

Note that marlik could be substituted by any name, e.g. mymarlik. marlik
is a structural array with various fields containing different estimators of the
marginal likelihood. The bridge sampling estimator, for instance, is stored in
marlik.bs.

1.2 Examples

Many demos are included in the package to show how to fit finite mix-
ture models to real and to simulated data. Demos for real data are named
start dataname, where dataname is the name used in the function dataget
to load the data, e.g. fishery. See Subsection 3.1.3 for a detailed description
of the data set analyzed below. Results are stored in Matlab files named
store dataname xxx.mat.

6 1 Getting Started Quickly

Table 1.2. Fishery Data, running the demo start fishery.m; log of the bridge
sampling estimator of the marginal likelihood p(y|MK) under the default prior;
standard errors in parenthesis

K
1 2 3 4 5

p̂(y|MK) -535.11 -525.68 -521.50 -518.97 -521.26
(6.5972e-004) (0.012) (0.0089) (0.0267) (0.0425)

All subsequent implementations were carried out using Matlab (Version
7.3.0) on a notebook with a 2.0 GHz processor.

1.2.1 Fishery Data

The program start fishery K4.m fits a finite mixture of four univariate nor-
mal distributions as in Frühwirth-Schnatter (2006, Subsection 6.2.8) to the
Fishery Data (Titterington et al., 1985) using the default prior (takes about
2 CPU minutes). The program produces 5000 MCMC draws (takes about 30
CPU seconds), plots the MCMC draws, see e.g. Figure 1.1, performs param-
eter estimation, computes the marginal likelihood of the model (takes about
30 CPU seconds) and plots the fitted mixture, see Figure 1.2.

The program start fishery.m fits finite mixtures of univariate normal
distributions with K = 1 to K = 5 to the Fishery Data using the default
prior and computes the marginal likelihood p(y|MK) for each model as in
Frühwirth-Schnatter (2006, Subsection 7.1.5) (takes about 11 CPU minutes).
Table 1.2 shows the log of the bridge sampling estimator of the marginal like-
lihood p(y|MK). The model with the largest marginal likelihood is a mixture
of four normal distributions.

1.2.2 Fisher’s Iris Data

The program start iris K3.m fits a finite mixture of three multivariate
normal distributions as in Frühwirth-Schnatter (2006, Subsection 6.4.3) to
Fisher’s Iris Data using the default prior (takes about 3 CPU minutes).
The program produces 5000 MCMC draws (takes about 40 CPU seconds),
plots the MCMC draws, computes the marginal likelihood of the model (takes
about 110 CPU seconds), performs clustering (takes less than 2 CPU seconds)
and plots the clustered data, see e.g. Figure 1.3.

The program start iris.m fits finite mixtures of multivariate normal dis-
tributions with K = 1 to K = 5 to the Fisher’s Iris Data using the default
prior and computes the marginal likelihood p(y|MK) for each model as in
Frühwirth-Schnatter (2006, Subsection 7.1.6) (takes about 11 CPU minutes).
Table 1.3 shows the log of the bridge sampling estimator of the marginal like-
lihood p(y|MK). The model with the largest marginal likelihood is a mixture
of three multivariate normal distributions.

1.2 Examples 7

4.5 5 5.5 6 6.5 7 7.5
2

2.5

3

3.5

4

y
1

y
2

Clustering −− Misclassification Rate

2 2.5 3 3.5 4
1

2

3

4

5

6

y
2

y
3

Clustering −− Misclassification Rate

4.5 5 5.5 6 6.5 7 7.5
1

2

3

4

5

6

y
1

y
3

Clustering −− Misclassification Rate

2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

y
2

y
4

Clustering −− Misclassification Rate

4.5 5 5.5 6 6.5 7 7.5

0.5

1

1.5

2

2.5

y
1

y
4

Clustering −− Misclassification Rate

1 2 3 4 5 6

0.5

1

1.5

2

2.5

y
3

y
4

Clustering −− Misclassification Rate

Fig. 1.3. Fisher’s Iris Data, running the demo start iris K3.m; clustering of the
data into three groups based on the misclassification rate

8 1 Getting Started Quickly

Table 1.3. Fisher’s Iris Data, running the demo start iris.m; log of the bridge
sampling estimator of the marginal likelihood p(y|MK) under the default prior;
standard errors in parenthesis

K
1 2 3 4 5

p̂(y|MK) -430.11 -302.27 -294.53 -297.65 -307.45
(0.0026) (0.0056) (0.0120) (0.0353) (0.0514)

1.2.3 Eye Tracking Data

Table 1.4. Eye Tracking Data, running the demo start eye.m; log of the bridge
sampling estimator of the marginal likelihood p(y|MK) (standard errors in paren-
thesis) and corresponding model posterior probabilities p(MK |y) under the Poisson
prior K ∼ P (1) obtained from two independent MCMC runs

K
1 2 3 4 5 6 7

p̂(y|MK) -472.9 -254.2 -239.8 -234.5 -233.4 -234.8 -236.2
(2.3e-006) (9.9e-004) (0.012) (0.014) (0.034) (0.025) (0.027)

p̂(MK |y) 0.0 0.0 0.0123 0.606 0.366 0.0156 0.0005
second MCMC run 0.0 0.0 0.0129 0.622 0.346 0.0180 0.0006

The program start eye.m fits finite mixtures of Poisson distributions with
K = 1 to K = 7 to the Eye Tracking Data (Pauler et al., 1996) and com-
putes the marginal likelihood p(y|MK) for each model (takes about 11 CPU
minutes). The prior of the parameters as well as the prior model probabilities
are selected as in Frühwirth-Schnatter (2006, Subsection 9.2.4).

Table 1.4 shows the log of bridge sampling estimator of the marginal likeli-
hood p(y|MK) and the corresponding model posterior probabilities p(MK |y)
under the Poisson prior K ∼ P (1). The last row of this table, showing the
model posterior probabilities obtained from a second, independent MCMC
run, indicates that the estimators of these probabilities are rather imprecise.
Nevertheless, for both MCMC runs the model with the largest posterior prob-
ability is a mixture of four Poisson distributions.

Finally, the program start eye.m identifies the mixture of four Poisson
distributions using unsupervised clustering as explained in Subsection 4.5.2.
The corresponding estimators are given in Table 1.5 and are, apart from rela-
beling, rather similar to the estimators obtained in Frühwirth-Schnatter (2006,
Table 9.3) under the identifiability constraint µ1 < µ2 < µ3 < µ4, where µk

is the group specific mean.

1.2 Examples 9

Table 1.5. Eye Tracking Data, running the demo start eye.m; identifying a
mixture of four Poisson distributions through unsupervised clustering; parameters
estimated by posterior means of identified MCMC draws

Group k
1 2 3 4

mean µk 1.25 20.11 0.028 7.89
weight ηk 0.360 0.101 0.333 0.206

1.2.4 Fabric Fault Data

We reconsider analysis of the Fabric Fault Data (Aitkin, 1996) under var-
ious non-Gaussian mixture regression models as in Frühwirth-Schnatter et al.
(2009). The response variable yi is the number of faults in a bolt of length
li. Based on the regressor matrix (1 log li), we fit a Poisson and a negative
binomial regression model as well as finite mixtures of Poisson and negative
binomial regression models with K = 2 and K = 3 groups. Furthermore we
consider mixtures of regression models, where the intercept is group specific,
while the slope is fixed, both for the Poisson and the negative binomial dis-
tribution.

Table 1.6. Fabric Fault Data; log marginal likelihoods of various regression
models computed as in Frühwirth-Schnatter et al. (2009). Standard errors are given
in parentheses.

Model K = 1 K = 2 K = 3

Poisson −101.79 −99.21 −100.74
(0.002) (0.01) (0.05)

Poisson −101.79 −97.46 −97.65
(fixed slope) (0.002) (0.073)

Negative Binomial −96.04 −99.05 −102.21
(0.007) (0.027) (0.038)

The program start fabricfault.m fits a standard Poisson regression
model as well as mixtures of Poisson regression models with K = 2 to
K = 3 under the default prior (takes about 7 CPU minutes). The program
start fabricfault mixed effects.m fits a Poisson regression model as well
as mixtures of Poisson regression models with K = 2 to K = 3 where the
slope is fixed under the default prior (takes about 7 CPU minutes). Finally,
the program start fabricfault negbin.m fits a negative binomial regres-
sion model as well as mixtures of negative binomial regression models with
K = 2 and K = 3 (takes about 8 CPU minutes). For the degrees of free-
dom parameter νk, the default prior is changed to match the prior used in
Frühwirth-Schnatter et al. (2009).

10 1 Getting Started Quickly

All programs compute the log of the marginal likelihood which is used
to select the best model, see Table 1.6. It turns out that the negative bino-
mial regression model has the smallest marginal likelihood, thus no mixture
model is needed for these data. For a Poisson regression model two groups
are present, however this model is outperformed by the negative binomial re-
gression model. Figure 1.4 shows the MCMC posterior draws of the degrees
of freedom parameter ν and the posterior density p(ν|y), estimated through
a histogram of the MCMC draws. The degrees of freedom is a finite integer
parameter around 10, providing additional evidence for the negative binomial
distribution.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

Posterior draws for ν
k

k=1

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 1.4. Fabric Fault Data, running the demo start fabricfault negbin.m;
MCMC draws for ν (left hand side) and posterior density p(ν|y), estimated through
a histogram of the MCMC draws (right hand side)

1.2.5 Lamb Data

Table 1.7. Lamb Data, running the demo start lamb.m; log of the bridge sampling
estimator of the marginal likelihood p(y|MK) (standard errors in parenthesis)

K
1 2 3 4

p̂(y|MK) -204.25 -184.76 -178.89 -178.58
(0.0044) (0.0097) (0.0337)

The program start lamb.m fits a Markov mixture of Poisson distributions
with increasing number of states (K = 1 to K = 4) to the Lamb Data
(Leroux and Puterman, 1992) and computes the marginal likelihood p(y|MK)

1.2 Examples 11

for each model (takes about 7 CPU minutes). The default prior is changed to
match the prior used in Frühwirth-Schnatter (2006, Subsection 11.7.3).

Table 1.7 shows the log of the bridge sampling estimator of the marginal
likelihood p(y|MK). There is no significant difference between p̂(y|M3) and
p̂(y|M4), therefore a Markov mixture of three Poisson distributions is selected.

Finally, the program start lamb.m identifies the selected Markov mixture
of three Poisson distributions using unsupervised clustering as explained in
Subsection 4.5.2. The corresponding estimators are given in Table 1.8 and
are rather similar to the estimators obtained in Frühwirth-Schnatter (2006,
Table 11.2) under the identifiability constraint µ1 < µ2 < µ3, where µk is the
state specific mean.

Table 1.8. Lamb Data, running the demo start lamb.m; identifying a Markov
mixture of three Poisson distributions through unsupervised clustering; parameters
estimated by posterior means of identified MCMC draws

State 1 State 2 State 3

mean µk 0.0695 0.497 3.120

transition matrix ξ
first line 0.946 0.038 0.016
second line 0.045 0.943 0.012
third line 0.166 0.126 0.709

1.2.6 GDP Data

Table 1.9. GDP Data, running the demos start gdp.m and start gdp swi.m; log
of the bridge sampling estimator of the marginal likelihood p(y|MK)

AR(p) Switching AR Switching intercept
p K = 1 K = 2 K = 3 K = 2 K = 3

0 -199.72 -194.31 -193.28
1 -194.22 -193.68 -194.87 -192.72 -193.97
2 -196.32 -191.65 -194.36 -194.43 -195.83
3 -197.31 -193.63 -196.53 -194.98 -196.08
4 -199.26 -195.33 -199.37 -196.10 -196.92

The program start gdp.m fits a Markov switching autoregressive model
with different number of states (K = 1 to K = 3) and increasing AR order
(p = 0 to p = 4) to the GDP Data (Hamilton, 1989). MCMC estimation
and computing the marginal likelihood p(y|MK) for each of these 15 models
takes in total about 26 CPU minutes. The program start gdp swi.m fits a

12 1 Getting Started Quickly

reduced version of these models, namely a Markov switching autoregressive
model where only the intercept is switching, again with different number of
states (K = 2 to K = 3) and increasing AR order (p = 1 to p = 4). MCMC
estimation and computing the marginal likelihood p(y|MK) for each of these
8 models takes in total about 17 CPU minutes. In both cases, the default
prior is changed to match the prior used in Frühwirth-Schnatter (2006, Sub-
section 12.2.6).

Table 1.9 compares the log of the bridge sampling estimator of each
marginal likelihood p(y|MK). The model with the largest marginal likeli-
hood is a Markov switching autoregressive model with two states of order 2,
where both the intercept and all autoregressive coefficients are switching.

Finally, the program start gdp.m identifies the selected model using un-
supervised clustering as explained in Subsection 4.5.2. The corresponding esti-
mators are given in Table 1.10 and are very similar to the estimators obtained
in Frühwirth-Schnatter (2006, Table 12.2) under the identifiability constraint
ζ1 < ζ2, where ζk is the state specific intercept.

Table 1.10. GDP Data, running the demos start gdp.m; identifying a Markov
switching autoregressive model with two states of order 2 through unsupervised
clustering; parameters estimated by posterior means of identified MCMC draws

Parameter Contraction (k = 1) Expansion (k = 2)

intercept ζk -0.571 1.069
AR(1) coefficient δk,1 0.234 0.281
AR(2) coefficient δk,2 0.462 -0.116
variance σ2

ε,k 0.780 0.704
transition probability ξkk′ 0.488 0.327

2

Finite Mixture Modeling

This toolbox has been designed to fit finite mixture models to data. To this
aim it is necessary to specify the mixture model. The general idea how models
are defined in this toolbox is described in Section 2.1, whereas Section 2.2 deals
with the definition of finite mixture models.

2.1 Specifying Models

In this toolbox a model is in general specified as a structure array, named for
instance model, with various fields defining the model. When defining a model,
a distinction is made between the model structure and model parameters.

2.1.1 Specifying the Model Structure

To define the model structure, the conditional distribution of the observation
Yi given the unknown parameters has to be specified in the field .dist.
Possible distributions are summarized in Table 1.1.

The most simple model is based on the assumption that the data are
i.i.d. replications from a distribution of type dist and the parameters in the
distribution are assumed to be homogenous over the replications, e.g. for count
data the model may read Yi ∼ P (µ) with µ unknown. In this case no further
model definition is necessary. To fit such a homogeneity model to data using
this toolbox, for instance, it is sufficient to specify the distribution dist, no
other information is necessary.

For more elaborated models additional fields are needed to define the
model. For a finite mixture model, for instance, it is only necessary to specify
the number of components by assigning a value to the field K, see Subsec-
tion 2.2.1. If such a field is missing, it is automatically assumed that K = 1.

The finite mixture model is a latent variable models where the conditional
distribution of the data depends on a latent variable, namely the hidden in-
dicator. In such a case, a model structure has to be specified for the latent

14 2 Finite Mixture Modeling

variables. A default choice is made, namely assuming a hidden multinomial
model for the latent indicators. Otherwise, a field has to added to the model
definition, which provides an explicit definition of the model for the latent
variable, like adding the field indicmod to define a Markov switching model,
see Subsection 9.2.1.

2.1.2 Assigning Parameters

For any statistical model, the conditional distribution of the data depends
on unknown model parameters. Such parameters are stored in the field par,
which is either a single numeric value, a numerical array or a structure array
for higher dimensional parameters, depending on the distribution family. In
the case of a homogeneous P (µ)-distribution, for instance, the field par is a
single numeric value equals µ, see also Section 7.2. For the normal distribution,
the field par is a structure array with different fields, one of them, namely mu
defining the mean, whereas the other one, namely sigma, defines the variance-
covariance matrix of the distribution, see also Section 6.2.1.

For many distribution families there exist different ways to parameterize
a distribution. For a multivariate normal distribution, for instance, one may
either specify the covariance matrix Σ or the inverse matrix Σ−1. These val-
ues will be stored in different fields, namely sigma and sigmainv, see also
Section 6.2.1. The package will check which of these fields is defined and use
the appropriate value for computation.

2.1.3 Unspecified and Fully Specified Models

One has to distinguish between an unspecified, a partially specified, and a
fully specified model. For a fully specified model, numerical values are as-
signed to all parameters in the model. For such a model many characteristics,
like the moments of the marginal distribution, may be computed or data may
be simulated from that model. When fitting a model to data, the model is typ-
ically unspecified, meaning that the parameters of the underlying distribution
family are unknown.

2.2 Finite Mixture Distributions

Frühwirth-Schnatter (2006, Section 1.2) provides an introduction into finite
mixture modelling.

2.2.1 Defining a Finite Mixture Distribution

In Frühwirth-Schnatter (2006, Subsection 1.2.1), a random variable Y with
density (2.1)

2.2 Finite Mixture Distributions 15

p(y|ϑ) = η1p(y|θ1) + · · ·+ ηKp(y|θK), (2.1)

where all component densities arise from the same parametric distribution
family T (θ) with density p(y|θ), indexed by a parameter θ ∈ Θ, is said to
arise from a (standard) finite mixture of T (θ) distributions, abbreviated by

Y ∼ η1T (θ1) + · · ·+ ηKT (θK).

This could be seen as the marginal distribution of a model, where a hidden
categorical indicator S is introduced which is assumed to follow a multinomial
distribution:

Y|S ∼ η1T (θS),
S ∼ MulNom (1, η1, . . . , ηK) .

In the package, a standard finite mixture model is defined as a structure array,
named for instance mix, containing the following fields:

• The field dist shows the parametric distribution family T (θ) characterized
by a string variable. The current version of the package is able to handle
the following distribution families:
– ’Normal’: normal distribution N (

µk, σ2
k

)
,

– ’Normult’: r-variate normal distribution Nr (µk,Σk),
– ’Exponential’: exponential distribution E (λk),
– ’Student’: Student-t distribution tνk

(
µk, σ2

k

)
,

– ’Studmult’: r-variate Student-t distribution tνk
(µk,Σk),

– ’Poisson’: Poisson distribution P (µk),
– ’Binomial’: binomial distribution BiNom (Ti, πk).
The package will check just the first six characters, therefore the types
may be abbreviated.

• For multivariate mixtures, the field r contains the dimension of the real-
ization y.

• The field K contains the number K of components.
• The field weight contains the weight distribution η = (η1, . . . , ηK), char-

acterized by a 1 x K numeric array.
• The field par contains the component parameters θ1, . . . , θK . The struc-

ture of this field depends on the distribution family and on the dimension
of θk. For Poisson mixtures, the field par is a 1 x K numeric array, contain-
ing the component parameters µ1, . . . , µK . For details, how par is defined
for mixtures of normal distributions, see Subsection 6.2.1.

For K = 1 just a single member from the distribution family is used. In this
case the fields K and weight need not be defined.

Other models for the indicators are possible which are defined through
the field indicmod, see Subsection 9.2.1 for Markov mixture models. If this
field is missing in the definition of the mixture model, than it is automati-
cally assumed that a standard finite mixture is considered, where S follows a
multinomial distribution with parameter weight.

16 2 Finite Mixture Modeling

2.2.2 Plotting the Density of a Finite Mixture Distribution

To plot the density of a finite mixture distribution, defined by the structure ar-
ray mix as discussed in Subsection 2.2.1, use the function mixtureplot which
is defined with variable input/output argument, handling figure numbers:

mixtureplot(mix); % starts plotting with Figure 1
mixtureplot(mix,nplot); % starts plotting with Figure nplot
nplot=mixtureplot(mix,nplot); % returns the number of the last Figure

For a bivariate mixture a surface plot, a contour plot and a colored projection
onto the (y1, y2) plane is produced. The surface plot is returned in rotate
mode, so it may be rotated interactively by means of the mouse.

For multivariate mixtures with r = 3, 4, 5, a contour plot is produced
for each bivariate marginal density. To visualize higher dimensional densities
you have to extract lower dimensional marginal densities using the function
mixturemar, before applying the function mixtureplot, see Subsection 2.2.3.

Example

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 2.1. Density of a mixture of two normal distributions (left-hand side) and a
mixture of three Poisson distributions (right-hand side)

The package contains a MATLAB demo named demo figure2 1.m which
produces the plots shown in Figure 2.1. The demo first defines a mixture of
two univariate normal distribution as a structure array named mix and plots
the density shown in the left hand side of using the function mixtureplot.
Then it defines a mixture of three Poisson distributions as a structure array
named mixpoi, plots the density shown in the right hand side of Figure 2.1
and provides the following information about mixpoi:

2.2 Finite Mixture Distributions 17

dist: ’Poisson’
K: 3.00
weight: [0.30 0.40 0.30]
par: [0.10 2.00 5.00]

2.2.3 Marginal Densities

To obtain the marginal density of the component Yj of Y for multivariate
mixtures like multivariate normal or t mixtures you may use the function
mixturemar:

mixj= mixturemar(mix,j);

The resulting model mixj is a univariate mixture model, and may be analyzed
as such. The same function may also be used to obtain the marginal density of
any selection of components Yj1 , . . . , Yjn of Y as a n-variate mixture model:

mixn= mixturemar(mix,[j1 j2 ... jn]);

2.2.4 Moments of a Finite Mixture Distribution

To compute moments of finite mixture distribution, like E(Y |ϑ), Var(Y |ϑ) or
E((Y −µ)m|ϑ), as described in Frühwirth-Schnatter (2006, Subsection 1.2.4),
use the function moments

mom=moments(mix);

where mix is a structure array defining a fully specified mixture model
This function produces a structure array with following fields:

• The field mean contains the mean (vector) E(Y|ϑ) of the mixture distribu-
tion. This is a scalar for univariate mixtures and a r x 1 numerical array
for multivariate mixtures, with r being the dimension of the data.

• The field var contains the variance (covariance matrix) Var(Y|ϑ) of the
mixture distribution. This is a scalar for univariate mixtures and a r x r
numerical array for multivariate mixtures,

For finite mixture of normal or t distributions the function moments computes
higher order moments up to L=4. To change the value of L call the function
moments with a second argument as:

mom=moments(mix,L);

The following additional fields are produced for mixtures of normal or Student-
t distributions:

18 2 Finite Mixture Modeling

• For L > 2, the field high contains higher order moments around the
mean. For univariate mixtures, this a 1 x L numerical array, containing
the moments E((Y −µ)m|ϑ), for m = 1, . . . , L. For multivariate mixtures,
this a r x L numerical array, containing the moments E((Yj − µj)m|ϑ) of
the marginal density of Yj for m = 1, . . . , L for j = 1, . . . , r.

• For L ≥ 3, the field skewness contains the skewness coefficient of each
marginal mixture, defined as

E((Yj − µj)3|ϑ)
Var(Yj |ϑ)3/2

,

for j = 1, . . . , r. This is a scalar for univariate mixtures and a r x 1
numerical array for multivariate mixtures.

• For L ≥ 4, the field kurtosis contains the kurtosis coefficient of each
marginal mixture of normals, defined as

E((Yj − µj)4|ϑ)
Var(Yj |ϑ)2

,

for j = 1, . . . , r. This is a scalar for univariate mixtures and a r x 1
numerical array for multivariate mixtures.

• The field B, containing the between-group heterogeneity

K∑

k=1

ηk(µk − E(Y|ϑ))(µk − E(Y|ϑ))
′
.

• The field W, containing the within-group heterogeneity

K∑

k=1

ηkΣk.

• The coefficient of determination, defined for multivariate mixtures, either
by

R2
t (ϑ) = 1− tr

(∑K
k=1 ηkΣk

)
/tr (Var(Y|ϑ)) ,

and stored in the field Rtr, or

R2
d(ϑ) = 1−

∣∣∣∣∣
K∑

k=1

ηkΣk

∣∣∣∣∣ /|Var(Y|ϑ)|,

contained in the field Rdet. For a univariate mixture of normals, both
definitions reduce to the same scalar value, stored in the field R.

For more details, see Frühwirth-Schnatter (2006, Subsection 6.1.1, p.170).
The following additional fields will be produced for discrete mixtures:

2.2 Finite Mixture Distributions 19

• The field over is a scalar, containing the overdispersion Var(Y |ϑ) −
E(Y |ϑ).

• The field factorial is a 1x L numerical array, containing the first L fac-
torial moments E(Y !/(Y −j)!|ϑ), for j = 1, . . . , L. For mixtures of Poisson
distributions these are given by:

E(Y !/(Y − j)!|ϑ) =
K∑

k=1

ηkµj
k.

• The field zero contains Pr(Y = 0|ϑ), the probability to observe 0. For
Poisson mixture this is defined as:

Pr(Y = 0|ϑ) =
K∑

k=1

ηke−µk .

For more details for Poisson mixtures see Subsections 9.2.2 and 9.2.3 in
Frühwirth-Schnatter (2006).

2.2.5 The Point Process Representation of a Finite Mixture
Distribution

To obtain a point process representation of a finite mixture distribution as
discussed in Frühwirth-Schnatter (2006, Subsection 1.2.3, p.10) use the func-
tion mixturepoint which is defined with variable input/output arguments,
handling figure numbers:

mixturepoint(mix); % starts plotting with Figure 1
mixturepoint(mix,nplot); % starts plotting with Figure nplot
nplot=mixturepoint(mix,nplot); % returns the number of the last Figure

For mixtures with univariate component parameter θ, like mixtures of Poisson
distributions, θk will be plotted against 0. For mixtures with bivariate com-
ponent parameter θ = (θ1, θ2), θ1,k will be plotted against θ2,k. For mixtures
with multivariate components parameters θ, special point process representa-
tions will be generated for each type of mixture models.

Example

The package contains a MATLAB demo named demo-figure2-2.m which
produces the point process representations of two different mixtures of three
univariate normal distributions shown in Figure 2.2.

20 2 Finite Mixture Modeling

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

µ

σ2

Point process representation

1
2
3

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

µ

σ2

Point process representation

1
2
3

Fig. 2.2. Point process representation of two different mixtures of three normal
distributions

3

Data Handling

3.1 Defining the Data

The data have to be stored in a structure array. Subsequently this array is
called data, but any other name is possible. Depending on the nature of the
data, this structure array will have different fields. This chapter deals with a
sequence of N independent observations y = (y1, . . . , yN). More general data
structure will be handled in later chapters, in particular, regression type data
in Section 8.1 and time series data in Section 9.1.

3.1.1 Data Structures

Data are stored in form of a structure array, named for instance data, where

• the field y contains the observations.

For univariate data y = (y1, . . . , yN), the field y is a 1 x N numeric array,
where N is the number of observations. Thus data.y(i) is equal to the ith
observation yi. If bycolumn is true (see below), then y is a N x 1 numeric
array.

For multivariate data, y = (y1, . . . ,yN), the different features are stored
by row, thus y is a r x N numeric array, where r is the number of features.
Thus data.y(:,i) is equal to the ith observation yi. If bycolumn is true (see
below), then y is a N x r numeric array.

Optional fields of the structure array data are the following:

• The field name is the name of the data set, stored as character.
• The field N is the number of observations.
• The field r is the number of features, i.e. the dimension of a single obser-

vation.
• The field bycolumn is a logical variable which is true, if the features are

stored by column. If this field is missing, then it is assumed that the data
are stored by row.

22 3 Data Handling

• The field type specifies the data type for each feature of the data. type
is a cell array containing character strings. The following types will be
understood by the current version of the package:
– ’continuous’: realization of a continuous random variable;
– ’discrete’: realization of an integer-valued random variable;
The package will check just the first three characters, therefore the types
may be abbreviated.

• The field sim is true, if the data were simulated, see Section 3.3.
• The field model may contain information about a data model. For simu-

lated data this could be the model used for simulation. For true data this
could be a fitted model.

3.1.2 Classified Data

In rare cases, for instance for grouped data, the allocations are known. Such
data are called complete or classified data. For such data an additional field
called S containing the allocations S = (S1, . . . , SN) has to be added to the
structure array containing the data:

• S is a 1 x N numeric array, thus data.S(i) is the allocation Si of the ith
observation yi.

Usually, the allocations are unknown. During MCMC estimation, the alloca-
tions are recovered from the posterior density.

3.1.3 Data Sets Available in the Package

Table 3.1. Data sets that may be loaded using the function dataget(’name’), see
Subsection 3.1.3 for a detailed description.

name Description

’eye’ Eye Tracking Data
’fabricfault’ Fabric Fault Data
’fishery’ Fishery Data
’gdp’ GDP Data
’iris’ Fisher’s Iris Data
’lamb’ Lamb Data

Several data sets are stored under particular names and could be loaded
into a structure array using the function dataget(name) where name is a
string. Typing, for instance,

3.1 Defining the Data 23

datafish=dataget(’fishery’)

loads the Fishery Data plotted in Figure 3.1 into the structure array
datafish and provides the following information:

y: [1x256 double]
N: 256
r: 1
sim: 0
name: ’fishery’
type: ’continuous’

If the function dataget is called without any argument an overview of all
valid data names is returned, see also Table 3.1:

• ’eye’: a data set counting eye anomalies in 101 schizophrenic patients
studied by Pauler et al. (1996) and Escobar and West (1998), where
the sample variance shows overdispersion in comparison to the sample
mean. The data are reanalyzed e.g. in Frühwirth-Schnatter (2006, Subsec-
tion 9.2.4).

• ’fabricfault’: data on fabric faults analyzed in Aitkin (1996). The re-
sponse variable yi is the number of faults in a bolt of length li. The data
are reanalyzed e.g. in Frühwirth-Schnatter et al. (2009).

• ’fishery’: the data set contains of the length of 256 snappers analyzed
in Titterington et al. (1985). The data exhibit unobserved heterogeneity
because the age of the fish is unobserved. The data are reanalyzed e.g. in
Frühwirth-Schnatter (2006, Subsection 6.2.8 and 7.1.5).

• ’gdp’: percentage growth rate of the U.S. quarterly real GDP series for
the period 1951.II to 1984.IV. This time series was analyzed originally
in Hamilton (1989), and reanalyzed, e.g. by McCulloch and Tsay (1994),
Chib (1996), Frühwirth-Schnatter (2001) and Frühwirth-Schnatter (2004).

• ’iris’: this data set consists of 150 four-dimensional observations of three
species of iris (iris setosa, iris versicolour, iris virginica). The measure-
ments taken for each plant are sepal length, sepal width, petal length and
petal width. The data were downloaded from ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/iris/iris.names. These data differ from the data pre-
sented in Fisher’s article; errors in the 35th sample in the fourth feature
and in the 38th sample in the second and third features were identified by
Steve Chadwick (spchadwick@espeedaz.net). These data are analyzed e.g.
in Frühwirth-Schnatter (2006, Subsection 6.3.4 and 7.1.6).

• ’lamb’: the data are the number of movements by a fetal lamb in T =
240 consecutive five-second intervals. This is a time series of count data
analyzed originally in Leroux and Puterman (1992), and reanalyzed, e.g. by
Chib (1996), Frühwirth-Schnatter (2001) and Frühwirth-Schnatter (2004).

The package contains several MATLAB demos analyzing these data, see for
instance start fishery K4.m. These demos are named start name xxx.m,
where name is the name used in calling the function dataget.

24 3 Data Handling

3.2 Data Visualization

Various tools are available for visualizing and exploring the data.

3.2.1 Simple Plotting

−4 −2 0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Histogram of the fishery data

Fig. 3.1. Fishery Data, empirical distribution of the observations

To plot a histogram of the data as in Figure 3.1 use the function dataplot
which is defined with variable input/output argument, handling figure num-
bers:

dataplot(data); % starts plotting with Figure 1
dataplot(data,nplot); % starts plotting with Figure nplot
nplot=dataplot(data,nplot); % returns the number of the last Figure

For univariate continuous observations, dataplot produces a histogram of the
data. For discrete data dataplot produces a bar diagram over [0:max(data.y)],
with the length of the bar being equal to the absolute frequency of each re-
alization. If the type has not been specified, then the data will be treated as

3.2 Data Visualization 25

continuous. If a model has been specified, then the histogram is compared
with this model.

For bivariate or multivariate data, dataplot produces the following two
figures:

• One figure showing a histogram of each feature.
• Another figure showing a scatter plot for each bivariate combination of

features.
• For r > 2, an additional figure showing a scatter matrix of the data using

the intrinsic function plotmatrix.

If a model has been specified, then the univariate marginal densities implied
by this model are added to the marginal histograms, while contour lines of
each bivariate marginal density are added to the scatter plot of each bivariate
combination.

3.2.2 Empirical Moments

For data stored as a structure array, named data for example, the function
datamoments(data) may be used to compute the sample moments of the
data:

moments=datamoments(data)

This call produces the structure array moments with following fields:

• The field mean contains the sample mean y for univariate data and the
vector of sample means (y1, . . . , yr) for multivariate data. This is a scalar
for univariate data and a r x 1 numerical array for multivariate data,
with r being the dimension of the data.

• The field var contains the sample variance s2
y for univariate data and the

sample covariance matrix Sy for multivariate data. This is a scalar for
univariate data and a r x r numerical array for multivariate data.

Note that moments could be substituted by any name, e.g. mymoments. Addi-
tional fields are added for continuous data and for discrete data, respectively.

Additional fields for continuous data

The following moments are added to moments for continuous data, where L=4
by default:

• The field high contains the first empirical higher order moments around
the mean. For univariate data this a 1 x L numerical array, for multivari-
ate data this is a r x L numerical array.

• The field skewness contains the empirical skewness coefficient of each
feature. This is a scalar for univariate data and a r x 1 numerical array
for multivariate data.

26 3 Data Handling

• The field kurtosis contains the empirical kurtosis coefficient of each fea-
ture. This is a scalar for univariate data and a r x 1 numerical array for
multivariate data.

If the data are multivariate, then the following field are added:

• The field corr containing the sample correlation matrix, stored as a r x
r numerical array.

Additional fields for discrete data

The following moments are added to moments for discrete data:

• The field factorial contains the first four factorial sample moments. This
is a 4 x 1 numerical array.

• The field over contains the sample overdispersion, given by s2
y − y. This

is a 4 x 1 numerical array.
• The field zeros contains the fractions of zero observations in the sample.

Additional fields for classified data

If the data are classified, then the following fields are added to moments:

• The field groupmom containing group specific information. This is a struc-
ture array with following fields:
– Nk contains the group sizes, defined by

Nk(S) = #{i : Si = k}.
This is a 1 x K numerical array.

– mean contains the group averages, defined by

yk(S) =
1

Nk(S)

∑

i:Si=k

yi.

This is a 1 x K numeric array.
• Wk contains the within-group variability W k(S), defined by

W k(S) =
∑

i:Si=k

(yi − yk(S))(yi − yk(S))
′
.

For a univariate mixture this is a 1 x K numeric array. For a multivariate
mixture of dimension r this is r x r x K numeric array.

• var contains the within-group (co)variance, defined by

W k(S)/Nk(S).

For a univariate mixture this is a 1 x K numeric array. For a multivariate
mixture of dimension r this is r x r x K numeric array.

3.2 Data Visualization 27

If the classified data are continuous, then further fields are added to moments:

• The field B, containing the between-group variance B(S), defined by

B(S) =
K∑

k=1

Nk(S)(yk(S)− y)(yk(S)− y)
′
.

• The field W, containing the within-group heterogeneity

W (S) =
K∑

k=1

W k(S).

• The field T, containing the total variance

T =
N∑

i=1

(yi − y)(yi − y)
′
= W (S) + B(S).

• The coefficient of determination, which is defined for multivariate mixtures
either by

1− tr (W (S))
tr (T)

,

and stored in the field Rtr, or by

1− |W (S)|
|T| .

and stored in the field Rdet. For univariate data both definitions reduce
to the same scalar value, stored in the field R.

3.2.3 Examples

The Fishery Data data

The package contains a MATLAB demo named start fishery plot.m which
shows how to get access to the Fishery Data data plotted in Figure 3.1,
which are then compared with a normal distribution with the same mean and
variance as the data.

The Eye Tracking Data data

The package contains a MATLAB demo named start eye plot.m which
shows how to get access to the Eye Tracking Data data and how to plot
the empirical distribution shown in Figure 3.2. The last two lines compute
and display the empirical moments of the data and the theoretical moments
of a single Poisson distribution with the same mean as the data:

28 3 Data Handling

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50
Histogram of the eye data

Fig. 3.2. Eye Tracking Data, empirical distribution of the observations

datamom =
mean: 3.5248
var: 35.5365
over: 32.0118
factorial: [3.5248 44.4356 809.2871 1.7909e+004]
zero: 0.4554

poimom =
mean: 3.5248
var: 3.5248
over: 0
factorial: [3.5248 12.4239]
zero: 0.0295

Evidently, the data show a high degree of overdispersion as well as excess
zeros compared to a single Poisson distribution.

3.3 Data Simulation 29

3.3 Data Simulation

To simulate N observations from a model, use the function

data=simulate(mymodel,N);

Note that mymodel has to be a fully specified model, see Subsection 2.1.3. This
function produces the structural array data with the same fields as in Sub-
section 3.1.1, including the fields y, N, r, sim, type and model. Note that the
data will be stored by row. The field model is simply a copy of the structural
array mymodel used for simulation.

The package contains several MATLAB demos using simulated data, see
for instance demo mix normal.m. Demos using simulated data are all named
demo xxx.m.

When plotting simulated data using the function dataplot, the true
marginal density is added to each histogram. For multivariate data, contours
of the marginal bivariate mixture distribution is to each bivariate scatter plot.

4

Statistical Inference for a Finite Mixture
Model with Known Number of Components

Statistical inference is concerned with fitting a (finite mixture) model to data.
To do so in this toolbox, the data and the model have to be specified. Both
the model and the data have to be stored in structural arrays with specific
fields, see Section 2.1 and Section 3.1.1, respectively.

4.1 Classification for Known Component Parameters

Classification of observations using a fully specified finite mixture model is
discussed in Frühwirth-Schnatter (2006, Section 2.2). To obtain for each ob-
servation yi the probability classification matrix given by Bayes’ theorem

Pr(Si = k|yi, ϑ) = p(yi|θk)ηk
K∑

j=1

p(yi|θj)ηj

,

call the function

class=dataclass(data,mix);

where data is the structure array containing the data and mix is the structure
array defining the finite mixture distribution. For classification, mix has to be
a fully specified model, see Subsection 2.1.3. The function dataclass produces
a structural array class with following fields:

• prob is the probability classification matrix, being equal to a N x K nu-
merical array, where the rows sum to 1.

• mixlik is the logarithm of the mixture likelihood function log p(y|ϑ),

p(y|ϑ) =
N∏

i=1

(
K∑

k=1

ηkp(yi|θk)

)
,

evaluated at ϑ equals mix.par and mix.weight.

32 4 Statistical Inference for a Finite Mixture Model

• entropy is the entropy of the classification, defined by Frühwirth-Schnatter
(2006, Subsection 2.2.2, pp. 28)

EN(ϑ|y) = −
N∑

i=1

K∑

k=1

Pr(Si = k|yi, ϑ) log Pr(Si = k|yi, ϑ) ≥ 0. (4.1)

• loglikcd is a K x 1 numerical array containing the log of the conditional
likelihood for each component parameter θk. The kth element of this array
is equal to:

∑

i:Si=k

log p(yi|θk).

The conditional likelihood is evaluated at (θ1, . . . , θK) equals mix.par and
S = (S1, . . . , SN) equals data.S.

Note that the name class may be substituted by an arbitrary name, e.g.
myclass.

Sampling from the classification matrix

In Section 4.3 a sample S(m) = (S(m)
1 , . . . , S

(m)
N) from the probability classifi-

cation matrix is needed. This is obtained by calling dataclass with a second
output argument:

[class,S]=dataclass(data,mix)

The output argument S is a 1 x data.N array containing the simulated alloca-
tions. In this case no conditional likelihood is computed, i.e. no field loglikcd
appears in class, but the following new field is added to the structure array
class:

• postS which is equal to the posterior density p(S(m)|y, ϑ) of the simulated
allocations.

4.2 Bayesian Estimation

Statistical inference is concerned with fitting a model to data. Concerning
the method used for statistical inference, this toolbox relies on Bayesian es-
timation which requires the definition of a prior. The hyper parameters of
this prior are stored in a structural array called e.g. myprior. The precise
structure of the array myprior depends on the chosen distribution family and
usually is a structure array with specific fields which are discussed in more de-
tail in Subsection 4.2.1. Carefully designed default choice are available in this
package for any model by calling the function priordefine to make Bayesian
inference as convenient as possible.

4.2 Bayesian Estimation 33

Bayesian inference derives the posterior distribution of the unknown pa-
rameters of model mymodel, given data mydata and the prior myprior. In
general, one has to distinguish between problems where the posterior distri-
bution is of closed form and problems where this is not the case. Bayesian
inference for finite mixture models falls into the second category and relies on
Markov chain Monte Carlo (MCMC) inference, see Subsection 4.2.2. Closed
form solutions exist only for rare case, e.g. for a finite mixture model with only
one component or for fully classified data, where the allocations are known,
see Subsection 4.2.3.

4.2.1 Choosing the Prior for the Parameter of a Mixture Model

Frühwirth-Schnatter (2006, Section 3.2) discusses in great details how to
choose the prior in a mixture model. When fitting a finite mixture model
to data, improper prior densities may cause improper mixture posterior den-
sities (Frühwirth-Schnatter, 2006, Subsection 3.2.2). To avoid this, any prior
used within the toolbox has to be proper. Error messages and program ter-
mination will be the consequence of calling functions with improper priors as
input argument.

Users not wanting to specify their own proper prior are recommended
to call the function priordefine for automatic selection of a slightly data
dependent proper prior:

prior=priordefine(data,mix);

where data is a structure array containing the data and mix is a structure
array defining the mixture distribution which need not be fully specified, only
the fields dist and K are necessary. If the field K is missing as well, it is
assumed that just a single member from the selected distribution family should
be considered. The default prior is invariant to relabeling the components.
Details on how this prior is selected will be provided in later chapters for each
of the finite mixture models implemented in this toolbox.

Note that it is possible to run the package with this default prior without
caring about its structure. Nevertheless some details on this structure are
discussed in the remainder of this subsection.

Specifying Prior Distributions

In the package, the prior for Bayesian estimation of a particular finite mixture
model is stored as a structure array, named for instance prior, containing the
following fields:

• weight specifies the prior for the weight distribution η ∼ D (e0,1, . . . , e0,K)
which is assumed to be a Dirichlet distribution. This is a 1 x K numerical
array containing the hyper parameters e0,1, . . . , e0,K .

34 4 Statistical Inference for a Finite Mixture Model

• par specifies the prior for each parameter in mix.par. The structure of
this field depends on the distribution family and on the dimension of θk.
In general, the field par has the same structure as the corresponding field
par of the structure array defining the mixture distribution.

For a mixture of Poisson distribution, for instance, the prior for the pa-
rameter µk reads µk ∼ G (a0,k, b0,k). The hyper parameters are stored in
prior.par. This is again a structural array with the two fields par.a, storing
a0,1, . . . , a0,K , and par.b, storing b0,1, . . . , b0,K . Both fields are 1 x K numer-
ical arrays.
Additional fields are the following:

• The field type specifies the type of the selected prior if various types of
priors are implemented in the toolbox, like conditionally conjugate and
independence priors for mixtures of normals, see Subsection 6.2.3.

If any of the hyperparameters of an invariant prior is a random parameter
with a prior of its own, like b0 ∼ G (g0, G0) in the prior µk ∼ G (a0, b0) of a
Poisson mixture, then the additional field

• hier taking the value true is added to the prior specification and addi-
tional fields have to be added to the structure array par.

For a hierarchical prior for Poisson mixtures, for instance, par.g and par.G
have to be added, containing the parameters g0 and G0 of the Gamma prior
b0,k ∼ G (g0, G0).

4.2.2 Markov Chain Monte Carlo Bayesian Inference

For problems, where no closed form posterior exists, one has to rely on some
numerical method to derive the posterior distribution. Finite mixture models
typically belong to this class. Nowadays, many researchers rely on Markov
chain Monte Carlo (MCMC) methods to obtain draws from the posterior
distribution. Contrary to i.i.d. sampling, MCMC sampling starts with an ar-
bitrary starting value, and delivers draws from the posterior distribution only
after the so-called burn-in phase.

Bayesian inference using MCMC is carried out by calling the function
mixturemcmc with four input arguments:

mcmcout = mixturemcmc(mydata,mymodel,myprior,mcmc);

i.e. the data are stored in mydata, the model is stored in mymodel, and the
prior is stored in myprior. The input parameter mcmc controls the MCMC
sampling procedure and is a structural array with following mandatory fields:

• burnin is the length M0 of the burn-in;
• M is the number M of stationary draws.

The MCMC draws are stored in the structural array mcmcout. Note that the
name mcmcout could be substituted by any name, e.g. mymcmcout. The fields
of this array are explained in detail in Section 4.3.2.

4.3 Parameter Estimation through Data Augmentation and MCMC 35

4.2.3 Closed Form Posterior Distributions

Sometimes a conjugate prior exists, which leads to a posterior distribution
from the same distribution family as the prior. For such a conjugate analysis,
the function posterior may be called to determine the parameters of the
posterior distribution:

post=posterior(data,model,prior);

where the structural array prior defines the prior distribution. The procedure
returns the parameters of the posterior distribution in post which has the
same structure as the prior. The function posterior checks if a conjugate
analysis is possible for this particular model under the given prior. If this is
not the case,

• the field error is assigned the value true and added to the output argu-
ment post.

Often it is useful to have M random draws from a closed form posterior.
These draws could be obtained by first calling the function posterior and
then calling one of the MATLAB built-in functions which draw from a specific
distribution family. Such a strategy, however, is not really recommended. It is
far more convenient to call the function mixturemcmc even for conjugate prob-
lems. The function mixturemcmc automatically draws from the right posterior
distribution even in cases where no MCMC simulation is necessary. Note that
the burn in could be set to 0 in such a case.

4.3 Parameter Estimation through Data Augmentation
and MCMC

Among the estimation methods discussed in Frühwirth-Schnatter (2006, Sec-
tion 2.4) only Bayesian methods are implemented in the current version of the
toolbox for parameter estimation when the allocations are unknown. Bayesian
estimation of finite mixtures using data augmentation and MCMC is discussed
in great detail in Frühwirth-Schnatter (2006, Section 3.5). MCMC sampling is
performed as described in Algorithm 3.4 in Frühwirth-Schnatter (2006, Sub-
section 3.5.3):

(a) Parameter simulation conditional on a known classification S:
(a1) Sample η = (η1, . . . , ηK) from the Dirichlet distributionD (e1(S), . . . , eK(S)).
(a2) For each k = 1, . . . ,K, sample the component parameter θk from the

complete-data posterior p(θk|S,y).
(b)Classification of each observation yi conditional on knowing ϑ by sampling

Si independently for each i = 1, . . . , N from following discrete distribu-
tion:

p(Si = k|ϑ,yi) ∝ p(yi|θk)ηk.

36 4 Statistical Inference for a Finite Mixture Model

Unless stated otherwise (see mcmc.ranperm defined in Subsection 4.3.1), each
sampling step is concluded by a random permutation step.

It will take several iterations, the so-called burn-in, before the sam-
pler reaches the stationary distribution. After burn-in, M posterior draws
(ϑ(m),S(m)),m = 1, . . . , M are produced by iterating through steps (a) and
(b). Both the length of the burn-in as well as the number of draws from the
stationary distribution have to be specified by the user, see Subsection 4.3.1.
All post burn-in MCMC draws ϑ(m) are stored in one field of the structural
array mcmcout. As the dimension of S(m) is 1 x data.N, not all draws, but
only the last mcmc.storeS draws are stored for the allocations, see Subsec-
tion 4.3.2.

4.3.1 Running MCMC

To run data augmentation and MCMC, call the function

mcmcout=mixturemcmc(data,mix,prior,mcmc);

where data is a structure array containing the data, mix is a structure array
defining the mixture distribution to be fitted, prior is a structure array defin-
ing the prior distribution and mcmc is a structure array controlling MCMC.
Obligatory fields for mcmc are:

• burnin defining the length M0 of the burn-in;
• M defining the number M of stationary draws.

One should be aware that it may take some time to execute MCMC sampling.
For the user’s convenience, after each minute, the function mixturemcmc re-
ports the expected remaining execution time.

MCMC requires the choice of starting values. Usually, a preliminary clas-
sification S(0) is stored in data.S and MCMC is started by sampling ϑ(1) as
described in step (a). In this case, the mixture model mix need not be fully
specified, however, the field dist has to be specified in any case. If the field K is
missing, it is assumed that just a single member from the selected distribution
family should be fitted to the data. If sampling of θk involves more than one
block, further starting values are needed, which need to be stored in mix.par
before calling mixturemcmc. Furthermore, under a hierarchical prior, starting
values have to be selected for the hyper parameters. Under an automatic prior
definition using the function priordefine introduced in Subsection 4.2.1 such
a starting value is automatically provided.

One may delegate the choice of all necessary starting values to the function
mcmcstart which also defines default choices for all tuning parameters for
MCMC:

[data,mix,mcmc]=mcmcstart(data,mix);

The starting value for the classification is usually obtained through k-means
clustering using the MATLAB function kmeans. The Warning: Empty cluster

4.3 Parameter Estimation through Data Augmentation and MCMC 37

created at iteration 1 is sometimes reported by the MATLAB function
kmeans and may be safely ignored, because the function mixturemcmc is able
to deal automatically with empty clusters. Further details on how these start-
ing values are selected appear in later chapters for specific mixture models.

The function mcmcstart is very convenient, because it allows MCMC for
an unspecified mixture model without bothering about starting values. The
mixture model may be completely unspecified, only the distribution family
(mix.dist) of the component density and, if K > 1, also mix.K have to be
specified before calling mcmcstart. The function mcmcstart defines all neces-
sary starting values needed for MCMC estimation, like starting classifications
and starting values for parameters which is very convenient.

The default choice will produce 5000 MCMC draws after a burn-in of
1000 draws and will store the last 500 draws of the allocations. One may easily
change this choice by redefining the appropriate fields after calling mcmcstart.
For instance, to obtain 10000 MCMC draws after a burn-in of 4000 draws and
to store the last 1000 draws of the allocations define

[data,mix,mcmc]=mcmcstart(data,mix);
mcmc.M=10000;mcmc.burnin=4000;mcmc.storeS=1000;
mcmcout=mixturemcmc(data,mix,prior,mcmc);

Controlling MCMC

mcmc is a structure array controlling MCMC having the obligatory fields
burnin and M already described above. Optional fields are the following:

• startpar is a logical variable taking the value true, if sampling should
be started with drawing the allocations S conditional on a starting value
ϑ(0). The default choice is startpar=false.

• storeS is an integer variable, causing that the last storeS classifications
S(m) to be stored. If the field storeS is missing, then the default choice
is to store 500 draws. If storeS is not positive, then no classifications are
stored.

• storepost is a logical variable taking the value true, if the posterior
moments should be stored. The posterior moments are needed to compute
the marginal likelihood, see Section 5.3. If storepost is not true, then no
posterior moments are stored. The default choice is storepost=true.

• ranperm is a logical variable taking the value false, if no random permu-
tation sampling should be performed. If the field ranperm is missing or if
ranperm is true, then random permutation sampling is performed.

The default choice in the package is to start MCMC with an initial classifica-
tion in which case startpar=false. Alternatively, one may select a starting
value ϑ(0) for the parameter and start MCMC by sampling S(1) as described
in step (b). To start MCMC in this way, the mixture model mix needs to be
fully specified before calling mixturemcmc, while data.S is unspecified. Again,

38 4 Statistical Inference for a Finite Mixture Model

the function mcmcstart could be used to select starting values for a fully spec-
ified mixture model, however, it has to be called with three input arguments
to indicate that a starting value for ϑ is needed rather than a starting value
for S:

mcmc.startpar=true;
[data,mix,mcmc]=mcmcstart(data,mix,mcmc);

4.3.2 MCMC Output

mcmcout is a structure array containing the MCMC draws and consists of the
following fields:

• M contains the number of MCMC draws
• weight contains the MCMC draws η(m),m = 1, . . . , M for the weight

distribution which are stored in a M x K numerical array.
• par contains the MCMC draws (θ(m)

1 , . . . , θ
(m)
K), m = 1, . . . ,M , for each

parameter in mix.par. The field par has the same structure as the corre-
sponding field par of the structure array defining the mixture distribution.
For a mixture of Poisson distribution, for instance, par is a M x K numer-
ical array, storing the posterior draws µ

(m)
k , m = 1, . . . , M .

• ranperm is a logical variable, which is true if the MCMC draws are based
on random permutation sampling. Otherwise ranperm is false.

• hyper is added under a hierarchical prior and contains the MCMC draws
for the random hyperparameter.

• log stores the logarithm of various function evaluated at the MCMC
draws. The field log is a structure array containing the following fields,
each of them being a M x 1 numerical array:
– mixlik stores the log of the mixture likelihood, log p(y|ϑ(m)), for each

MCMC draw ϑ(m).
– mixprior stores the log of the prior, log p(ϑ(m)), for each MCMC draw

ϑ(m).
– cdpost stores the log of the (non-normalized) complete data posterior,

log p(ϑ(m),S(m)|y), which is equal to

p(ϑ(m),S(m)|y) ∝ p(y|ϑ(m),S(m))p(S(m)|ϑ(m),y)p(ϑ(m))

for each MCMC draw (ϑ(m),S(m)).
• entropy is a M x 1 numerical array storing the entropy EN(ϑ(m)|y), see

(4.1), for each MCMC draw.
• S is added, if classifications are stored (see mcmc.storeS above). The field

contains the last L=mcmc.storeS MCMC draws of S(m), stored as a L x
N numerical array, where N are the number of observations.

4.4 Parameter Estimation for Known Allocation 39

• Nk is added, if posterior moments are stored (see mcmc.storepost).
This field is a M x K numerical array storing the number of observations
N1(S), . . . , NK(S) classified to each group.

• post is added, if posterior moments are stored (see mcmc.storepost
above). These moments are used for computing the marginal likelihood, see
Subsection 5.3. post is a structure array with the fields par and weight:
– weight contains the moments e1(S), . . . , eK(S) of the the posterior

Dirichlet distribution D (e1(S), . . . , eK(S)) used for simulating the
weight distribution η(m). weight is a M x K numerical array.

– par contains certain moments of the complete data posterior dis-
tributions p(θk|S,y), used for simulating the component parameters
(θ(m)

1 , . . . , θ
(m)
K).

If K is equal to 1, then a single member from the distribution family dist
is fitted and redundant fields like weight, S, post.weight, and ranperm are
not added to mcmcout.

Various fields are added which are helpful for postprocessing the MCMC
draws:

• model contains information about the estimated model and is simply a
copy of the calling argument mix.dist and mix.K.

• prior contains the prior used for estimation and is simply a copy of the
calling argument prior.

You may add the following field to name mcmcout:

• name which is a character string.

This name will be added to various plots. Use the function

mcmcstore(mcmcout);

to store the MCMC output. The MCMC output will be stored as a MATLAB
file under the name mcmcout.name, if such a field is present, and under the
name mcmcout otherwise.

4.4 Parameter Estimation for Known Allocation

In rare cases, for instance for grouped data, the allocations will be known.
Such data are called classified data and the allocations are stored in data.S,
see Subsection 3.1.2.

For a complete-data Bayesian estimation as discussed in Subsection 2.3.3
of Frühwirth-Schnatter (2006), you need first to define a prior on the parame-
ters as in Subsection 4.2.1. For finite mixtures, where a closed form conditional
posterior exists, it is possible to compute the moments of the complete-data
posterior of the parameters of the finite mixture distribution defined by the

40 4 Statistical Inference for a Finite Mixture Model

structure array mix by calling the functions posterior, introduced in Sub-
section 4.2.3. This produces a structure array post, with par being the same
fields as in the structure array prior, see Section 4.2.1.

For practical Bayesian estimation, however, it is more convenient to call the
function mixturemcmc like for a problem where the allocations are unknown,
however, before calling this function,

• the field indicfix has to be set equal to true and has to be added to the
structure array defining the finite mixture model.

This will allow exploring the posterior distribution as in Section 4.5.

4.5 Bayesian Inference Using the Posterior Draws

Frühwirth-Schnatter (2006, Section 3.7) discusses in detail how posterior
draws could be used for Bayesian inference.

4.5.1 Plotting the Posterior Draws

The function

mcmcplot(mcmcout);

could be used to plot and monitor the MCMC output. The following figures
are produced by mcmcplot.

Trace plots of invariant functionals

A trace plots shows the log mixture likelihood, log p(y|ϑ(m)), the log of the
prior, log p(ϑ(m)), the log of the mixture posterior log p(ϑ(m)|y), the log of the
complete data likelihood, log p(y|ϑ(m),S(m))p(S(m)|ϑ(m)), and the entropy
EN(ϑ(m)|y) for each MCMC draw over m = 1, . . . , M .

For finite mixture modeling of i.i.d. data additional trace plots are pro-
duced that are based on moments of the implied marginal distributions, all
of which are invariant to relabelling. Different moments are considered for
different distribution families. The moments are computed in the function
mcmcplot by calling the function mcmcmargmom:

margmom=mcmcmargmom(mcmcout);

which creates a structure array with the same fields as the output from the
function moments, however, an additional leading dimension is added for each
MCMC draw. For multivariate mixtures of normals, for instance, the variance-
covariance matrix is stored in the field var which a numeric array of dimension
M x r x r.

4.5 Bayesian Inference Using the Posterior Draws 41

Trace plots of component specific parameters

Component specific parameters are sensitive to labeling switching. If no ran-
dom permutation sampling has been performed (depending on the tuning
parameter mcmc.ranperm introduced in Subsection 4.3.1), then trace plot
are produced directly for the MCMC draws ϑ(m). Depending on underlying
model, the trace plots are organized in several figures.

If random permutation sampling has been performed (mcmc.ranperm=true),
then the MCMC draws are identical for all components and direct plotting of
the MCMC draws is not really useful. Therefore, the function mcmcplot per-
forms model identification prior to plotting using the function mcmcpermute
described in Subsection 4.5.2. Plots are then produced for the identified
MCMC draws. Note that the number of identified MCMC draws could be
considerable smaller than the number of total MCMC draws.

Checking Convergence

The trace plots provided by mcmcplot should be roughly stationary. If this
is not the case, MCMC should be run again with a longer burn-in period.
Alternatively, the first draws could be removed. The function mcmcsubseq

mcmcsub=mcmcsubseq(mcmcout,indexset);

could be used to extract a subsequence of the MCMC draws, defined by the
index set indexset. To remove the first it0 draws, for instance, use

mcmcsub=mcmcsubseq(mcmcout,[it0+1:mcmcout.M]);

To perform spacing, meaning that only every pth value should be stored, use

p=10;mcmcsub=mcmcsubseq(mcmcout,[1:p:mcmcout.M]);

Sampling Representation of the Mixture Posterior Density

It is sometimes desired to visualize the mixture posterior density p(ϑ|y), but
producing a simple density plot is feasible only for very simple problems,
where the unknown parameter ϑ is at most bivariate. If the dimension of ϑ
exceeds two, draws from the posterior density p(ϑ|y) are used as a sampling
representation of the mixture posterior distribution, which is then visualized
in an appropriate manner, see Frühwirth-Schnatter (2006, Subsection 3.7.1).

The function mcmcmplot provides such a sampling representation of the
posterior draws by calling the function mcmcsamrep which is defined with
variable input/output argument, handling figure numbers:

42 4 Statistical Inference for a Finite Mixture Model

mcmcsamrep(mcmcout); % starts plotting with Figure 1
mcmcsamrep(mcmcout,nplot); % starts plotting with Figure nplot
nplot=mcmcsamrep(mcmcout,nplot); % returns number of last Figure

The function mcmcsamrep produces a point process representation of the pos-
terior draws. For mixtures with univariate component parameter θ, θ

(m)
k is

plotted against draws from a standard normal distribution. For mixtures with
bivariate component specific parameter θ = (θ1, θ2), θ

(m)
1,k is plotted against

θ
(m)
2,k . For mixtures with multivariate components parameters θ, a specific

point process representation is generated for each type of mixture models.
These scatter plots are closely related to the point process representation of

the underlying mixture distribution discussed in Subsection 2.2.5. The MCMC
draws will scatter around the points corresponding to the true point process
representation, with the spread of the clouds representing the uncertainty of
estimating the points.

The number of simulations clusters visible in these MCMC draws are help-
ful for mixtures with unknown number of components, see Subsection 5.1.

4.5.2 Estimating the Component Parameters and the Weight
Distribution

Inference on the component parameters and the weight distribution is sensitive
to label switching, see Frühwirth-Schnatter (2006, Subsection 3.7.6).

The posterior mode is that value of ϑ which maximizes the nonnormal-
ized mixture posterior density log p?(ϑ|y) = log p(y|ϑ) + log p(ϑ). The pos-
terior mode estimator is the optimal estimator with respect to the 0/1 loss
function and is invariant to relabeling. Because log p(y|ϑ(m)) and log p(ϑ(m))
are contained in the MCMC output produced by mixturemcmc, the posterior
mode may be approximated by the MCMC draws with the largest value of
log p?(ϑ|y). An approximate ML estimator is derived in a similar way.

Ergodic averages of MCMC draws which were generated by unconstrained
Gibbs sampling without identification may be sensible to label switching and
should be interpreted with great care. Ergodic averages of MCMC draws which
were generated by random permutation sampling theoretically are invariant
and could be used to check convergence. In the toolbox, model identifica-
tion based on unsupervised clustering in the point process representation
(Frühwirth-Schnatter, 2006, p.96) is performed.

To perform parameter estimation, call the function mcmcestimate with a
structure array, say mcmcout containing the MCMC output after calling the
function mixturemcmc:

est=mcmcestimate(mcmcout);

est is a structure array containing following estimators of ϑ with the following
fields:

4.5 Bayesian Inference Using the Posterior Draws 43

• pm is the (approximate) posterior mode estimator of ϑ.
• ml is the (approximate) maximum likelihood estimator of ϑ.
• ident ergodic average after identification
• average ergodic average without identification, if the draws were not gen-

erated by the permutation sampler (mcmcout.ranperm is false).
• invariant ergodic average without identification, if the draws were gen-

erated by the permutation sampler (mcmcout.ranperm is true).

Each of these fields is a fitted mixture meaning that it is a structure array
with the same fields as a mixture model. Therefore many functions, like
mixtureplot could be applied. To compare the data with the model, you
may store a fitted mixture, say pm in data.model before calling dataplot.

If mcmcestimate is called with two output arguments,

[est,mcmcout]=mcmcestimate(mcmcout);

then the estimators and the identified MCMC output will be added to the
MCMC output mcmcout.

For each estimation method, the estimators of the weight distribution
η1, . . . , ηK are stored in the field weight, e.g.

• est.pm.weight – (approximate) posterior mode estimator,
• est.ident.weight – ergodic average after identification.

For each estimation methods, the estimators of the parameters are stored in
the field par, which has the same structure as for the estimated model.

Model Identification

Identification is based on unsupervised clustering in the point process repre-
sentation (Frühwirth-Schnatter, 2006, p.96) and only posterior draws where
the resulting classification is a permutation of the group indices are consid-
ered. Identification is achieved by calling the function mcmcpermute:

mcmcout=mcmcpermute(mcmcout);

After calling mcmcpermute the following fields are added to the MCMC output:

• perm is a MxK array, containing the classifications resulting from unsuper-
vised clustering

• isperm is a Mx1 logical array, being true iff the classification of the mth
draw is a permutation

• nonperm contains the number of classifications that are not permutations
• Mperm contains the number of classifications that are permutations
• parperm and weightperm contain the identified MCMC output. The field

weightperm contains the identified MCMC draws for the weight distribu-
tion which are stored in a Mperm x K numerical array. parperm contains
the identified MCMC draws for each parameter in mix.par and has the

44 4 Statistical Inference for a Finite Mixture Model

same structure as the corresponding field par of the MCMC output, the
only difference being that the first dimension is equal to Mperm, which
might be smaller than M.

4.5.3 Bayesian Clustering

Model-based clustering using finite mixture models is discussed in great detail
in Frühwirth-Schnatter (2006, Section 7.1). Bayesian maximum a posteriori
(MAP) classification is based on maximizing the joint posterior

p(ϑ,S|y) ∝ p(y|ϑ,S)p(S|ϑ)p(ϑ), (4.2)

simultaneously with respect to ϑ and S, where p(y|ϑ,S)p(S|ϑ) is equal to
the classification likelihood, see Frühwirth-Schnatter (2006, Subsection 7.1.3,
p.210). An approximation to the Bayesian MAP classifier is determined dur-
ing data augmentation and Gibbs sampling by evaluating the nonnormalized
posterior p(ϑ(m),S(m)|y) for each MCMC draw, and keeping track of the clas-
sification that gave the highest posterior density. Note that the Bayesian MAP
classifier is invariant to label switching.

Bayesian clustering could be based on loss functions, as discussed in
Frühwirth-Schnatter (2006, Subsection 7.1.7). Bayesian clustering based on
the misclassification rate is sensitive to label switching and can be carried
out only after the mixture has been identified, see also Subsection 4.5.2. This
may be a poor estimator, if the mixture model is not identifiable, for instance,
because the mixture is overfitting.

An additional estimator based on the posterior similarity matrix is insen-
sitive to label switching, however, it is of order O(N) and it may take some
time to obtain this estimator, if N is large. In the toolbox, N is currently
limited to 1000.

To carry out clustering of the observations call the function mcmcclust:

clust=mcmcclust(data,mcmcout)

The structure array clust contains various estimators of the allocations stored
in the following fields:

• Smap is a 1 x N array containing the (approximate) Bayesian MAP clas-
sification.

• Ssim is a 1 x N array containing the estimator based on the posterior
similarity matrix and is computed only, if N ≤ 1000.

• Sident is a 1 x N array containing the estimator minimizing the misclas-
sification rate, which is determined after identification.

• prob is a K x N array containing the corresponding classification proba-
bility matrix, i.e. Pr(Si = k|y), i = 1, . . . , N , k = 1, . . . ,K.

• risk is a 1 x N array containing the corresponding misclassification rate,
i.e. 1−∑K

k=1 Pr(Si = k|y), i = 1, . . . , N .

4.5 Bayesian Inference Using the Posterior Draws 45

If mcmcclust is called with two output arguments,

[clust, mcmcout]=mcmcclust(data,mcmcout);

then the field clust having the same structure as above will be added to the
MCMC output mcmcout.

Visualizing Bayesian Clustering

To visualize clustering and the estimated probabilities Pr(Si = k|y), call the
function mcmcclustplot in the following way

[nfig=]mcmcclustplot(data,clust[,nfig]);

where clust is the output from calling the function mcmcclust. Plotting starts
with the input figure number nfig, or with figure one, if the input argument
nfig is missing. The output argument nfig reports the number of the last
figure and may be omitted.

For univariate data, this function produces a plot of the estimated clas-
sification probabilities Pr(Si = k|y), i = 1, . . . , N and a plot showing the
clustering of the data for the different estimators of S stored in clust. For
multivariate data, this function produces a plot showing the clustering of the
data for each estimator of S stored in clust.

4.5.4 Predictive Density Estimation

A quantity that often is of interest when fitting a finite mixture model, is the
posterior predictive density p(yf |y) of a future realization yf , given the data
y, which is given by

p(yf |y) =
∫

p(yf |ϑ)p(ϑ|y)dϑ.

This density is estimated from posterior draws which need not be checked for
label switching as:

p̂(yf |y) =
1
M

M∑
m=1

(
K∑

k=1

η
(m)
k p(yf |θ(m)

k)

)
, (4.3)

is robust against label switching. To plot the predictive density estimation
use the function mcmcpreddens which is defined with variable input/output
argument, handling figure numbers:

[nplot=]mcmcpreddens(data,mcmcout[,nplot]);

Plotting starts with the input figure number nfig, or with figure one, if the in-
put argument nfig is missing. The output argument nfig reports the number
of the last figure and may be omitted.

46 4 Statistical Inference for a Finite Mixture Model

The Posterior Predictive Distribution of a Sequence

To implement Algorithm 3.7 in Frühwirth-Schnatter (2006, Subsection 3.7.3,
pp.90) to sample for each MCMC draw in the structure array mcmcout a se-
quence y(m)

f = (y(m)
f,1 , . . . ,y(m)

f,H) of length H ≥ 1 from the posterior predictive
distribution p(yf |y) of yf , conditional on the observations y call the function

pred=mcmcpredsam(mcmcout,H);

For univariate data pred is a M x H numerical array, containing the predicted
sample, i.e. pred(m,h) contains the hth observation y

(m)
f,h . For multivariate

data pred is a M x r x H numerical array, containing the predicted sample,
where r is the dimension of yi and pred(m,:,h) contains the hth observation
y(m)

f,h .

5

Statistical Inference for Finite Mixture Models
Under Model Specification Uncertainty

5.1 Mode Hunting in the Mixture Posterior

A couple of informal methods for identifying the number of components are
discussed in Frühwirth-Schnatter (2006, Section 4.3). To implement mode
hunting in the mixture posterior density as in Frühwirth-Schnatter (2006,
Subsection 4.3.1), use the function mcmcsamrep, see Subsection 4.5.1.

This function produces point process representation of the posterior draws.
If the finite mixture distribution is not overfitting, then K simulation clus-
ters should be present in these figures. If the finite mixture distribution is
overfitting, then fewer simulations clusters are present, and a mixture with
less components should be fitted to the data. However, some care must be
exercised with this interpretation in higher dimensions.

5.2 Diagnosing Mixtures Through the Method of
Moments and Through Predictive Methods

It is often useful to diagnose mixtures through the method of moments as
in Subsection 4.3.3 or through predictive methods as in Subsection 4.3.4 in
Frühwirth-Schnatter (2006). For this purpose, a function called mcmcdiag is
included in the package, which produces various diagnostic plots for the com-
parison of more than one model. The function may be called simultaneously
for more than one MCMC output, in order to compare the different models:

[nfig=]mcmcdiag(data,mcmcout1,...,mcmcoutK[,nfig]);

where data are the data, and mcmcout1,...,mcmcoutK is an arbitrary number
of structure arrays containing the MCMC output of a certain model. Plotting
starts with the input figure number nfig, or with figure one, if the input
argument nfig is missing. The output argument nfig reports the number of
the last figure and may be omitted.

48 5 Statistical Inference Under Model Specification Uncertainty

Several figures compare the posterior distribution of moments of the
marginal distribution for the different models. These moments, like the co-
efficient of determination, may include group specific information as long as
the resulting moment is invariant to relabelling. The moments of the marginal
distribution of 500 mixture models randomly selected from the MCMC output
are computed using the function mcmcmargmom:

im=randperm(mcmcout.M);
postmom=mcmcmargmom(mcmcsubseq(mcmcout,im(1:500)));

which creates a structure array called, for instance, postmom with the same
fields as the output from the function moments, however, an additional leading
dimension is added for each selected MCMC draw.

Further plots are standard diagnostic predictive checks, based on the stan-
dard sample moments included in the function datamoments. The predictive
diagnostic checks depend on the nature of the fitted mixture.

For univariate continuous mixtures these predictive diagnostic checks are
based on the mean, the variance, the skewness and the kurtosis coefficient.
For multivariate continuous mixtures these predictive diagnostic checks are
based on the mean, the variance, the skewness and the kurtosis coefficient of
each marginal distribution as well as on the correlation coefficients between
any two features. For discrete mixture these predictive diagnostic checks are
based on the mean, the variance, the overdispersion parameter, the fraction
of zeros in the sample and the first up to the fourth factorial moment.

The box plots are based on drawing 200 predictive samples of size N .
The moments of each predictive sample are computed using the function
mcmcpredmom:

im=randperm(mcmcout.M);
predmom=mcmcpredmom(mcmcsubseq(mcmcout,im(1:200)),data.N,data);

which creates a structure array called, for instance, predmom with the same
fields as the output from the function datamoments, however, an additional
leading dimension is added for each selected MCMC draw.

Diagnostic Check Based on an Arbitrary Statistic

To design a diagnostic check based on an arbitrary statistic, say T (yf), one has
to generate a sample y(1)

f , . . . ,y(M)
f from the posterior predictive distribution

p(yf |y,MK), obtained by Algorithm 3.7 in Frühwirth-Schnatter (2006, Sub-
section 3.7.3, pp.90) with H = N , calling the function mcmcpredsam(mcmcout,N),
see also Subsection 4.5.4. Then the statistic T (yf) has to be computed for each
sample pred(m,:) for univariate data, or for each sample pred(m,:,:) for
multivariate data. The resulting sequence of statistics is then compared with
the observed statistics through a histogram or a density plot.

5.3 Simulation-Based Approximations of the Marginal Likelihood 49

The following code shows how the right-hand side of Figure 4.11 in
Frühwirth-Schnatter (2006) has been produced from the MCMC output
mcmcout:

pred=mcmcpredsam(mcmcout,N);
over=var(pred’,1)’-mean(pred,2);
overdata=var(data.y,1)’-mean(data.y); % data stored by column
plotdichte(over,’k’);
hold on;scatter(overdata,0,50,’k’,’filled’);hold off;

5.3 Simulation-Based Approximations of the Marginal
Likelihood

To implement the material of Frühwirth-Schnatter (2006, Section 5.4), call
the function

marlik = mcmcbf(data,mcmcout);

The structure array marlik contains various estimators of the log of the
marginal likelihood log p(y) stored in the following fields:

• is is the estimator obtained by importance sampling, see Frühwirth-
Schnatter (2006, Subsection 5.4.3);

• ri is the estimator obtained by reciprocal importance sampling, see
Frühwirth-Schnatter (2006, Subsection 5.4.4);

• bs is the estimator obtained by bridge sampling techniques, see Frühwirth-
Schnatter (2006, Subsection 5.4.6).

Standard errors are computed as in Chib (1995) and stored in the field se:

• se is structural array with following fields:
– se.bs is a 1x3 array. se.bs(1) contains the standard error of the bridge

sampling estimator, se.bs(2) contains the standard error of the nu-
merator and se.bs(3) contains the standard error of the denominator.

– se.is is a scalar containing the standard error of the importance sam-
pling estimator.

– se.ri is a scalar containing the standard error of the reciprocal im-
portance sampling estimator.

If mcmcbf is called with two output arguments,

[marlik, mcmcout]=mcmcbf(data,mcmcout);

then the field marlik having the same structure as above will be added to the
MCMC output mcmcout.

50 5 Statistical Inference Under Model Specification Uncertainty

5.3.1 Getting Started Quickly

Several demos are included in the package to demonstrate how to select the
number of components through marginal likelihoods. Among them are the
following:

• The program start fishery.m may be called to fit finite mixtures of mul-
tivariate normal distributions with K = 1 to K = 5 to Fishery Data and
to select the number of components through marginal likelihoods (takes
about 11 CPU minutes), see also Subsection 1.2.1.

• The program start iris.m may be called to fit finite mixtures of mul-
tivariate normal distributions with K = 1 to K = 5 to Fisher’s Iris
Data and to select the number of components through marginal likeli-
hoods (takes about 11 CPU minutes), see also Subsection 1.2.2.

Further demonstrations appear in Subsection 6.2.10, and Subsection 6.3.6.

5.3.2 Comparing the Estimators

The different estimators should roughly agree, if K is not too large. Significant
differences between marlik.ri and the other two estimators may be a sign
of nonstationarity in the underlying MCMC draws and a poor choice of the
importance density.

Note that marlik.is is not sensitive to nonstationarity in the underlying
MCMC draws, as long as the tails are not too thin, because the MCMC draws
are only used to construct the importance density. Checking convergence of
the MCMC draws using the function mcmcplot described in Subsection 4.5.1
may be helpful. If the entire MCMC chain is not stationary, an MCMC sub-
chain may be constructed using the function mcmcsubseq, see Subsection 4.5.1,
before the estimators are determined by the function mcmcbf:

mcmcsub=mcmcsubseq(mcmcout,[100:mcmcout.M]);
marliksub = mcmcbf(data,mcmcsub);

To perform further monitoring in cases where the estimators are extremely
different, the relevant functional values are stored in the field log of structure
array marlik. The field log is a structural array containing the following fields
each of which is a M x 1 numerical array:

• loglikmc contains the log mixture likelihood function evaluated at the
MCMC draws

• priormc contains the log mixture prior evaluated at the MCMC draws
• qmc contains the log of the importance density evaluated at the MCMC

draws
• loglikq contains the log mixture likelihood function evaluated at the

draws from the importance density
• priorq contains the log mixture prior evaluated at the draws from the

importance density

5.3 Simulation-Based Approximations of the Marginal Likelihood 51

• qq contains the log of the importance density evaluated at the draws from
the importance density

The function mcmcbfplot may be called to plot the functional evaluations
both for the MCMC draws as well as for the draws of the importance density,
after having added to the MCMC output as described above:

[ifig=]mcmcbfplot(mcmcout[,ifig]);

This will produce one figure with a trace plot of all functional evaluations
both for the MCMC draws as well as for the draws of the importance density.
The MCMC plots should be checked for further signs of non-stationarity of
the MCMC draws.

A second plot compares a histogram of the functional evaluation of the
mixture prior, the mixture likelihood and the importance density both for
the MCMC draws as well as for the draws of the importance density. These
histograms should roughly agree. Differences may occur for the histogram of
the functional evaluations of the importance density. If this histogram is far
less spread out to the left hand side for the MCMC than for the draws from
the importance density, then the tails of the importance density are very fat
compared to the posterior and reciprocal importance sampling is likely to be
unstable. If this histogram is much more spread out to the left hand side
for the MCMC than for the draws from the importance density, then the
tails of the importance density are very thin compared to the posterior and
importance sampling is likely to be unstable.

5.3.3 Technical Details

The importance density q(ϑ) is constructed from the S randomly selected
MCMC draws, stored in mcmcout, as in formula (5.36) in Frühwirth-Schnatter
(2006, Subsection 5.4.2) with S = min(M0K!, Smax, M), where K is the num-
ber of components in the mixture, M is the number of MCMC draws stored
in mcmcout, Smax is an upper limit for S, and M0 is the expected number of
times, that the construction of q will be based on a particular mode of the
mixture posterior.

The function mcmcbf selects default values for M0 and Smax, namely M0 =
100 if K ≤ 3 and M0 = 5, otherwise, and Smax = 2000. To control these
parameters, mcmcbf may be called with three input arguments:

[marlik, mcmcout]=mcmcbf(data,mcmcout,options);

where options is a structure array with following optional fields:

• M0 being the value chosen for M0;
• Smax being the value chosen for Smax.

52 5 Statistical Inference Under Model Specification Uncertainty

Every minute, the function mcmcbf provides an estimator for the remaining
expected execution time. Simulation-based estimators are based on functional
evaluations and their computation may be rather time consuming if based on
a very long MCMC chain. If the estimated execution time is too long, the
estimators could be based on a subsequence of the MCMC draws, which is
extracted from the entire MCMC chain using the function mcmcsubseq, see
Subsection 4.5.1.

Functional Evaluations

To compute marginal likelihoods it is necessary to evaluate certain functions.
To evaluate the prior p(ϑ) first the parameters is assigned to the fields par
and weight of a mixture model with fields K and dist being equal to K and
the distribution family, respectively, see also Section 2.1. Then the function

logprior=prioreval(model,prior);

is called where prior is a structural array defining the prior. The functional
value log p(ϑ) is returned in logprior. To evaluate the likelihood function
p(y|ϑ) first the parameters is assigned to the fields par and weight of a
mixture model with fields K and dist being equal to K and the distribution
family, respectively, see also Section 2.1. Then the function

loglik=likelihoodeval(data,model);

is called where data is a structural array containing the data. The functional
value log p(y|ϑ) is returned in loglik.

5.4 Model Choice Criteria

Common model choice criteria are AIC, BIC, and different classification-based
information criteria (Frühwirth-Schnatter, 2006, Section 4.4.2, 7.1.4) which
are minimized for the optimal model among a set of potential models.

Any of these criteria should be based on the maximum likelihood estima-
tor. In the current version of the toolbox these criteria are either evaluated
at the approximate posterior mode estimator or the approximate ML estima-
tor. These approximate estimators are obtained by maximizing the log mix-
ture likelihood function or the log posterior density over the MCMC draws.
The corresponding functional values are stored in mcmcout.log.mixlik and
mcmcout.log.mixprior, see Subsection 4.3.2.

To compute these criteria from the MCMC output, call the function
mcmcic:

ic=mcmcic(data,mcmcout)

The structure array ic contains various model choice criteria stored in the
following field:

5.4 Model Choice Criteria 53

• aic contains the AIC criterion evaluated at the approximate ML estimator.
• bic contains the BIC criterion evaluated at the approximate ML estimator.
• bicpm contains the BIC criterion evaluated at the approximate posterior

mode estimator.
• iclbic ml contains the entropy corrected BIC criterion evaluated at

the approximate ML estimator, see Frühwirth-Schnatter (2006, Subsec-
tion 7.1.4, p.215).

• iclbic pm contains the entropy corrected BIC criterion evaluated at the
approximate posterior mode estimator.

• loglikmax contains the (approximate) maximum of the log mixture like-
lihood function.

• d contains the number of parameters in the model.

If mcmcic is called with two output arguments,

[ic,mcmcout]=mcmcic(data,mcmcout);

then the field ic having the same structure as above is added to the MCMC
output mcmcout.

6

Finite Mixture Models for Continuous Data

6.1 Data Structures

Data for which continuous mixtures are fitted should be defined as a structure
array, called e.g. data as described in Subsection 3.1.1. The field type{j}=’continuous’
should be added for each feature, because this automatically allows many ad-
ditional options for these data.

Data Sets Available in the Package

For illustration, several data sets are stored under particular names and could
be loaded into a structure array using the function dataget:

• Fishery Data: data=dataget(’fishery’)
• Fisher’s Iris Data: data=dataget(’iris’)

6.2 Finite Mixtures of Normal Distributions

Finite mixtures of normal distributions are defined and discussed in detail
in Frühwirth-Schnatter (2006, Section 6.1). For univariate observations, it is
assumed that the observations y = (y1, . . . , yN) are independent realization of
a random variable Y arising from a following mixture of normal distributions:

p(y|ϑ) = η1fN (y;µ1, σ
2
1) + · · ·+ ηKfN (y; µK , σ2

K),

with fN (y; µk, σ2
k) being the density of a univariate normal distribution.

For multivariate observations, it is assumed that the observations y =
(y1, . . . ,yN) are independent realization of a random variable Y arising from
a following mixture of multivariate normal distributions:

p(y|ϑ) = η1fN (y;µ1,Σ1) + · · ·+ ηKfN (y; µK ,ΣK),

with fN (y; µk,Σk) being the density of a multivariate normal distribution
with mean µk and variance–covariance matrix Σk.

56 6 Finite Mixture Models for Continuous Data

6.2.1 Defining Mixtures of Normal Distributions

To define a finite mixture of normal distributions within this toolbox, create
a structure array as explained in Subsection 2.2.1. The field dist is equal to
’Normal’ for univariate mixtures and equal to ’Normult’ for multivariate
mixtures. The field par is again a structure array with two fields:

• mu contains the component means;
• sigma contains the component (co)variances.

For a univariate mixture, both par.mu and par.sigma are 1 x K numeric
arrays. For a multivariate mixture of dimension r, par.mu is a r x K numeric
array and par.sigma is r x r x K numeric array.

For a mixture of K multivariate normals it is often convenient to work
with Σ−1

k and log |Σ−1
k |, e.g. if the mixture is applied for classification. These

quantities are stored as optional fields of par, where

• sigmainv contains Σ−1
1 , . . . , Σ−1

K , characterized by a r x r x K numeric
array;

• logdet contains log |Σ−1
1 |, . . . , log |Σ−1

K |, characterized by a 1 x K nu-
meric array.

Table 6.1 summarizes, how the component parameter and the weights are
accessed.

Whereas it is mathematically correct to consider a univariate normal mix-
ture as that special case of a multivariate mixture of normals where r = 1, a
combination of ’Normult’ with mix.r=1 should be avoided when using this
package, because this almost certainly leads to troubles with array sizes when
the intrinsic function squeeze is applied by one the routines.

Table 6.1. Accessing the parameters in a mixture of normals called mix

η mix.weight 1 x K

ηk mix.weight(k) scalar
µk mix.par.mu(k) scalar
σ2

k mix.par.sigma(k) scalar
µk mix.par.mu(:,k) r x 1

Σk squeeze(mix.par.sigma(:,:,k)) r x r

Σ−1
k squeeze(mix.par.sigmainv(:,:,k)) r x r

log |Σ−1
k | mix.par.logdet(k) scalar

6.2.2 Getting Started Quickly

Several demos are included in the package to demonstrate how to fit mixtures
of normals to simulated and real data, see Subsection 3.3 for details on how
to simulate data from a finite mixture distribution:

6.2 Finite Mixtures of Normal Distributions 57

• start fishery K4.m: fits a finite mixture of four univariate normal dis-
tributions to the Fishery Data, see also Subsection 1.2.1 (takes about 2
CPU minutes).

• start fishery.m: fits finite mixtures of univariate normal distributions
with K = 1 to K = 5 to the Fishery Data (takes about 11 CPU minutes),
see also Subsection 1.2.1.

• start iris K3.m: fits a finite mixture of three multivariate normal dis-
tributions to Fisher’s Iris Data (takes about 3 CPU minutes), see also
Subsection 1.2.2.

• start iris.m: fits finite mixtures of multivariate normal distributions
with K = 1 to K = 5 to Fisher’s Iris Data (takes about 11 CPU
minutes), see also Subsection 1.2.2.

• demo mix normal.m: fits a finite mixture of three normal distributions to
simulated data (takes about 4 CPU minutes).

• demo mix normal Kunknown.m: fits finite mixtures with increasing number
of components to simulated data (takes about 4 CPU minutes).

• demo mix multivariate normal.m: fits a finite mixture of three bivari-
ate normal distributions to bivariate simulated data (takes about 5 CPU
minutes).

• demo mix multivariate normal Kunknown.m: fits finite mixtures of bi-
variate normal distributions with increasing number of components to
bivariate simulated data (takes about 8 CPU minutes), see also Subsec-
tion 6.2.10.

6.2.3 Choosing the Prior Distribution for Univariate Mixtures of
Normals

Bayesian estimation of univariate mixtures of normals is discussed in great
detail in Frühwirth-Schnatter (2006, Section 6.2). The choice of prior distri-
butions for mixtures of normal distributions is discussed in Subsections 6.2.2,
6.2.3 and 6.2.6 of Frühwirth-Schnatter (2006). Both conditionally conjugate
as well as independence priors are implemented for mixtures of normals in the
toolbox.

The Structure of the Prior

The prior has to be a structure array as explained in Subsection 4.2.1, includ-
ing the following fields:

• type specifies the prior type. This is one of the following strings:
– ’concon’ refers to the conditionally conjugate prior

µk|σ2
k ∼ N (

b0,k, σ2
k/N0,k

)
, σ2

k ∼ G−1 (c0,k, C0,k) . (6.1)

– ’indep’ refers to the independence prior

µk ∼ N (b0,k, B0,k) , σ2
k ∼ G−1 (c0,k, C0,k) . (6.2)

58 6 Finite Mixture Models for Continuous Data

• The field par contains the hyperparameters and is a structure array with
the fields mu and sigma, respectively:
– For the conditionally conjugate prior the field mu is a structure array

with the fields b and N0, being 1 x K numerical arrays specifying the
parameters b0,k and N0,k of the normal prior (6.1).

– For the independence prior the field mu is a structure array with the
fields b and Binv, being 1 x K numerical arrays specifying the param-
eters b0,k and B−1

0,k of the normal prior (6.2).
– For both priors, the field sigma is a structure array with the fields c

and C, being 1 x K numerical arrays specifying the parameters c0,k and
C0,k of the prior σ2

k ∼ G−1 (c0,k, C0,k).

Note that the arrays defining these fields contain K entries, even if the prior
is invariant.

If the hyperparameter C0 of an invariant prior is a random parameter with
a prior of its own, C0 ∼ G (g0, G0), then the following additional fields have
to be added to the prior specification:

• The field hier which is a logical variable taking the value true.
• The fields par.sigma.g and par.sigma.G containing the parameters g0

and G0 of the Gamma prior.

The Default Choice

The toolbox allows an automatic selection of slightly data dependent, rather
noninformative priors by calling the function priordefine. This default
choice is an invariant hierarchical independence prior (Richardson and Green,
1997) with the hyperparameters selected as in Frühwirth-Schnatter (2006,
Subsection 6.2.6):

b0 = m, B0 = R2, c0 = 2,

g0 = 0.5, G0 = 100g0/(c0R
2), (6.3)

where m and R are the midpoint and the length of the observation interval.
We choose g0 = 0.5 rather than g0 = 0.2 as in Richardson and Green (1997)
for numerical reasons.

It is possible to force the package to use a standard independence prior
where C0 is fixed rather than random. This prior is obtained by calling the
function priordefine in the following way:

prior.hier=false;
prior=priordefine(data,mix,prior);

The default choice for such a prior is an invariant prior with following hyper-
parameters (Frühwirth-Schnatter, 2006, Subsection 6.2.2):

b0 = y, B0 = s2
y, c0 = 2.5, C0 = φ(c0 − 1)s2

y, (6.4)

6.2 Finite Mixtures of Normal Distributions 59

where y is the sample mean, s2
y is the sample variance, and φ = 0.5.

Alternatively, it is possible to force the package to use a standard conju-
gate prior with the hyperparameters selected as in Frühwirth-Schnatter (2006,
Subsection 6.2.2):

b0 = y, N0 = 1, c0 = 2.5, C0 = φ(c0 − 1)s2
y, (6.5)

where y, s2
y and φ are the same as in (6.4). This prior is obtained by calling

the function priordefine in the following way:

prior.hier=false;
prior.type=’concon’;
prior=priordefine(data,mix,prior);

To define a hierarchical conjugate prior which combines the conjugate prior
(6.5) with a hierarchical prior where g0 = 0.5 and G0 = g0C

−1
0 call the

function priordefine in the following way:

prior.hier=true;
prior.type=’concon’;
prior=priordefine(data,mix,prior);

6.2.4 Choosing the Prior Distribution for Multivariate Mixtures of
Normals

The choice of prior distributions for multivariate mixtures of normal distri-
butions is discussed in Frühwirth-Schnatter (2006, Subsection 6.3.2). Both
conditionally conjugate as well as independence priors are implemented in the
toolbox.

The Structure of the Prior

The prior has to be a structure array as explained in Section 4.2.1, including
the following fields:

• type specifies the prior type. This is one of the following strings:
– ’concon’ refers to the conditionally conjugate prior

µk|Σk ∼ Nr (b0,Σk/N0,k) , Σ−1
k ∼ Wr (c0,k,C0,k) . (6.6)

– ’indep’ refers to the independence prior

µk ∼ Nr (b0,k,B0,k) , Σ−1
k ∼ Wr (c0,k,C0,k) . (6.7)

• The field par contains the hyperparameters of these priors and is a struc-
ture array with the fields mu and sigma, respectively.

60 6 Finite Mixture Models for Continuous Data

– For the conditionally conjugate prior the field mu is a structure array
with the fields b and N0, being, respectively, a r x K and a 1 x K
numerical array specifying the parameters b0,k and N0,k of the normal
prior (6.6).

– For the independence prior the field mu is a structure array with fields b
and Binv, specifying the parameters b0,k and B−1

0,k of the normal prior
(6.7). b is a r x K numerical array and Binv is a r x r x K numerical
array.

– For both priors, the field sigma is a structure array with the fields c
and C, specifying the parameters c0,k and C0,k of the Wishart prior
Σ−1

k ∼ Wr (c0,k,C0,k). c is a 1 x K numerical array, C is a r x r x K
numerical array.

– For both priors the field logdetC, containing the log of the determinant
log |C0,k| should be added, because this speeds up the computation of
the prior. This field is a 1 x K numerical array.

Note that the arrays defining these fields contain K entries, even if the prior
is invariant.

If the hyperparameter C0 of an invariant prior is a random parameter with
a prior of its own, C0 ∼ Wr (g0,G0), then additional fields have to be added
to the prior specification:

• The field hier which is a logical variable taking the value true.
• The fields par.sigma.g and par.sigma.G containing the parameters g0

and G0 of the Wishart prior.

The Default Choice

The toolbox allows an automatic selection of slightly data dependent, rather
noninformative priors by calling the function priordefine, see Subsection 4.2.1.
This default choice is an invariant hierarchical independence prior (Stephens,
1997) with the hyperparameters selected as in Frühwirth-Schnatter (2006,
Subsection 6.3.2):

b0 =

m1

...
mr

 , B0 = Diag

(
R2

1 · · · R2
r

)
, G0 =

100g0

c0
B−1

0 ,

g0 = 0.5 + (r − 1)/2, c0 = νc + (r − 1)/2,

where ml and Rl are the midpoint and the length of the observation interval
of the lth component of yi.

It is possible to overrule this choice and to select an invariant conjugate
default prior (Bensmail et al., 1997) with the hyperparameters selected as in
Frühwirth-Schnatter (2006, Subsection 6.3.2):

b0 = y, N0 = 1, c0 = νc + (r − 1)/2, C0 = φ(νc − 1)Sy, (6.8)

6.2 Finite Mixtures of Normal Distributions 61

where r = dimy, y is the sample mean vector, Sy is the sample covari-
ance, νc = 2.5, and φ = 0.5. This prior is obtained by calling the function
priordefine in the following way:

prior.hier=false;
prior.type=’concon’;
prior=priordefine(data,mix,prior);

Alternatively, it is possible to select a default standard independence prior
which is an invariant prior with following hyperparameters (Frühwirth-Schnatter,
2006, Subsection 6.2.3):

b0 = y, B0 = Sy, c0 = νc + (r − 1)/2, C0 = φ(νc − 1)Sy,

where y, Sy, νc, and φ are the same as in (6.8). This prior is obtained by
calling the function priordefine in the following way:

prior.hier=false;
prior=priordefine(data,mix,prior);

Finally, it is possible to use a default hierarchical conjugate prior which com-
bines the conjugate prior (6.8) with a hierarchical prior where

g0 = 0.5 + (r − 1)/2, G0 = g0/C−1
0 .

This prior is obtained by calling the function priordefine in the following
way:

prior.hier=true;
prior.type=’concon’;
prior=priordefine(data,mix,prior);

6.2.5 Bayesian Inference for a Single Normal Distribution

Assume that a single normal distribution, either univariate or multivariate,
should be fitted to i.i.d. data and a prior is selected as in Subsection 6.2.3 or
6.2.4.

Under an independence prior or under a hierarchical prior, no closed form
posterior is available for the whole parameter vector, and either the mean or
the variance have to be fixed, to obtain a closed form conditional distribution.
To sample from the posterior distribution under an independence prior, one
has to implement a two-step Gibbs sampler. For a hierarchical independence
prior, a three-step Gibbs sampler has to be implemented. To run Gibbs sam-
pling under any arbitrary prior call the function mixturemcmc explained in
Subsection 4.3.

Under a conjugate, non-hierarchical prior, a closed form posterior is avail-
able which takes the form a Normal-Gamma or a Normal-Wishart family. To
compute the parameters of the posterior distribution, the function posterior
may be called:

62 6 Finite Mixture Models for Continuous Data

post.par=posterior(data,model,prior.par);

post.par is a structural array containing the same fields as prior.par. But
even in this case, it is preferable to use the function mixturemcmc to sample
from the posterior distribution as this allows the application of a lot tools
developed for Bayesian inference based on posterior draws, see Section 4.5.

6.2.6 Bayesian Parameter Estimation When the Allocations are
Known

For data where the allocations are known, the structure array data has to
include the field S, storing the allocations. For a complete-data Bayesian es-
timation as discussed in Subsection 6.2.1 and Subsection 6.3.1 of Frühwirth-
Schnatter (2006), you need first to define a prior on the parameters, stored in
a structure array prior as described in Subsection 6.2.3 or 6.2.4. Like for a
single normal distribution, whether a closed form of the conditional posterior
exists or not depends on the nature of the prior.

Under an independence prior or under a hierarchical prior, no closed form
posterior is available for the whole parameter vector, even if the allocations
are known, and either the mean or the variance have to be fixed, to obtain a
closed form conditional distribution.

Under a conjugate, non-hierarchical prior, a closed form posterior is avail-
able when the allocations are known which takes the form a Normal-Gamma
or a Normal-Wishart family. To compute the parameters of the posterior dis-
tribution, the function posterior may be called:

post.par=posterior(data,model,prior.par);

post.par is a structural array containing the same fields as prior.par. But
even in this case, it is preferable to use the function mixturemcmc to sample
from the posterior distribution.

To run complete-data Gibbs sampling under any arbitrary prior call the
function mixturemcmc explained in Subsection 4.3, however, the allocations
have to fixed beforehand:

mix.indicfix=true;
mcmcout=mixturemcmc(data,mix,prior,mcmc);

No random permutation will be performed in this case, even if mcmc.ranperm
is set true.

6.2.7 Bayesian Parameter Estimation When the Allocations are
Unknown

This section concerns parameter estimation when the allocations are unknown.
Bayesian estimation of finite mixtures of normal distributions using data aug-
mentation and MCMC is discussed in Frühwirth-Schnatter (2006) for univari-
ate mixtures in Subsection 6.2.4 and for multivariate mixtures in Subsection
6.3.3.

6.2 Finite Mixtures of Normal Distributions 63

For univariate mixtures, MCMC sampling is performed as described in
Frühwirth-Schnatter (2006), Algorithm 6.1. Sampling the component param-
eters θk = (µk, σ2

k) involves the following steps:

(a) Sample σ2
k in each group k from a G−1 (ck(S), Ck(S))-distribution.

(b) Sample µk in each group k from an N (bk(S), Bk(S))-distribution.

For multivariate mixtures, MCMC sampling is performed as described in
Frühwirth-Schnatter (2006), Algorithm 6.2. Sampling the component param-
eters θk = (µk,Σk) involves the following steps:

(a) Sample Σ−1
k in each group k from a Wr (ck(S),Ck(S))-distribution.

(b) Sample µk in each group k from an Nr (bk(S),Bk(S))-distribution.

To run data augmentation and MCMC for data stored in data for the mixture
model mix under prior prior, call the function mixturemcmc explained in
Subsection 4.3. The structure of the MCMC output is explained in full detail
in Subsection 6.2.11.

One may call the function mcmcstart explained in Subsection 4.3 before
starting MCMC to make use of default starting values. The remainder of this
subsection explains, how these starting values are selected.

Default Starting Values

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1), MCMC
estimation starts with sampling the parameters and the indicators stored in
data.S are selected as starting value for the classification S(0). In higher
dimensions, it is usually easier to find a sensible starting value for the classi-
fication and the cluster means than for the cluster means and the variance-
covariance matrices.

Under the independence prior, sampling of θk involves two blocks, where
the first block samples the component (co)variances conditional on the com-
ponent means. Thus starting values for the means are needed which need to
be stored in mix.par.mu before calling the function mixturemcmc.

The function mcmcstart adds starting values for the field S in the structure
array describing the data and, if necessary, the field mu in the structure array
describing the mixture model. This function is based on k-means clustering of
the data stored in data.y using the MATLAB function kmeans. The resulting
cluster means are chosen as starting values for mu.

Alternatively, one may start MCMC with sampling the indicators, in which
case mix has to be a fully specified mixture before calling mixturemcmc. To
determine starting values for a fully specified mixture, again the function
mcmcstart may be called, however with the additional input argument mcmc,
where mcmc.startpar=true. For univariate mixtures with K > 1, starting
values for µk are sampled from N (

y, s2
y

)
, while all starting values for σ2

k are
equal to s2

y. For K = 1, µ1 = y. For multivariate mixtures with K > 1,
starting values for µk are sampled from Nr (y,Sy), while all starting values

64 6 Finite Mixture Models for Continuous Data

for Σk are equal to Sy. For K = 1, µ1 = y. The starting value for the weight
distribution is uniform, i.e. ηk = 1/K.

Finally, under a hierarchical prior the prior parameter prior.par.G has
to be set to an appropriate starting value, for instance, the mean of the prior
put on the random hyperparameter. Automatic prior definition using the func-
tion priordefine, see Subsection 6.2.3 or 6.2.4, automatically chooses such
a starting value for MCMC estimation.

6.2.8 Plotting MCMC

The function mcmcplot, introduced in Subsection 4.5.1, could be used to plot
and monitor the MCMC output.

Sampling Representations of the Mixture Posterior Density

To produce sampling representations of the posterior draws as explained in
Subsection 4.5.1 function mcmcplot calls the function mcmcsamrep. For uni-
variate mixtures µ

(m)
k is plotted against σ

(2,m)
k . If the permutation sampler

has been used (mcmcout.ranperm is true), then, additionally, the MCMC
draws µ

(m)
k are plotted against µ

(m)
k′ and the MCMC draws σ

(2,m)
k are plotted

against σ
(2,m)
k′ .

For the MCMC output of a multivariate mixture of normals, the following
point process representation are produced:

• A point process representation of each univariate marginal mixture density
of Yj , for each j = 1, . . . , r, by plotting µ

(m)
k,j against Σ(m)

k,jj . This plot
provides information about similarity of the mixture components in each
marginal density.

• A point process representation of each bivariate marginal mixture density
of (Yj , Yj′) for all possible combinations (j, j′) of elements of Y, by plotting
the means µ

(m)
k,j of element j against the means µ

(m)
k,j′ of element j′.

• To obtain point process representations for the covariance matrices of each
multivariate normal component density, log |Σ−1

k |(m) is plotted against
tr (Σk)(m). Furthermore the largest eigenvalue of Σ(m)

k is plotted against
the smallest one.

6.2.9 Estimating the Component Parameters and the Weight
Distribution

To perform parameter estimation, call the function est=mcmcestimate(mcmcout)
introduced in Subsection 4.5.2. For each estimation method, the estimators
of the weight distribution η1, . . . , ηK are stored in the field weight while the
estimators of the parameters are stored in the field par, which has the same
structure as for the estimated mixture, e.g.

6.2 Finite Mixtures of Normal Distributions 65

• est.pm.par.mu – (approximate) posterior mode estimator of the groups
means µ1, . . . , µK (or µ1, . . . , µK),

• est.pm.par.sigma – (approximate) posterior mode estimator of the groups
variances Σ1, . . . ,ΣK (or σ2

1 , . . . , σ2
K),

• est.ident.par.mu – ergodic average estimator of the groups means
µ1, . . . , µK (or µ1, . . . , µK) after identification,

• est.ident.par.sigma – ergodic average estimator of the groups variances
Σ1, . . . ,ΣK (or σ2

1 , . . . , σ2
K) after identification.

6.2.10 Model Selection Problems for Mixtures of Normals

To compute the log of the marginal likelihood as in Frühwirth-Schnatter (2006,
Subsection 6.4.2), call the function mcmcbf, see Section 5.3 for more details.

Example

The demo demo mix multivariate normal Kunknown.m fits finite mixtures of
multivariate normal distributions with the number of components increasing
from K = 1 to K = 4 to simulated data that where generated by a mixture of
three bivariate normal distributions. Table 6.2 reports the various estimators
of the log of the marginal likelihood. The standard errors are stored in the
field se. All estimators select the true number of components. We observe
increased numerical instability for overfitting models like K = 4. In particular
importance sampling and reciprocal importance sampling are instable, while
bridge sampling is much more precise.

Table 6.2. Running the demo demo mix multivariate normal Kunknown.m; log of
various estimates of the marginal likelihood p(y|MK) under the default prior; BS
. . . bridge sampling, IS . . . importance sampling, RI . . . reciprocal importance sam-
pling; standard errors in parenthesis

K
1 2 3 4

p̂BS(y|MK) -2946.63 -2410.33(0.002) -2075.17(0.002) -2082.45(0.037)
p̂IS(y|MK) -2946.63 -2410.33(0.003) -2075.17(0.003) -2081.78(0.364)
p̂RI(y|MK) -2946.63 -2410.33(0.003) -2075.18(0.004) -2085.55(0.303)

6.2.11 The Structure of the MCMC Output

The MCMC output is a structure array having the fields defined in Subsec-
tion 4.3.2. In this subsection only those fields are described in more details
which are specific to normal mixture models.

66 6 Finite Mixture Models for Continuous Data

The MCMC Output for univariate mixtures of normals

• par is a structure array with the fields mu and sigma containing the MCMC
draws for the component parameters:
– mu is a M x K numerical array storing the posterior draws µ

(m)
k .

– sigma is a M x K numerical array storing the posterior draws σ
(2,m)
k .

• hyper is added under a hierarchical prior. This is a M x 1 numerical array
containing the MCMC draws C

(m)
0 for the random hyperparameter.

• post.par is a structure array with the fields mu and sigma. The field
post.par.mu is a structure array with following fields:
– b is a M x K numerical array storing for each group k the mean bk(S)

of the normal posterior N (bk(S), Bk(S)) used for sampling µ
(m)
k .

– B is a M x K numerical array storing for each group k the variance
Bk(S) of this distribution.

The field post.par.sigma is a structure array with following fields:
– c is a M x K numerical array storing for each group k the shape param-

eter ck(S) of the inverted Gamma posterior G−1 (ck(S), Ck(S)) used for
sampling σ

(2,m)
k .

– C is a M x K numerical array storing for each group k the scale param-
eter Ck(S) of the same distribution. For a conjugate prior, this is the
parameter of the marginal distribution, where the unknown mean is
integrated out.

The MCMC Output for multivariate mixtures of normals

For multivariate mixtures the covariances Σk are simulated by drawing Σ−1
k

from a Wishart distribution and computing Σk as the numerical inverse of
Σ−1

k . If the posterior draws of Σk are needed for further numerical evalua-
tion, like evaluating p(Σk|S,y) or computing eigenvalues, it is often safer to
work with Σ−1

k . For this reason, both the original draws (Σ−1
k)(m) as well

as the numerically inverted draws Σ(m)
k are stored. You may prevent storing

of (Σ−1
k)(m) by calling mixturemcmc(data,mix,prior,mcmc) with the option

mcmc.storeinv being false.
To save storage place, for MCMC draws of symmetric matrices of size r

only the upper triangular matrix is stored as a vector of length s = r(r+1)/2.
Various utility functions are available to convert a symmetric matrix into such
a vector and to recover a symmetric matrix from such a vector:

• mat=qinmatr(col) converts the s x 1 column vector col, where s=r(r+1)/2
into the r x r array mat.

• Similarly, mat=qinmatrmult(col) converts a sequence of K column vec-
tor, stored as s x K array col into a sequence of r x r arrays, stored in
the r x r x K array mat.

• col= qincol(mat) converts the r x r array mat into the s x 1 column
vector col, where s=r(r+1)/2.

6.2 Finite Mixtures of Normal Distributions 67

• Similarly, col= qincolmult(mat) converts a sequence of K symmetric
matrices of dimension r, stored in the r x r x K array mat, into a sequence
of K column vector of length s = r(r + 1)/2, stored as s x K array col.

In qinmatr and qinmatrmult a warning will be produced, if no integer r exists
such that s = r(r + 1)/2.

The MCMC output is stored in the structure array mcmcout having the
fields defined in Subsection 4.3.2. In the following only those fields are de-
scribed in more details which are specific to multivariate normal mixture
models:

• par is a structure array with the fields mu, sigma, sigmainv, and logdet
containing the MCMC draws for the component parameters:
– mu is a M x r x K numerical array storing the posterior draws µ

(m)
k .

– sigma is a M x s x K numerical array storing the posterior draws Σ(m)
k

as column vectors. To reconstruct as single draw Σ(m)
k , call the function

qinmatr, to reconstruct all covariance matrices Σ(m)
1 , . . . ,Σ(m)

K for the
mth draw call the function qinmatrmult:

mix.par.sigma(:,:,k)=qinmatr(mcmcout.par.sigma(m,:,k)’)
mix.par.sigma=qinmatr(mcmcout.par.sigma(m,:,:))

– sigmainv is a M x s x K numerical array storing the posterior draws
(Σ−1

k)(m) as column vectors, unless mcmc.storeinv is false. To recon-
struct a single draw (Σ−1

k)(m), call the function qinmatr, to reconstruct
all covariance matrices (Σ−1

1)(m), . . . , (Σ−1
K)(m) for the mth draw call

the function qinmatrmult:

mix.par.sigmainv(:,:,k)=qinmatr(mcmcout.par.sigmainv(m,:,k)’)
mix.par.sigmainv=qinmatr(mcmcout.par.sigmainv(m,:,:))

– logdet is a M x K numerical array, storing log |(Σ−1
k)(m)|.

• hyper is added under a hierarchical prior. This is a M x s numerical array
containing the MCMC draws of the (symmetric) random hyperparameter
matrices C(m)

0 , stored as column vectors.
• post.par is a structure array with the fields mu and sigma. The field

post.par.mu is a structure array with following fields:
– b is a M x r x K numerical array storing for each group k the mean

bk(S) of the normal posterior Nr (bk(S),Bk(S)) used for sampling
µ

(m)
k .

– B is a M x r x r x K numerical array storing for each group k the
variance Bk(S) of the same distribution.

The field post.par.sigma is a structure array with following fields:
– c is a M x K numerical array storing for each group k the shape parame-

ter ck(S) of the Wishart posterior Wr (ck(S),Ck(S)) used for sampling
(Σ−1

k)(m).

68 6 Finite Mixture Models for Continuous Data

– C is a M x s x K numerical array storing for each group k the (sym-
metric) scale matrix Ck(S) of the same distribution as a vector of
size s=r(r+1)/2. For a conjugate prior, this is the parameter of the
marginal distribution, where the unknown mean is integrated out.

– logdetC is a M x K numerical array storing for each group k the log of
the determinant log |Ck(S)|.

6.3 Finite Mixtures of Student-t Distributions

Finite mixtures of Student-t distributions are defined and discussed in de-
tail in Frühwirth-Schnatter (2006, Section 7.3). For univariate observations,
it is assumed that the observations y = (y1, . . . , yN) are independent realiza-
tions of a random variable Y arising from the following mixture of univariate
Student-t distributions:

Y ∼ η1tν1

(
µ1, σ

2
1

)
+ · · ·+ ηKtνK

(
µK , σ2

K

)
. (6.9)

For multivariate observations, it is assumed that the observations y =
(y1, . . . ,yN) are independent realizations of a random variable Y arising from
the following mixture of multivariate Student-t distributions:

Y ∼ η1tν1 (µ1,Σ1) + · · ·+ ηKtνK
(µK ,ΣK) . (6.10)

6.3.1 Defining Mixtures of Student-t Distributions

To define a finite mixture of Student-t distributions within this toolbox, create
a structure array as explained in Subsection 2.2.1. The field dist is equal to
’Student’ for univariate mixtures and equal to ’Stumult’ for multivariate
mixtures. The field par is a structure array with three fields:

• mu contains the component specific location parameters µk or µk;
• sigma contains the component specific scale parameters σ2

k or Σk;
• df contains the component specific degrees of freedoms ν1, . . . , νK .

For a univariate mixture, par.mu, par.sigma and par.df are 1 x K numeric
arrays. For a multivariate mixture of dimension r, par.mu is a r x K numeric
array, par.sigma is r x r x K numeric array and par.df is a 1 x K numeric
array.

For a mixture of K multivariate Student-t distributions it is often con-
venient to work with Σ−1

k and log |Σ−1
k |, e.g. if the mixture is applied for

classification. These quantities are stored as optional fields of par, where

• sigmainv contains Σ−1
1 , . . . , Σ−1

K , characterized by a r x r x K numeric
array;

• logdet contains log |Σ−1
1 |, . . . , log |Σ−1

K |, characterized by a 1 x K nu-
meric array.

6.3 Finite Mixtures of Student-t Distributions 69

Whereas it is mathematically correct to consider a univariate Student-t mix-
ture as that special case of a multivariate mixture where r = 1, a combination
of ’Stumult’ with mix.r=1 should be avoided when using this package, be-
cause this almost surely leads to troubles with array sizes when the intrinsic
function squeeze is applied by one the routines.

Simulated Data

Data are simulated from a finite mixture of Student-t distributions by calling
the function simulate, see Subsection 3.3. To simulate the data, the following
hierarchical representation of a finite mixture of Student-t distributions is
used, where the distributions

Si ∼ MulNom (η1, . . . , ηK) ,

ωi|Si = k ∼ G (νk/2, νk/2) ,

are combined with

Yi|Si = k, ωi ∼ N (
µk, σ2

k/ωi

)
, (6.11)

for univariate mixtures and with

Yi|Si = k, ωi ∼ Nr (µk,Σk/ωi) , (6.12)

for multivariate mixtures. The “true” scaling factors ωi used in the simulation
are added for simulated data as additional field to the structural array defining
the data:

• The field omega is a 1 x N array containing the “true” scaling factors
ω1, . . . , ωN used in the simulation of the data.

6.3.2 Getting Started Quickly

Several demos are available, that demonstrate how to fit mixtures of Student-t
distributions to simulated data:

• demo mix student.m: fits a mixture of two univariate Student-t distribu-
tions to simulated data (takes about 6 CPU minutes), see also Subsec-
tion 6.3.6.

• demo mix student Kunknown.m: fits mixtures of univariate Student-t dis-
tributions with increasing number of components to simulated data (takes
about 11 CPU minutes).

• demo mix multivariate student.m: fits a finite mixture of three bivariate
Student-t distributions to bivariate simulated data (takes about 7 CPU
minutes).

• demo mix multivariate student Kunknown.m: fits mixtures of bivariate
Student-t distributions with increasing number of components to bivariate
simulated data (takes about 25 CPU minutes), see also Subsection 6.2.10.

70 6 Finite Mixture Models for Continuous Data

6.3.3 Choosing the Prior Distribution

An attractive feature of a Bayesian approach is estimating the degrees of free-
dom νk along with all other unknown quantities. Bayesian estimation is based
on assuming prior independence between νk and the remaining component
specific parameters. For univariate mixtures, the following prior is used:

p(µk, σ2
k, νk) = p(µk, σ2

k)p(νk), (6.13)

where p(µk, σ2
k) is the same prior as in discussed in Subsection 6.2.3. For

multivariate mixtures, the following prior is used:

p(µk,Σk, νk) = p(µk,Σk)p(νk), (6.14)

where p(µk,Σk) is the same prior as in discussed in Subsection 6.2.4.
The prior on νk has to be selected carefully in order to avoid improper

posteriors, see e.g. Geweke (1993) and Fonseca et al. (2008). In this package
following translated prior is used:

p(νk) ∝ (νk − c)a0−1

(νk − c + d)a0+b0
I{c,∞}(νk), (6.15)

where a0, b0, c and d are hyperparameters selected by the user. Choosing
c > 0 shifts the prior away from 0, as it is advisable to avoid values for νk

that are close to 0, see Fernández and Steel (1999).

The Structure of the Prior

The prior has the same structure as for mixtures of normal distributions, see
Subsection 6.2.3 and 6.2.4, respectively. The field par has an additional field
to define the prior of νk:

• The field df defines the prior for ν1, . . . , νK . It is a structural array with
following fields:
– The field type defines the type of prior used for p(νk) and is equal to

’inhier’ for prior (6.15).
– The field trans defines the hyperparameter c;
– the field a0 defines the hyperparameter a0;
– the field b0 defines the hyperparameter b0;
– the field d defines the hyperparameter d.

The Default Choice

The toolbox allows the automatic selection of a slightly data dependent, rather
noninformative prior by calling the function priordefine. This default choice
combines the prior p(νk) defined in (6.15), where a0 = 2, b0 = 2, c = 1 and
d = 9, with the same default choice for (µk, σ2

k) or (µk,Σk) as for mixtures

6.3 Finite Mixtures of Student-t Distributions 71

of normals, see Subsection 6.2.3 and 6.2.4, respectively. For this prior choice,
the prior median of νk is equal to 10, while the prior mean is equal to 20. This
particular choice guarantees that the posterior distribution is proper and that
the marginal posterior distribution of νk has a finite expectation. Thus the
average of the MCMC draws may be used to estimate νk.

6.3.4 Bayesian Parameter Estimation When the Allocations are
Unknown

This section concerns parameter estimation when the allocations are unknown.
Bayesian estimation of finite mixtures of Student-t distributions using data
augmentation and MCMC is discussed in Frühwirth-Schnatter (2006, Subsec-
tion 7.3.1). Bayesian estimation of mixtures of Student-t distributions is based
on the representation of the Student-t distribution as an infinite scale mixture
of normal distributions, see (6.11) and (6.12), respectively. Thus a mixture of
Student-t distributions may be regarded as a mixture of normal distributions,
where all group members have the same expectation µk, however, within each
group there exists variance heterogeneity, captured by the scaling factor ωi,
with smaller values of ωi causing larger variances.

The sampling scheme presented in Subsection 6.2.7 for normal mixtures
has to be extended, see Frühwirth-Schnatter (2006), Algorithm 7.1. MCMC
sampling is performed as described in Frühwirth-Schnatter (2006), Algorithm
6.1 and an additional step has to be added to sample ν1, . . . , νK .

Depending on the degree of data augmentation in the conditional density
p(ν1, . . . , νK |·), different Metropolis-Hastings steps to sample νk result. The
fastest algorithm is sampling νk conditional on knowing the scaling parameters
ω = (ω1, . . . , ωN), by drawing from the full conditional posterior p(νk|ω,S,y)
by means of a Metropolis–Hastings algorithm as Lin et al. (2007) did. How-
ever, this works only, if the degree of freedom is small in all components.
Tremendous inefficiency factors may be observed, if some of the νks were
larger than about 10.

Sampling νk from p(νk|µk, σ2
k,S,y) or p(νk|µk,Σk,S,y) where ω is in-

tegrated out increases efficiency considerably. Additional efficiency is gained
by sampling νk without conditioning on S and ω from p(νk|θ−k,µk,Σk, η,y)
where θ−k denotes all component specific parameters expect θk. However, this
sampler is the most time consuming one because it involves the computation
of the mixture likelihood p(y|θ1, . . . , θK ,η).

Nevertheless, this is the default choice in the package. The correspond-
ing Metropolis-Hastings algorithm is based on the uniform log random walk
proposal

log(νnew
k − 1) ∼ U [log(νk − 1)− cνk

, log(νk − 1) + cνk
] , (6.16)

with fixed width parameter cνk
. The width parameter cνk

has to be selected
by the user prior to running MCMC, see below.

72 6 Finite Mixture Models for Continuous Data

To run data augmentation and MCMC for data stored in data for the
Student-t mixture model defined in mix under prior prior, call the function
mixturemcmc explained in Subsection 4.3. The structure of the MCMC output
is explained in Subsection 6.3.7.

One may call the function mcmcstart explained in Subsection 4.3 be-
fore starting MCMC to make use of default starting values. The function
mcmcstart does not choose the width parameter cνk

of the random walk
Metropolis-Hastings algorithm used for sampling νk. The width parameters
cν1 , . . . , cν1 have to be stored prior to calling mixturemcmc by the user in an
additional field of the array mcmc controlling MCMC:

• The field mh.tune.df is numerical array of size 1 x K defining the width
parameters cν1 , . . . , cνK

of the uniform log random walk proposals for
ν1, . . . , νK defined in (6.16).

Default Starting Values

The remainder of this subsection explains how these starting values are se-
lected.

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1),
MCMC estimation starts with sampling the parameters and the indicators
stored in data.S are selected as starting value for the classification S(0).
Additionally, for Student-t mixtures starting values are needed for the scal-
ing factors ω1, . . . , ωN which need to be stored in data.omega. The function
mcmcstart selects the starting values ωi = 1, i = 1, . . . , N . These values may
be changed after calling mcmcstart simply by reassigning other starting values
to the array data.omega.

Under a conjugate prior, sampling of the component specific parameter
θk involves two blocks, where the first block samples the component means
and the component (co)variances conditional on the component degrees of
freedom. Thus starting values of the degrees of freedom are needed which
need to be stored in mix.par.df before calling the function mixturemcmc.
Under the independence prior, sampling of θk involves three blocks, where the
first block samples the component (co)variances conditional on the component
means and the component degrees of freedom. Thus starting values for the
means and the degrees of freedom are needed which need to be stored in
mix.par.mu and mix.par.df before calling the function mixturemcmc.

The function mcmcstart adds starting values for the fields S and omega
in the structure array describing the data, for the degrees of freedom and,
if necessary, for the field mu in the structure array describing the mixture
model. This function is based on k-means clustering of the data stored in
data.y using the MATLAB function kmeans. The resulting cluster means are
chosen as starting values for mu. The starting value for νk is equal to 10.
It may be easily changed after calling mcmcmstart just by setting the array
mix.par.df to different values.

6.3 Finite Mixtures of Student-t Distributions 73

Alternatively, one may start MCMC with sampling the indicators, in which
case mix has to be a fully specified mixture before calling mixturemcmc, in-
cluding the field par and, for K > 1, the field weight. In this case, data.S
may be unspecified. To determine starting values for a fully specified mixture,
again the function mcmcstart may be called, however with the additional in-
put argument mcmc, where mcmc.startpar=true. Starting values for µk and
σ2

k or µk and Σk are determined exactly as for a normal mixture, see Subsec-
tion 6.2.7, while νk is equal to 10.

6.3.5 Plotting MCMC

The function mcmcplot, introduced in Subsection 4.5.1, could be used to plot
and monitor the MCMC output.

6.3.6 Model Selection Problems for Mixtures of Student-t
distributions

To compute the log of the marginal likelihood as in Frühwirth-Schnatter (2006,
Subsection 7.3.2), call the function mcmcbf, see Section 5.3 for more details.
The importance density for νk is constructed through a kernel density estima-
tor applied to the MCMC draws of νk. The stability of the various estimators
is much smaller than for mixtures of normal distributions.

Examples

The demo demo mix student.m fits a finite mixtures of two univariate Student-
t distributions to data that were simulated from such a mixture. Table 6.3
reports the various estimators of the log of the marginal likelihood of this
model for two independent MCMC runs (5000 draws after a burn-in of 2000
draws). For each MCMC chain, marginal likelihood estimation was performed
twice independently. It is evident that bridge sampling is very stable over
independent runs. Importance sampling and reciprocal importance sampling
are rather unstable.

Table 6.3. Running the demo demo mix student.m; log of various estimates of the
marginal likelihood p(y|M2) for a mixture of two Student-t distributions under the
default prior; BS . . . bridge sampling, IS . . . importance sampling, RI . . . reciprocal
importance sampling; standard errors in parenthesis

first MCMC run second MCMC run
estimator 1 estimator 2 estimator 1 estimator 2

p̂BS(y|MK) -3548.55(0.02) -3548.52(0.02) -3548.53(0.02) -3548.37(0.02)
p̂IS(y|MK) -3538.47(0.41) -3535.94(0.89) -3539.24(0.47) -3537.05(0.65)
p̂RI(y|MK) -3595.03(0.99) -3588.77(0.99) -3586.84(0.95) -3589.51(0.99)

74 6 Finite Mixture Models for Continuous Data

The demo demo mix multivariate student Kunknown.m fits finite mix-
tures of multivariate Student-t distributions with the number of components
increasing from K = 1 to K = 4 to simulated data that where generated by a
mixture of three bivariate Student-t distributions. Table 6.4 reports the vari-
ous estimators of the log of the marginal likelihood. The standard errors are
stored in the field se. The bridge sampling and importance sampling estimator
select the true number of components, while reciprocal importance sampling
selects the wrong model. We observe increased numerical instability for over-
fitting models like K = 4. Importance sampling and reciprocal importance
sampling are instable, while bridge sampling is much more precise.

Table 6.4. Running the demo demo mix multivariate student Kunknown.m; log
of various estimates of the marginal likelihood p(y|MK) under the default prior;
BS . . . bridge sampling, IS . . . importance sampling, RI . . . reciprocal importance
sampling; standard errors in parenthesis

K
1 2 3 4

p̂BS(y|MK) -6078.81(0.01) -4923.18(0.01) -4412.82(0.02) -4424.91(0.04)
p̂IS(y|MK) -6077.82(0.07) -4922.01(0.08) -4401.11(0.85) -4418.70(0.45)
p̂RI(y|MK) -6079.58(0.05) -4924.08(0.06) -4432.25(0.84) -4449.24(0.99)

6.3.7 The Structure of the MCMC Output

The MCMC output is a structure array having the same fields as a mixture
of normal distribution, see Subsection 6.2.11. The following fields are added
for mixtures of Student-t distributions:

• The field mh provides details about the Metropolis-Hastings algorithm. It
is a structural array with two fields:
– The field tune.df is a 1 x K array containing the tuning parameters

for the log random walk Metropolis Hastings algorithm, see Subsec-
tion 6.3.4.

– The field acc.df is a 1 x K array containing the acceptance rates for
the log random walk Metropolis Hastings algorithm for the degrees of
freedom parameters ν1, . . . , νK .

• The field par has the fields described in Subsection 6.2.11 and, additionally,
a field containing the MCMC draws for ν1, . . . , νK :
– The field df is a M x K numerical array storing the posterior draws

ν
(m)
k .

6.4 Finite Mixtures of Exponential Distributions 75

6.4 Finite Mixtures of Exponential Distributions

It is often assumed that nonnegative observations are realizations of a random
variable Y arising from a finite mixture of exponential distributions:

Y ∼ η1E (λ1) + · · ·+ ηKE (λK) , (6.17)

where E (λk) is an exponential distribution with mean 1/λk. Mixtures of expo-
nential distributions are discussed in Frühwirth-Schnatter (2006, Section 9.1)
and in Wagner (2007).

6.4.1 Defining Mixture of Exponential Distributions

To define a finite mixture of exponential distributions within this MATLAB
package, create a structure array as explained in Section 2.2.1, where the
field par is a 1 x K numeric array containing the component parameters
λ1, . . . , λK .

6.4.2 Getting Started Quickly

A demo is available that demonstrates how to fit mixtures of exponential dis-
tributions to simulated data, see Subsection 3.3 for details on how to simulate
data from a finite mixture distribution:

• demo mix exponential.m: fits a mixture of two exponential distributions
to simulated data (takes less than 1 CPU minute).

6.4.3 Choosing the Prior for Bayesian Estimation

The choice of prior distributions for mixtures of exponential distributions is
discussed in detail in Wagner (2007). The standard choice is the conditionally
conjugate prior λk ∼ G (a0,k, b0,k).

The Structure of the Prior

The prior has to be a structure array as explained in Section 4.2.1. For mix-
tures of exponential distributions the field par is a structure array with two
fields, storing the prior parameters:

• a is a 1 x K numerical arrays storing a0,1, . . . , a0,K .
• b is a 1 x K numerical arrays storing b0,1, . . . , b0,K .

The Default Choice

The toolbox allows an automatic selection of a slightly data dependent,
rather noninformative prior by calling the function priordefine, see Sub-
section 4.2.1. The parameter a0 = 0.1 is chosen to be a small value as in
Wagner (2007). The parameter b0 is chosen in such a way that the prior mean
is matched to the mean of the data, i.e. b0 = a0y.

76 6 Finite Mixture Models for Continuous Data

6.4.4 Parameter Estimation When the Allocations are Unknown

Bayesian estimation of finite mixtures of exponential distributions using data
augmentation and MCMC is discussed in Frühwirth-Schnatter (2006, Sub-
section 9.1.2). Sampling the component parameter λk involves the following
step:

(a) For each k = 1, . . . , K, sample λk from a G (ak(S), bk(S))-distribution.

To run data augmentation and MCMC call the function mixturemcmc ex-
plained in Subsection 4.3. The structure of the MCMC output is explained in
Subsection 6.4.7. One may call the function mcmcstart explained in Subsec-
tion 4.3 before starting MCMC to make use of default starting values.

Default Starting Values

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1), MCMC
estimation starts with sampling the parameters and the indicators stored in
data.S are selected as starting value for the classification S(0). The function
mcmcstart adds starting values for the field S in the structure array describing
the data. This function is based on k-means clustering of the data stored in
data.y using the MATLAB function kmeans. Clustering is applied to the
transformed data zi =

√
yi.

Alternatively, one may start MCMC with sampling the indicators, in which
case mix has to be a fully specified mixture before calling mixturemcmc. To
determine starting values for a fully specified mixture, again the function
mcmcstart may be called, however with the additional input argument mcmc,
where mcmc.startpar=true. For K > 1, starting values for λk are defined
as λk = exp(zk)/y, where zk ∼ N (

0, 0.52
)
, while λ1 = 1/y for K = 1. The

starting value for the weight distribution is uniform, i.e. ηk = 1/K.

6.4.5 Plotting MCMC

The function mcmcplot, introduced in Subsection 4.3.2, could be used to plot
and monitor the MCMC output.

6.4.6 Model Selection Problems for Mixtures of Exponentials

To compute the log of the marginal likelihood as in Wagner (2007) call the
function mcmcbf, see Section 5.3 for more details.

6.4.7 The MCMC Output for Mixtures of Exponentials

The MCMC output is a structure array having the fields defined in Subsec-
tion 4.3.2. In this subsection only those fields are described in more details
which are specific to mixtures of exponential distributions:

6.4 Finite Mixtures of Exponential Distributions 77

• par is a M x K numerical array storing the posterior draws λ
(m)
k .

• post.par is a structure array with following fields:
– a is a M x K numerical array storing for each group k the shape pa-

rameter ak(S) of the posterior G (ak(S), bk(S)) used for sampling λ
(m)
k .

– b is a M x K numerical array storing for each group k the scale param-
eter bk(S) of the same distribution.

7

Finite Mixture Models for Discrete-Valued
Data

This chapter deals with finite mixture modelling of discrete-valued or cate-
gorical data.

7.1 Data Handling

The data are defined as a structure array as described in Subsection 3.1.1.
The field type=’discrete’ should be added, because this automatically al-
lows additional options for these data. If exposures should be included in the
analysis or if the data result from repeated measurements, then an additional
field has to be added to the structure array defining the data:

• Ti is usually a numerical array of size 1 x data.N, but could also be a
single integer number.

Data Sets Available in the Package

For illustration, several data sets are stored under particular names and could
be loaded into a structure array using the function dataget:

• Eye Tracking Data: data=dataget(’eye’);

Plotting the Data

Use the function dataplot(data), described in Subsection 3.2.1, to plot the
data.

7.2 Finite Mixtures of Poisson Distributions

A popular model for describing the distribution of count data is the Poisson
mixture model, where it is assumed that y1, . . . , yN are independent realiza-
tion of a random variable Y arising from a mixture of Poisson distributions:

80 7 Finite Mixture Models for Discrete-Valued Data

Y ∼ η1P (µ1) + · · ·+ ηKP (µK) , (7.1)

with P (µk) being a Poisson distribution with mean µk (Frühwirth-Schnatter,
2006, Section 9.2). If exposures e1, . . . , eN are available, then the mixture
model reads:

Yi ∼ η1P (eiµ1) + · · ·+ ηKP (eiµK) . (7.2)

7.2.1 Defining Mixtures of Poisson Distributions

To define a finite mixture of Poisson distributions create a structure array
as explained in Section 2.2.1, where the field par is a 1 x K numeric array
containing the component parameters µ1, . . . , µK .

Including Exposures

Exposures e1, . . . , eN are stored in the field Ti of the structure array defining
the data, see Subsection 7.1. For all functions in the package, where both
the mixture model and the data appear as input argument, it is assumed
implicitly, that the repetition parameter or the exposures of the data and the
model are the same.

Only if a function is called, where only the structure array defining the
mixture model appears as input argument, then a field Ti has to be added
explicitly to the array defining the model before calling this function. Plotting
the mixture density as discussed in Subsection 2.2.2 and computing moments
of the finite mixture distributions as discussed in Subsection 2.2.4 is possible
only, if the number of exposures is the same for all observations.

Simulated Data

When data are simulated from a Poisson distribution using the function
simulate introduced in Subsection 3.3, then it is usually assumed that no
exposures are available. It is, however, possible to simulate data for a given
sequence of exposures, that is stored in the field Ti of the structure array
defining the data, say mydata. To this aim, call the function simulate with
three input arguments, for instance:

mydata.Ti=[103 26 31 40 62 71 93 80 35 76];
data=simulate(mymodel,10,mydata);

7.2.2 Getting Started Quickly

A demo is available, that demonstrate how to fit mixtures of Poisson distri-
butions to real data:

• start eye.m: fits finite mixtures of Poisson distributions with K = 1 to
K = 7 to the Eye Tracking Data (takes about 11 CPU minutes), see
also Subsection 1.2.3.

7.2 Finite Mixtures of Poisson Distributions 81

7.2.3 Choosing the Prior for Bayesian Estimation

The choice of prior distributions for Poisson mixtures is discussed in Frühwirth-
Schnatter (2006, Subsection 9.2.1).

The Structure of the Prior

The prior is based on the conditionally conjugate priors µk ∼ G (a0,k, b0,k)
and is defined as a structure array as explained in Section 4.2.1. The field par
is a structure array with two fields:

• a is a 1 x K numerical arrays storing a0,1, . . . , a0,K .
• b is a 1 x K numerical arrays storing b0,1, . . . , b0,K .

If hyperparameters b0 of an invariant prior, where µk ∼ G (a0, b0) for all
k = 1, . . . , K, is a random parameter with prior b0 ∼ G (g0, G0), then the
following fields have to be added to the structure array defining the prior:

• The field hier taking the value true.
• The field g containing g0

• The field G containing G0.

For the hierarchical prior, the values stored in field b act as a starting values
prior to MCMC estimation and are updated during MCMC sampling.

The Default Choice

The toolbox allows an automatic selection of a slightly data dependent, rather
noninformative hierarchical prior by calling the function priordefine, see
Subsection 4.2.1.

The tuning of the automatic prior is based on moment matching (Frühwirth-
Schnatter, 2006, Subsection 9.2.1). a0 is derived from matching second order
moments:

a0 =
y2

s2
y − y

.

The parameter b0 is chosen in such a way that the prior mean E(Y |ϑ) = a0/b0

is matched to the mean of the data:

b0 =
a0

y
.

The larger the overdispersion in the data, the smaller a0 will be chosen. If
s2

y − y ≤ 0, then a0 = 10. If overdispersion is small, then a0 is large and
µk is strongly shrunken toward y. To avoid the inclusion of too much prior
information, the default prior is a hierarchical prior, where b0 ∼ G (g0, G0)
with g0 = 0.5. Matching E(b0) = g0/G0 to a0/y yields:

82 7 Finite Mixture Models for Discrete-Valued Data

G0 =
g0y

a0
.

One may overrule certain default choices. To define a standard conjugate prior,
where a0 and a fixed hyper parameter b0 are selected automatically, call the
function priordefine in the following way:

prior.hier=false;
prior=priordefine(data,mix,prior);

7.2.4 Parameter Estimation When the Allocations are Unknown

Bayesian estimation of finite mixtures of Poisson distributions using data aug-
mentation and MCMC is discussed in Frühwirth-Schnatter (2006, Subsection
3.5.2). Sampling the component parameter µk involves the following step:

(a) For each k = 1, . . . , K, sample µk from a G (ak(S), bk(S))-distribution.

To run data augmentation and MCMC call the function mixturemcmc ex-
plained in Subsection 4.3. The structure of the MCMC output is explained in
detail in Subsection 7.2.8. One may call the function mcmcstart explained in
Subsection 4.3 before starting MCMC to make use of default starting values.

Default Starting Values

Under a hierarchical prior, the prior parameter prior.par.G has to be set
to an appropriate starting value, for instance, the mean of the prior put on
the random hyperparameter b0. Automatic prior definition using the function
priordefine automatically chooses such a starting value for MCMC estima-
tion.

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1),
MCMC estimation starts with sampling the parameters and the indicators
stored in data.S are selected as starting value for the classification S(0). The
function mcmcstart adds starting values for the field S in the structure array
describing the data. This function is based on k-means clustering of the data
stored in data.y using the MATLAB function kmeans. Clustering is applied
to the transformed data zi =

√
yi.

For the sake of comparison, one may start MCMC with sampling the
indicators, in which case mix has to be a fully specified mixture before calling
mixturemcmc. To determine starting values for a fully specified mixture, again
the function mcmcstart may be called, however with the additional input
argument mcmc, where mcmc.startpar=true. For K > 1, starting values for
µk are defined as µk = max(0.1, y exp(zk)), where zk ∼ N (

0, 0.52
)
, while

µ1 = max(0.1, y) for K = 1. The starting value for the weight distribution is
uniform, i.e. ηk = 1/K.

7.2 Finite Mixtures of Poisson Distributions 83

7.2.5 Unknown number of components

To compute the log of the marginal likelihood call the function mcmcbf, see
Section 5.3 for more details.

7.2.6 Bayesian Fitting of a Single Poisson Distribution

Assume that a single Poisson distribution should be fitted to i.i.d. data and a
prior is selected as in Subsection 7.2.3. Under a hierarchical prior, no closed
form posterior is available and either the mean or the hyperparameter has
to be fixed to obtain a closed form conditional distribution. To sample from
the posterior distribution, one has to implement a two-step Gibbs sampler by
calling the function mixturemcmc explained in Subsection 4.3.

Under a conjugate, non-hierarchical prior, a closed form posterior is avail-
able which takes the form a Gamma-distribution. To compute the parameters
of the posterior distribution, the function posterior may be called:

post.par=posterior(data,model,prior.par);

post.par is a structural array containing the same fields as prior.par. But
even in this case, it is preferable to use the function mixturemcmc to sample
from the posterior distribution as this allows the application of a lot tools
developed for Bayesian inference based on posterior draws, see Section 4.5.

7.2.7 Bayesian Parameter Estimation When the Allocations are
Known

For data where the allocations are known, the structure array data has to
include the field S, storing the allocations. A prior is selected as in Subsec-
tion 7.2.3. Under a hierarchical prior, no closed form posterior is available,
even if the allocations are known. To sample from the posterior distribu-
tion, one has to implement a two-step Gibbs sampler by calling the function
mixturemcmc explained in Subsection 4.3, however, the allocations have to
fixed beforehand:

mix.indicfix=true;
mcmcout=mixturemcmc(data,mix,prior,mcmc);

No random permutation will be performed in this case, even if mcmc.ranperm
is set true.

Under the conjugate prior, the complete-data posterior is the product of K
gamma distributions. To compute the moments of this posterior distribution,
simply call the function posterior:

post=posterior(data,mix,prior);

The structure array post will have the same fields as the prior. But even in
this case, it is preferable to use the function mixturemcmc in combination with
mix.indicfix=true to sample from the posterior distribution.

84 7 Finite Mixture Models for Discrete-Valued Data

7.2.8 The structure of the MCMC Output

The MCMC output is stored in the structure array mcmcout having the fields
defined in Subsection 4.3.2. In this subsection only those fields are described
in more details which are specific to Poisson mixture models:

• par is a M x K numerical array storing the posterior draws µ
(m)
k .

• hyper is added under a hierarchical prior. This is a M x 1 numerical array
containing the MCMC draws b

(m)
0 for the random hyperparameter b0.

• post.par is a structure array with following fields:
– a is a M x K numerical array storing for each group k the shape pa-

rameter ak(S) of the posterior G (ak(S), bk(S)) used for sampling µ
(m)
k .

– b is a M x K numerical array storing for each group k the scale param-
eter bk(S) of the same distribution.

7.3 Finite Mixtures of Binomial Distributions

For binomial mixtures the component densities arise from BiNom (T, π)-
distributions, where the repetition parameter T is assumed to be known,
whereas the component-specific probabilities π are unknown and heteroge-
neous:

Y ∼ η1BiNom (T, π1) + · · ·+ ηKBiNom (T, πK) .

The density of this mixture is given by

p(y|ϑ) =
K∑

k=1

ηk

(
T
y

)
πy

k(1− πk)T−y, (7.3)

with ϑ = (π1, . . . , πK , η1, . . . , ηK). Binomial mixtures are not necessarily iden-
tifiable, see Frühwirth-Schnatter (2006, Section 9.3.1). A necessary and suffi-
cient condition is T ≥ 2K − 1.

Finite mixtures of binomial distributions may be extended to the case
where the repetition parameter Ti varies between the realizations y1, . . . , yN :

p(yi|ϑ) =
K∑

k=1

ηk

(
Ti

yi

)
πyi

k (1− πk)Ti−yi .

7.3.1 Defining Mixtures of Binomial Distributions

To define a mixture of binomial distributions create a structure array as ex-
plained in Section 2.2.1 where the field par is a 1 x K numeric array containing
the component parameters π1, . . . , πK .

7.3 Finite Mixtures of Binomial Distributions 85

The repetition parameter is usually defined through the data, by adding
the field Ti to the structure array defining the data, see Subsection 7.1. If T
is fixed over all observations, then Ti is a single integer containing T . If the
repetition parameter varies across the observations, then Ti is a array of the
same size as the field y, i.e. 1 x N, containing T1, . . . , TN . Whenever both the
mixture model and the data appear as input argument of a function in this
package, it is assumed implicitly that the repetition parameter of the data
and the model is the same.

Whenever calling a function, where only the structure array defining the
mixture model appears as input argument the field Ti has to be added ex-
plicitly to the array defining the model before calling this function. Note that
plotting the mixture density as discussed in Subsection 2.2.2 and computing
moments of the finite mixture distribution as discussed in Subsection 2.2.4 is
possible only, if the repetition parameter is the same for all observations.

Simulated Data

When data are simulated from a mixture of binomial distribution using the
function simulate introduced in Subsection 3.3, then the repetition parameter
has to be stored in the field Ti of the structure array defining the data, say
mydata, before calling simulate. Furthermore, the function simulate has to
be called with three input arguments:

mydata.Ti=[103 26 31 40 62 71 93 80 35 76];
data=simulate(mymodel,10,mydata);

If the function simulate is called with only two input arguments, then it is
assumed that Ti = 1 for all observations, i.e. that the data are binary.

7.3.2 Getting Started Quickly

A demo is available that demonstrate how to fit a mixture of binomial distri-
butions to simulated data:

• demo mix binomial.m fits a mixture of two binomial distributions to sim-
ulated data (takes less than 1 CPU minute).

7.3.3 Choosing the Prior for Bayesian Estimation

The choice of prior distributions for mixtures of binomial distributions is dis-
cussed in Frühwirth-Schnatter (2006, Subsection 9.3.2).

86 7 Finite Mixture Models for Discrete-Valued Data

The Structure of the Prior

The prior is based on the conditionally conjugate prior πk ∼ B (a0,k, b0,k) and
is defined as a structure array as explained in Section 4.2.1 with the field par
being equal to a structure array with two fields:

• a is a 1 x K numerical arrays storing a0,1, . . . , a0,K ;
• b is a 1 x K numerical arrays storing b0,1, . . . , b0,K .

The Default Prior

The toolbox allows an automatic selection of a prior by calling the function
priordefine, see Subsection 4.2.1. For all components this default choice is
a uniform prior, i.e. a0,k = b0,k = 1.

7.3.4 Parameter Estimation When the Allocations are Unknown

Bayesian estimation of finite mixtures of binomial distributions using data
augmentation and MCMC is discussed in Frühwirth-Schnatter (2006, Subsec-
tion 9.3.1). Sampling the component parameter θk = πk involves the following
step:

(a) For each k = 1, . . . , K, sample πk from a B (ak(S), bk(S))-distribution.

To run data augmentation and MCMC call the function mixturemcmc ex-
plained in Subsection 4.3. The structure of the MCMC output is explained in
Subsection 7.3.6. One may call the function mcmcstart explained in Subsec-
tion 4.3 before starting MCMC to make use of default starting values.

Default Starting Values

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1), MCMC
estimation starts with sampling the parameters and the indicators stored in
data.S are selected as starting value for the classification S(0). The function
mcmcstart determines starting values for S(0) in the following way. If the
range of the data is large enough, i.e. if max(yi)−min(yi) ≥ 2K, then k-means
clustering using the MATLAB function kmeans is applied to the transformed
data zi =

√
yi. If the range of the data is smaller than 2K, then a random

classification is applied.
Alternatively, one may start MCMC with sampling the indicators, in which

case mix has to be a fully specified mixture before calling mixturemcmc. To
determine starting values for a fully specified mixture, again the function
mcmcstart may be called, however with the additional input argument mcmc,
where mcmc.startpar=true. For K > 1, starting values for πk are defined as
πk = min(max(0.1, h exp(zk)), 0.9), where hi = yi/Ti and zk ∼ N (

0, 0.22
)
,

while π1 = min(max(0.1, h), 0.9) for K = 1. The starting value for the weight
distribution is uniform, i.e. ηk = 1/K.

7.3 Finite Mixtures of Binomial Distributions 87

7.3.5 Unknown number of components

To compute the log of the marginal likelihood call the function mcmcbf, see
Section 5.3 for more details.

7.3.6 The structure of the MCMC Output

The MCMC output is stored in the structure array mcmcout having the fields
defined in Subsection 4.3.2. The following fields are specific to mixtures of
binomial distributions:

• par is a M x K numerical array storing the posterior draws π
(m)
k .

• post.par is a structural array with following fields:
– a is a M x K numerical array storing for each group k the shape param-

eter ak(S) of the posterior B (ak(S), bk(S)) used for sampling π
(m)
k .

– b is a M x K numerical array storing for each group k the scale param-
eter bk(S) of the same distribution.

8

Finite Mixtures of Regression Models

8.1 Data Handling

Data to which a regression model is fitted are defined as a structure array in
the following way:

• The field y contains the dependent observations. This is a 1 x N numeric
array, where N is the number of observations.

• The field X contains the independent variables, where each row corresponds
to a certain covariate. This is a s x N numeric array, where s is the number
of independent variables.

Note that all variables are stored by row. If bycolumn is true (see below), then
y is a N x 1 numeric array and X is a N x s numeric array.

Optional fields are the following:

• The field name is the name of the data set, stored as character.
• The field N is the number of observations.
• The field bycolumn is a logical variable which is true, if the variables are

stored by column. If this field is missing, then it is assumed that the data
are stored by row.

Data Sets Available in the Package

For illustration, several data sets are stored under particular names and could
be loaded into a structure array using the function dataget:

• Star Cluster Data: data=dataget(’starclust’)
• Fabric Fault Data: data=dataget(’fabricfault’)

Visualization

Use the function dataplot(data) to plot the data.

90 8 Finite Mixtures of Regression Models

8.2 Finite Mixture of Multiple Regression Models

Finite mixtures of multiple regression models and their statistical inference
are discussed in detail in Frühwirth-Schnatter (2006, Section 8.2 and 8.3). In
this section we will discuss regression modelling based on normal errors, for
more general distributions see Section 8.4.

A finite mixture regression model assumes that a set of K regression mod-
els characterized by the parameters (β1, σ

2
ε,1), . . . , (βK , σ2

ε,K) exists, and that
for each observation pair (Yi,xi) a hidden random indicator Si chooses one
among these models to generate Yi:

Yi = xiβSi
+ εi, εi ∼ N (

0, σ2
ε,Si

)
. (8.1)

β1, . . . , βK as well as σ2
ε,1, . . . , σ

2
ε,K are unknown parameters that need to be

estimated from the data.

8.2.1 Defining a Finite Mixture Regression Model

Specifying the Model Structure

To define a standard finite mixture regression model, create a structure array,
named for instance mixreg, containing the following fields:

• The field dist defined the parametric distribution family of the regression
model. In this section we will discuss only data from a normal distribution,
thus dist=’Normal’, for more general distributions see Section 8.4.

• The field d defines the dimension of the regression parameter.
• The field K contains the number K of regimes.

If the field d is missing, this model definition reduces to a standard finite
mixture of univariate normal distributions. If the field K is missing, this model
definition reduces a standard regression model.

Assigning Parameters

For a fully specified finite mixture regression model, values have to be assigned
to all model parameters:

• The field par contains the coefficients of the regression model in each
regime. This is a structure array with following fields:
– beta is a d x K numeric array containing the regression parameters;
– sigma is a 1 x K numeric array containing the error variances.

• The field weight contains the weight distribution η = (η1, . . . , ηK), char-
acterized by a 1 x K numeric array. This field is missing, if K = 1.

8.2 Finite Mixture of Multiple Regression Models 91

8.2.2 Getting Started Quickly

A demo is available, that demonstrate how to fit mixtures of regression models
to simulated data, see Subsection 8.5.1 for details on how to simulate data
from a finite mixture of regression models:

• demo mixreg: fits a standard regression model and finite mixtures of re-
gression models with K = 2 and K = 3 to data that are simulated from
a finite mixture of two regression models and selects and evaluates the
model with the largest marginal likelihood (takes about 5 CPU minutes).

8.2.3 Choosing the Prior Distribution

The choice of prior distributions for mixtures of regression models is discussed
in Subsection 8.3.3 of Frühwirth-Schnatter (2006). In the current version of
the toolbox only the independence prior, where

βk ∼ Nd (b0,k,B0,k) , σ2
ε,k ∼ G−1 (c0,k, C0,k) , (8.2)

is implemented for mixtures of regression models, no conjugate prior is avail-
able. It is possible (and recommended) to use a hierarchical prior, where the
hyperparameter C0,k ≡ C0 is a random variable with a prior of its own,
C0 ∼ G (g0, G0).

The Default Prior Choice

The toolbox allows an automatic selection of a slightly data dependent, rather
noninformative proper prior by calling the function priordefine:

prior=priordefine(data,mixreg);

The selected prior is a hierarchical independence prior, where

b0,k = b0, B0,k = 10Id,

c0,k = νc, g0 = 0.5, G0 = g0φ(νc − 1)s2
y, (8.3)

where b0,j = y with y being the sample mean of the dependent variable if βk,j

is a switching intercept, and b0,j = 0, otherwise. s2
y is the sample variance of

the dependent variable, νc = 2.5, and φ = 0.5.

The Structure of the Prior

The prior is a structure array as explained in Section 4.2.1. For mixtures of
regression models the field par is a structure array with two fields:

• The field beta is a structure array with the fields b and Binv, being a d
x K and a d x d x K numerical array specifying the parameters b0,k and
B−1

0,k of prior (8.2).

92 8 Finite Mixtures of Regression Models

• The field sigma is a structure array with the fields c and C, being 1 x K
numerical arrays specifying the parameters c0,k and C0,k of prior (8.2).

Note that the arrays defining these fields have to contain K entries, even if
the prior is invariant. For a hierarchical prior, the following additional fields
have to be added to the prior specification:

• The field hier which is a logical variable taking the value true.
• The fields par.sigma.g and par.sigma.G containing the parameters g0

and G0 of the Gamma prior.

8.2.4 Bayesian Inference When the Allocations Are Unknown

Typically, the allocations are unknown and MCMC estimation of both the
parameters and the allocations is carried out using data augmentation and
Gibbs sampling using Algorithm 8.1 described in Frühwirth-Schnatter (2006,
Subsection 8.3.4). To run data augmentation and MCMC for data stored in
data for the mixture regression model mixreg under prior prior, call the
function mixturemcmc explained in Subsection 4.3:

mcmcout=mixturemcmc(data,mixreg,prior,mcmc);

The structure of the MCMC output is explained in full detail in Subsec-
tion 8.2.5. One may call the function mcmcstart explained in Subsection 4.3
before starting MCMC to make use of default starting values. The remainder
of this subsection explains, how this starting values are selected.

Default Starting Values

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1), MCMC
estimation starts with sampling the parameters and the indicators stored in
data.S are selected as starting value for the classification S(0). Under the
independence prior, sampling of βk and σ2

ε,k involves two blocks, where the
first block samples the regression parameters conditional on the error vari-
ances. Thus starting values for the error variances are needed which have to
be stored in mixreg.par.sigma before calling the function mixturemcmc.

The function mcmcstart determines these starting values in the following
way. Using the MATLAB function kmeans, k-means clustering is applied to
the multivariate data where the data in data.y are merged with the regressors
in data.X. All starting values for σ2

ε,k are equal to s2
y.

For the sake of comparison, one may start MCMC with sampling the in-
dicators, in which case mix has to be a fully specified mixture before calling
mixturemcmc. To determine starting values for a fully specified mixture, again
the function mcmcstart may be called, however with the additional input ar-
gument mcmc, where mcmc.startpar=true. The starting values for all regres-
sion coefficients except the coefficient βk,j corresponding to the intercept are

8.3 Mixed-Effects Finite Mixtures of Regression Models 93

set equal to 0. For K > 1, starting values for βk,j are sampled from N (
y, s2

y

)
,

while all starting values for σ2
ε,k are equal to s2

y. For K = 1, β1,j = y. The
starting value for the weight distribution is uniform, i.e. ηk = 1/K.

8.2.5 The Structure of the MCMC Output

The MCMC output is stored in the structure array mcmcout having the fields
defined in Subsection 4.3.2:

• par is a structure array with the fields beta and sigma containing the
MCMC draws for the regression parameters:
– beta is a M x d x K numerical array storing the posterior draws β

(m)
k .

– sigma is a M x K numerical array storing the posterior draws (σ2
ε,k)(m).

• hyper is added under a hierarchical prior. This is a M x 1 numerical array
containing the MCMC draws C

(m)
0 for the random hyperparameter.

• post.par is a structure array with the fields beta and sigma. The field
post.par.beta is a structure array with following fields:
– b is a M x d x K numerical array storing for each group k the mean

bk(S) of the normal posterior N (bk(S),Bk(S)) used for sampling
β

(m)
k .

– B is a M x d x d x K numerical array storing for each group k the
variance Bk(S) of the same posterior.

The field post.par.sigma is a structure array with following fields:
– c is a M x K numerical array storing for each group k the shape param-

eter ck(S) of the inverted Gamma posterior G−1 (ck(S), Ck(S)) used for
sampling (σ2

ε,k)(m).
– C is a M x K numerical array storing for each group k the scale param-

eter Ck(S) of the same distribution.

8.3 Mixed-Effects Finite Mixtures of Regression Models

A mixed-effects model allows us to combine regression coefficients that are
fixed across all realizations (Yi,xi) with regression coefficients that are allowed
to change:

Yi = xf
i α + xr

i βSi
+ εi, εi ∼ N (

0, σ2
ε,Si

)
, (8.4)

where xf
i are the fixed effects, whereas xr

i are the random effects, see
Frühwirth-Schnatter (2006, Section 8.4). A necessary condition for identifi-
ability is that the columns of the design matrix defined by

X =

xf
1 xr

1
...

...
xf

N xr
N

are linearly independent.

94 8 Finite Mixtures of Regression Models

8.3.1 Defining a Mixed-Effects Finite Mixture Regression Model

Specifying the Model Structure

To define a standard finite mixture regression model, create a structure array,
named for instance mixreg, containing the following fields:

• The field dist defines the parametric distribution family of the regression
model. In the current version of the package only dependent data from a
normal distribution are considered, thus dist=’Normal’.

• The field K contains the number K of regimes.
• The field d defines the dimension of the regression parameter.
• The field indexdf is a fd x 1 integer array defining which columns of

the design matrix (i.e. which rows of the data matrix stored in field X)
correspond to the fixed effects.

If the field indexdf is missing, this model definition reduces to a finite mixture
of multiple regression models, see Subsection 8.2, where all regression param-
eters are switching. If the field K is missing, this model definition reduces a
standard regression model.

Assigning Parameters

For a fully specified finite mixture regression model, values have to be assigned
to all model parameters:

• The field par contains the coefficients of the regression model. This is a
structure array with following fields:
– beta is a (d-fd) x K numeric array containing the switching regression

parameters;
– alpha is a fd x 1 numeric array containing the fixed regression pa-

rameters;
– sigma is a 1 x K numeric array containing the error variances.

• The field weight contains the weight distribution η = (η1, . . . , ηK), char-
acterized by a 1 x K numeric array. This field is missing, if K = 1.

8.3.2 Getting Started Quickly

A demo is available that demonstrate how to fit mixed-effects mixtures of
regression models to simulated data, see Subsection 8.5.1 for details on how
to simulate data from a finite mixture of regression models:

• demo mixreg mixeffects: fits a standard regression model and mixed-
effects finite mixtures of regression models with K = 2 and K = 3 to data
that are simulated from a mixed-effects finite mixture of two regression
models (takes about 5 CPU minutes).

8.3 Mixed-Effects Finite Mixtures of Regression Models 95

8.3.3 Choosing Priors for Bayesian Estimation

It is assumed that the priors of all parameters but α are the same as in
Subsection 8.2.3, whereas

α ∼ Nr (a0,A0) . (8.5)

α and βk are assumed to be pairwise independent a priori. Thus the joint
prior on α∗ = (α, β1, . . . , βK) is a normal prior, α∗ ∼ Nr∗ (a∗0,A

∗
0), where

r∗ = r+Kd and a∗0 and A∗
0 are derived from a0,A0, b0, and B0 in an obvious

way.

The Default Prior

The toolbox allows an automatic selection of a slightly data dependent, rather
noninformative proper prior by calling the function priordefine introduced
in Subsection 4.2.1. The prior for β1, . . . , βK is the same as in (8.3) and the
following hyperparameters are added for the prior on α: A0 = 10Ir, and
a0,j = y with y being the sample mean of the dependent variable, if αj is a
constant intercept, and a0,j = 0, otherwise.

The Structure of the Prior

The prior is a structure array as in Subsection 8.2.3, where the field par is
a structure array with fields alpha, beta and sigma, respectively. The field
sigma is exactly the same as in Subsection 8.2.3:

• The field beta is a structure array with the fields b and Binv being, re-
spectively, a (d-fd) x K and a (d-fd) x (d-fd) x K numerical array
specifying the parameters b0,k and B−1

0,k of prior (8.2).
• The field alpha is a structure array with the fields a and Ainv being,

respectively, a fd x 1 and a fd x fd numerical array specifying the pa-
rameters a0 and A−1

0 of prior (8.5).

8.3.4 Bayesian Inference When the Allocations Are Unknown

In the package MCMC estimation is carried out using data augmentation and
Gibbs sampling using Algorithm 8.2 described in Frühwirth-Schnatter (2006,
Subsection 8.4.4)). Under the normal prior on the regression coefficients α∗ =
(α,β1, . . . , βK), α∗ ∼ Nr∗ (a∗0,A

∗
0) discussed in Subsection 8.3.3, the joint

posterior of α∗, conditional on knowing the variance parameters σ2
ε,1, . . . , σ

2
ε,K ,

is again a normal distribution: α∗|σ2
ε,1, . . . , σ

2
ε,K ,y,S ∼ Nr∗ (a∗N ,A∗

N). a∗N and
A∗

N are given by:

96 8 Finite Mixtures of Regression Models

(A∗
N)−1 = (A∗

0)
−1 +

N∑

i=1

1
σ2

ε,Si

Z
′
iZi, (8.6)

a∗N = A∗
N

(
(A∗

0)
−1a∗0 +

N∑

i=1

1
σ2

ε,Si

Z
′
iyi

)
, (8.7)

where Zi = (xf
i xr

i Di1 · · · xr
i DiK) and Dik = I{Si=k}.

To run data augmentation and MCMC for data stored in data for the
mixed-effects mixture regression model mixreg under prior prior, call the
function mixturemcmc explained in Subsection 4.3:

mcmcout=mixturemcmc(data,mixreg,prior,mcmc);

The structure of the MCMC output is explained in full detail in Subsec-
tion 8.3.5. One may call the function mcmcstart explained in Subsection 4.3
before starting MCMC to make use of default starting values which are de-
termined exactly as in Subsection 8.2.4.

8.3.5 MCMC Output

The MCMC output is stored in the structure array mcmcout having similar
fields as in Subsection 8.2.5 with following modifications:

• The field alpha is added to par. This is a M x fd numerical array storing
the posterior draws α(m).

• beta is a M x (d-fd) x K numerical array storing the posterior draws
β

(m)
k .

post.par is a structure array with the fields alpha , beta and sigma. The field
post.par.sigma is the same as in Subsection 8.2.5. To reduce the dimension
of the covariance matrix of the Nr∗ (a∗N ,A∗

N) posterior derived in (8.6) for
sampling α∗ = (α,β1, . . . , βK), the moments of the marginal distributions of
α and βk rather than the moments of the joint distribution are stored. The
field post.par.alpha is a structure array with following fields:

• a is a M x fd numerical array storing that part of the mean a∗N of the
normal posterior Nr∗ (a∗N ,A∗

N) that corresponds to α.
• A is a M x fd x fd numerical array storing that part of the covariance

matrix A∗
N of the normal posterior Nr∗ (a∗N ,A∗

N) that corresponds to the
marginal distribution of α.

The field post.par.beta is a structure array with following fields:

• b is a M x (d-fd) x K numerical array storing for each group k that part
of the mean a∗N of the normal posterior Nr∗ (a∗N ,A∗

N) that corresponds to
βk.

• B is a M x (d-fd) x (d-fd) x K numerical array storing for each group k
that part of the covariance matrix A∗

N of the normal posteriorNr∗ (a∗N ,A∗
N)

that corresponds to the marginal distribution of βk.

8.4 Finite Mixtures of Generalized Linear Models 97

8.4 Finite Mixtures of Generalized Linear Models

Finite mixtures of generalized linear models (GLMs) extend the finite mixture
of regression models discussed in Section 8.2 and 8.3 to nonnormal data.

Finite Mixtures of Poisson Regression Models

Let Yi denote the ith response variable, observed in reaction to covariates xi,
including 1 for the intercept. It is assumed that the marginal distribution of
Yi follows a mixture of Poisson distributions,

Yi ∼
K∑

k=1

ηkP (µk,i) , (8.8)

where µk,i = exp(xiβk). If exposure data ei are available for each subject,
then µk,i = ei exp(xiβk). If xi = 1, a finite mixture of Poisson distributions
with µk = exp(βk) results; if K = 1, the standard Poisson regression model
results.

Finite Mixtures of Negative Binomial Regression Models

It is assumed that Yi follows a mixture of Poisson distributions with random
intercept,

Yi|Si = k ∼ P (µk,iλi) , (8.9)

where

λi|Si = k ∼ G (δk, δk) , (8.10)

and µk,i = exp(xiβk). If exposure data ei are available for each subject, then
µk,i = ei exp(xiβk).

The marginal distribution is a mixture of negative binomial distributions:

p(yi|ϑ) =
K∑

k=1

ηk

(
δk + yi − 1

δk − 1

)(
δk

δk + µk,i

)δk
(

µk,i

δk + µk,i

)yi

. (8.11)

If xi = 1, a finite mixture of negative binomial distributions with µk =
exp(βk) results; if K = 1, the standard negative binomial regression model
results.

98 8 Finite Mixtures of Regression Models

Finite Mixture Regression Models for Binary and Binomial Data

Let Yi,t denote a binary variable, observed on Ti occasions in reaction to co-
variates xi, including 1 for the intercept. Define Yi =

∑Ti

t=1 Yi,t. It is assumed
that the marginal distribution of Yi follows a mixture of binomial distribu-
tions,

Yi ∼
K∑

k=1

ηkBiNom (Ti, πk,i) , (8.12)

where logit πk,i = xiβk.

8.4.1 Defining a Finite Mixture of GLMs

If exposure data e1, . . . , eN should be included in the analysis or if the data
result from repeated measurements T1, . . . , TN , then as in Section 7.1 this
information should be stored in the field Ti of the structure array defining
the data.

Specifying the Model Structure

To define a finite mixture of GLMs, create a structure array, named for in-
stance mixglm, containing the following fields:

• The field dist defines the parametric distribution family of the GLM. In
the current version of the package following distributions are available:
– ’Poisson’: Poisson distribution as in (8.8);
– ’Binomial’: binomial distribution as in (8.12);
– ’Negative Binomial’: negative binomial distribution as in (8.11).

• The field K contains the number K of regimes.
• The field d defines the dimension of the regression parameter.
• The field indexdf is a fd x 1 integer array defining which columns of the

design matrix correspond to the fixed effects.

If the field indexdf is missing, this model definition reduces to a finite mix-
ture of GLMs, where all regression parameters are switching. If the field K is
missing, this model definition reduces a standard GLM.

Assigning Parameters

For a fully specified model, values have to be assigned to all model parameters:

• The field par contains the coefficients of the regression model. This is a
structure array with following fields:
– beta is a (d-fd) x K numeric array containing the switching regression

parameters;

8.4 Finite Mixtures of Generalized Linear Models 99

– alpha is a fd x 1 numeric array containing the fixed regression pa-
rameters, if present.

For mixture of negative binomial distributions an additional field has to
added to par, which defines the parameter δk in (8.10):
– df a 1 x K numeric array containing the parameters δ1, . . . , δK .

• The field weight contains the weight distribution η = (η1, . . . , ηK), char-
acterized by a 1 x K numeric array. This field is missing, if K = 1.

8.4.2 Getting Started Quickly

Several demos are available, that demonstrate how to fit mixtures of GLMs
to real and simulated data, see Subsection 8.5.1 for more details how the data
are simulated:

• start fabricfault.m fits a Poisson regression model as well as mixtures
of Poisson regression models with K = 2 to K = 3 to the Fabric Fault
Data (takes about 7 CPU minutes), see also Subsection 1.2.4.

• start fabricfault mixed effects.m fits a Poisson regression model as
well as mixtures of Poisson regression models with K = 2 to K = 3
where the slope is fixed to the Fabric Fault Data (takes about 7 CPU
minutes), see also Subsection 1.2.4.

• start fabricfault negbin.m fits a negative binomial regression model
as well as mixtures of negative binomial regression models with K = 2
and K = 3 to the Fabric Fault Data (takes about 8 CPU minutes), see
also Subsection 1.2.4.

• demo regression mix binomial.m fits a mixture of two binomial regres-
sion models to simulated data (takes about 3 CPU minutes).

8.4.3 Choosing Priors for Bayesian Estimation

It is assumed that the prior for α and βk are the same as in Subsection 8.2.3
and 8.3.3, respectively.

For the negative binomial distribution, additionally a prior for δk has to
be selected. Bayesian estimation is based on assuming prior independence
between δk and the remaining component specific parameters. The prior p(δk)
has to be selected carefully, in order to avoid improper posteriors. In this
package following prior is used:

p(δk) ∝ δa0−1
k

(δk + d)a0+b0
, (8.13)

where a0, b0, and d are hyperparameters selected by the user.

100 8 Finite Mixtures of Regression Models

The Default Prior

The toolbox allows an automatic selection of a slightly data dependent, rather
noninformative proper prior by calling the function priordefine introduced
in Subsection 4.2.1. For the regression parameters this prior is the same as in
Subsection 8.2.3 and 8.3.3.

For the negative binomial distribution, the default choice for the prior
p(δk) defined in (8.13) is a0 = b0 = 2, and d = 10. For this prior choice, the
prior median of δk is equal to 10, while the prior mean is equal to 20. This
particular choice guarantees that the posterior distribution is proper and that
the marginal posterior distribution of δk has a finite expectation. Thus the
average of the MCMC draws may be used to estimate δk.

The Structure of the Prior

The prior is a structure array as in Subsection 8.2.3 and 8.3.3, however, no field
sigma appears, because no unknown error variance is present in the model.

For the negative binomial distribution, the structure array par has an
additional field to define the prior of δk:

• The field df defines the prior for δ1, . . . , δK . It is a structural array with
following fields:
– The field type defines the type of prior used for p(δk) and is equal to

’hier’ for prior (8.13).
– the field a0 defines the hyperparameter a0;
– the field b0 defines the hyperparameter b0;
– the field d defines the hyperparameter d.

8.4.4 Bayesian Inference When the Allocations Are Unknown

Various proposals have been put forward on how to estimate the unknown
parameter ϑ for finite mixtures of GLMs using MCMC under the assump-
tion of a multivariate normal prior for the fixed and group specific regression
parameters.

As the likelihood p(y|ϑ) is available in closed form, one may use a single-
move random walk Metropolis–Hastings algorithm as in Viallefont et al.
(2002) or a multivariate random walk Metropolis–Hastings algorithm as is
Hurn et al. (2003) to sample from the marginal posterior distribution p(ϑ|y).
To avoid time-consuming tuning of the underlying proposal densities, MCMC
estimation is carried out in this package using data augmentation and auxil-
iary mixture sampling as described in Frühwirth-Schnatter et al. (2009).

For the negative binomial distribution, an additional step is added to sam-
ple δ1, . . . , δK . A partially marginalized sampler is used to draw δk by means
of a Metropolis–Hastings algorithm from the marginal distribution p(δk|S,y)
which is available in closed form. The corresponding Metropolis-Hastings al-
gorithm is based on the uniform log random walk proposal

8.4 Finite Mixtures of Generalized Linear Models 101

log(δnew
k − 1) ∼ U [log(δk − 1)− cδk

, log(δk − 1) + cδk
] ,

with fixed width parameter cδk
. The width parameter cδk

has to be selected
by the user prior to running MCMC, see below.

To run data augmentation and MCMC for a GLM call the function
mixturemcmc explained in Subsection 4.3:

mcmcout=mixturemcmc(data,mixglm,prior,mcmc);

The structure of the MCMC output is explained in full detail in Subsec-
tion 8.4.5. One may call the function mcmcstart explained in Subsection 4.3
before starting MCMC to make use of default starting values. The function
mcmcstart does not choose the variance ck of the random walk Metropolis-
Hastings algorithm used for sampling δk. These variances have to be stored
prior to calling mixturemcmc by the user in an additional field of the array
mcmc controlling MCMC:

• The field mh.tune.df is numerical array of size 1 x K defining the vari-
ances c1, . . . , cK of the uniform log normal random walk proposals for
δ1, . . . , δK .

Default Starting Values

Unless stated otherwise (see filed mcmc.startpar in Subsection 4.3.1), MCMC
estimation starts with sampling the parameters and the indicators stored in
data.S are selected as starting value for the classification S(0). For the nega-
tive binomial distribution starting values are needed for δ1, . . . , δK .

The function mcmcstart determines these starting values in the following
way. Using the MATLAB function kmeans, k-means clustering is applied to
the multivariate data where the data in data.y are merged with the regressors
in data.X.

For the sake of comparison, one may start MCMC with sampling the in-
dicators, in which case mix has to be a fully specified mixture before calling
mixturemcmc. To determine starting values for a fully specified mixture, again
the function mcmcstart may be called, however with the additional input ar-
gument mcmc, where mcmc.startpar=true. The starting values for all regres-
sion coefficients except the coefficient βk,j corresponding to the intercept are
set equal to 0. For K > 1, starting values for βk,j are sampled from N (

y, s2
y

)
,

while β1,j = y for K = 1. The starting value for the weight distribution is
uniform, i.e. ηk = 1/K.

For the negative binomial distribution, the starting values for δ1, . . . , δK

are equal to 5 for both ways of running MCMC.

8.4.5 MCMC Output

The MCMC output is stored in the structure array mcmcout and has similar
fields as in Subsections 8.2.5 and 8.3.5, however neither par nor post.par

102 8 Finite Mixtures of Regression Models

contain a field named sigma, because no unknown error variance is present in
the model. Additionally, no field hyper is present.

For the negative binomial distribution, the following fields are added:

• The field mh provides details about the Metropolis-Hastings algorithm. It
is a structural array with two fields:
– The field tune is a 1 x K array containing the tuning parameters for the

log random walk Metropolis Hastings algorithm, see Subsection 8.4.4.
– The field acc is a 1 x K array containing the acceptance rates for

the log random walk Metropolis Hastings algorithm for the degrees of
freedom parameters δ1, . . . , δK .

• The field par has an additional field containing the MCMC draws for
δ1, . . . , δK :
– The field df is a M x K numerical array storing the posterior draws

δ
(m)
k .

8.5 Further Issues

8.5.1 Simulate from a Finite Mixture of Multiple Regression
Models

To simulate N observations y = (y1, . . . , yN) from a finite mixture regression
model use the function simulate, introduced in Subsection 3.3. The finite
mixture regression model has to be fully specified model named, e.g. mixreg,
and is defined as structural array as described in Subsection 8.2.1 for finite
mixture regression models, in Subsection 8.3.1 for mixed-effect finite mixture
regression models and in Subsection 8.4.1 for mixtures of GLMs.

The way the function simulate is called depends on whether a design
matrix is available or nor. If a design matrix is available, then the function is
called as

data=simulate(mixreg,N,data),

where the design matrix has to be stored in data.X by row meaning that
data.X is a mixreg.d x N numerical array where each row correspond to a
certain covariate. If the function is called without a design, a random design
is simulated, where all covariates are drawn from uniform distribution U [a, b]
and the last column of the design matrix corresponds to the intercept. For
a normal regression model a = 0, b = 1, for the Poisson and the negative
binomial distribution a = 0.5, b = 1, and for the binomial distribution a =
−1, b = 2.

The function simulate produces the structural array data with the same
fields as empirical data, see Subsection 3.1.1, including the field y, N, X, r, sim,
type and model. Note that the data and the design will be generated as stored
by row. The field model is simply a copy of the structural array mixreg used

8.5 Further Issues 103

for simulation. If K > 1, an additional field called S will be added containing
the true allocations S = (S1, . . . , SN). This is a 1 x N numeric array, thus
data.S(i) is the allocation Si of the ith observation yi.

8.5.2 Plotting MCMC

The function mcmcplot explained in Subsection 4.5.1 could be used to plot
and monitor the MCMC output. The following sampling representations of
the posterior draws are produced. For each possible combinations (j, j′), the
simulated regression parameter β

(m)
k,j is plotted against β

(m)
k,j′ for k = 1, . . . , K.

8.5.3 Simulation-Based Approximations of the Marginal
Likelihood

To compute the log of the marginal likelihood for a finite mixture of regression
models (with or without mixed-effects) as discussed in Frühwirth-Schnatter
(2006, Subsection 8.3.6) call the function

est=mcmcbf(data,mcmcout);

see Section 5.3 for more details. The marginal likelihood is available both for
normal and for generalized linear mixture regression models.

8.5.4 Parameter Estimation

To perform parameter estimation, call the function mcmcestimate introduced
in Subsection 4.5.2 after calling the function mixturemcmc with a structure
array, say mcmcout, containing the MCMC output as input argument:

est=mcmcestimate(mcmcout);

The estimators of the weight distribution η1, . . . , ηK are stored in

• est.pm.weight – (approximate) posterior mode estimator.
• est.ml.weight – (approximate) maximum likelihood estimator.
• est.ident.weight – ergodic average after identification
• est.average.weight – ergodic average without identification, if the draws

were not generated by the permutation sampler (mcmcout.ranperm is
false).

• est.invariant.weight – ergodic average without identification, if the
draws were generated by the permutation sampler (mcmcout.ranperm is
true).

The estimators of the switching regression parameters β1, . . . , βK are stored
in

• est.pm.par.beta – (approximate) posterior mode estimator.

104 8 Finite Mixtures of Regression Models

• est.ml.par.beta – (approximate) maximum likelihood estimator.
• est.ident.par.beta – ergodic average after identification
• est.average.par.beta – ergodic average without identification, if the

draws were not generated by the permutation sampler (mcmcout.ranperm
is false).

• est.invariant.par.beta – ergodic average without identification, if the
draws were generated by the permutation sampler (mcmcout.ranperm is
true).

The estimators of the fixed regression parameter α, if any, are stored in

• est.pm.par.alpha – (approximate) posterior mode estimator.
• est.ml.par.alpha – (approximate) maximum likelihood estimator.
• est.ident.par.alpha – ergodic average after identification
• est.average.par.alpha – ergodic average without identification, if the

draws were not generated by the permutation sampler (mcmcout.ranperm
is false).

• est.invariant.par.alpha – ergodic average without identification, if the
draws were generated by the permutation sampler (mcmcout.ranperm is
true).

For regression models based on the normal distribution, the estimators of the
groups variances σ2

1 , . . . , σ2
K are stored in

• est.pm.par.sigma – (approximate) posterior mode estimator.
• est.ml.par.sigma – (approximate) maximum likelihood estimator.
• est.ident.par.sigma – ergodic average after identification
• est.average.par.sigma – ergodic average without identification, if the

draws were not generated by the permutation sampler (mcmcout.ranperm
is false).

• est.invariant.par.sigma – ergodic average without identification, if the
draws were generated by the permutation sampler (mcmcout.ranperm is
true).

8.5.5 Clustering

To carry out clustering of the observations, call the function

clust=mcmcclust(data,mcmcout);

introduced in Subsection 4.5.3. To visualize clustering call the function

mcmcclustplot(data,clust,[nfig]);

introduced in the same subsection. A special plot is produced for mixtures of
regression models. Clustering is visualized by plotting each observed regressor
against the observed yi and marking group membership through group specific
colors.

8.5 Further Issues 105

8.5.6 Bayesian Inference When the Allocations Are Known

In rare cases, e.g. for grouped data, will the allocations be known. In this case,
the structure array data storing the data has to include the field S, storing
the allocations, see also Subsection 4.4. In the context of regression modeling
of such data, it is possible to assume that all regression coefficients are group-
specific as in Section 8.2.1 or that some regression coefficients are the same in
all groups as in Section 8.3. It is also possible to fit GLMs as In Section 8.4.1.

For a complete-data Bayesian estimation as discussed in Frühwirth-Schnatter
(2006, Subsection 8.3.2 and 8.4.3) you need first to define a prior on the pa-
rameters, stored in a structure array prior as described in Subsection 8.3.3,
Subsection 8.2.3 and Subsection 8.4.3, respectively.

Under these priors no closed form posterior is available, even if the allo-
cations are known. To sample from the posterior distribution one could run
complete-data Gibbs sampling using the function mixturemcmc, however, the
allocations have to fixed beforehand:

mixreg.indicfix=true;
mcmcout=mixturemcmc(data,mixreg,prior,mcmc);

The allocations will not be updated during MCMC and no random permuta-
tion will be performed, even if mcmc.ranperm is set true. Starting values are
selected automatically as described in Subsection 8.2.4, Subsection runmcm-
cregmix and Subsection 8.4.4, respectively.

Even, if the allocations are known, simulation-based approximations of the
appropriate marginal likelihood could be computed using the function mcmcbf.

9

Markov Switching Models for Time Series Data

The toolbox allows to fit finite Markov mixture models to time series data.
To this aim, it is necessary to specify the Markov mixture model.

9.1 Data Handling

Let {yt, t = 1, . . . , T} denote a time series of T univariate observations taking
values in a sampling space Y which may be either discrete or continuous. Time
series are stored in form of a structure array where the field y contains the
observations. For univariate time series y is a 1 x N numeric array, where N
is the number of observations. If the structure array is named, for instance,
data, then data.y(t) is equal to the tth observation yt. If bycolumn is true
(see below), then y is a N x 1 numeric array. To distinguish time series data
from a sequence of observations, the optional field

• istimeseries could be added and set to true.

If this field is missing, it is assumed that the data are not a time series. Further
optional fields are the same as in Subsection 3.1.1.

Time Series Available in the Package

The following time series are stored under particular names and could be
loaded into a structure array using the function data=dataget(name):

• Lamb Data: data=dataget(’lamb’);
• GDP Data: data=dataget(’gdp’).

Simple Plotting

If the field istimeseries is true, then the function dataplot introduced in
Subsection 3.2.1 produces a time series plot and a plot of the autocorrelation of
the time series itself and the squared time series, additionally to the marginal
distribution.

108 9 Markov Switching Models for Time Series Data

Empirical Moments

For a time series stored in structural array named timeseries, for exam-
ple, with fields as in Section 9.1, the function datamoments(timeseries)
described in Subsection 3.2.2 may be called to compute sample moments of
the data:

moments=datamoments(timeseries)

This function returns a structural array with the same fields as for non-time
series data, however, following fields are added for a time series data:

• ac, the empirical autocorrelation function up to 20 lags;
• acsqu, the empirical autocorrelation function of the squared process up to

20 lags.

9.2 Finite Markov Mixture Models

Frühwirth-Schnatter (2006, Chapter 10) provides an introduction into finite
Markov mixture modelling. Let {yt, t = 1, . . . , T} denote a time series of T
univariate observations taking values in a sampling space Y which may be
either discrete or continuous. The time series {yt, t = 1, . . . , T} is considered
to be the realization of a stochastic process {Yt}T

t=1 where the probability
distribution of Yt depends on the realizations of a hidden discrete stochastic
process St.

For each t ≥ 1, the distribution of Yt arises from one out of K distributions
T (θ1), . . . , T (θK), depending on the state of St. Whereas the specification
of the conditional distribution of Yt given St is closely related to previous
chapters, the distribution of St has now to be specified explicitly.

The stochastic properties of St are sufficiently described by the (K ×K)
transition matrix ξ, where each element ξjk of ξ is equal to the transition
probability from state j to state k:

ξjk = Pr(St = k|St−1 = j), ∀j, k ∈ {1, . . . , K},

see Frühwirth-Schnatter (2006, Section 10.2).

9.2.1 Defining Finite Markov Mixture Models

Specifying the Model Structure

A finite Markov mixture is defined as a structure array as described in Sub-
section 2.2.1, named for instance model, however, the field indicmod has to
be added to specify the probability distribution of St:

9.2 Finite Markov Mixture Models 109

• The field dist shows the parametric distribution family T (θ) characterized
by a string variable. The current version of the package is able to handle
the following distribution families:
– ’Poisson’: Poisson distribution P (µk),
– ’Normal’: normal distribution N (

µk, σ2
k

)
.

The package will check just the first six characters, therefore the types
may be abbreviated.

• The field K contains the number K of states of the hidden indicator St.
• The field indicmod specifies the distribution of St and is a structural array

with the following fields:
– The field dist specifies the distribution of St. The following options

are available:
· ’Markovchain’: St a hidden Markov chain with unknown transition

matrix indicmod.xi (see below);
· ’Multinomial’: St is an i.i.d. sequence with unknown distribution

weight.
Because the package checks just the first six characters, the types may
be abbreviated. Under the option ’Multinomial’ the model reduces
to a finite mixture model.

– The field init specifies the initial distribution of S0. The following
options are available, see Frühwirth-Schnatter (2006, Section 10.3.4):
· ’ergodic’: the initial distribution is equal to the ergodic distribu-

tion;
· ’uniform’: the initial distribution is equal to the uniform distribu-

tion;
Because the package checks just the first three characters, the types
may be abbreviated. The default choice is the option ’ergodic’, if
this field is missing.

The model reduces to a standard finite mixture model, if the field indicmod
is missing.

Assigning Parameters

Parameters are assigned in the following way:

• The field par contains the component parameters θ1, . . . , θK . The struc-
ture of this field depends on the distribution family and on the dimension
of θk. For Poisson Markov mixtures, the field par is a 1 x K numeric array,
containing the component parameters µ1, . . . , µK . For Markov mixtures of
normal distributions, par is defined as in Subsection 6.2.1.

• The transition matrix ξ is a parameter of the indicator model specified
in the field indicmod and therefore added to that field. Thus the field
indicmod.xi contains the transition matrix ξ, characterized by a K x K
numeric array.

110 9 Markov Switching Models for Time Series Data

9.2.2 Getting Started Quickly

Several demos are available that demonstrate how to fit finite Markov mixtures
models to real data:

• start lamb.m: fits a Markov mixture of Poisson distributions to the Lamb
Data (takes about 7 CPU minutes), see also Subsection 1.2.5.

• start gdp marmix.m: fits a Markov mixture of normal distributions to the
GDP Data (takes about 7 CPU minutes).

Bayesian estimation using MCMC and prior choices are discussed in Sec-
tion 9.7.

9.2.3 Simulate from a Finite Markov Mixture Distribution

To simulate a time series of length N = T observations from a finite Markov
mixture distribution define the Markov mixture through a structure array,
say marmix, as described in Subsection 9.2.1 and use the function simulate,
introduced in Subsection 3.3:

timeseries=simulate(marmix,N);

The initial value S0 is simulated from the initial distribution specified by the
field indicmod.init. It is also possible to fix the initial value S0 by choosing
indicmod.init in the following way before calling simulate:

• ’fixX’: the initial value S0 is equal to X.

The function simulate creates a structural array timeseries with the same
fields as an empirical time series, see Subsection 9.1, including the field y, N,
r, sim, type and model. Note that the data will be generated as stored by
row. The field model is simply a copy of the structural array marmix used for
simulation. Two additional fields are added for simulated data:

• S contains the true states S = (S1, . . . , SN). This is a 1 x N numeric
array, thus data.S(t) is the state of the hidden Markov chain St of the
tth observation yt.

• S0 contains the true state S0. This is a single numerical value.

9.2.4 Some Descriptive Features of Finite Markov Mixture
Distributions

Because the unconditional distribution of a random process Yt, being gener-
ated by a Markov mixture of T (θ)-distribution is a standard finite mixture of
T (θ)-distribution with the ergodic probabilities acting as weights, all functions
defined in Chapter 2 are applicable to finite Markov mixtures. To determine
the invariant probability distribution η for a given transition matrix ξ, see
e.g. Frühwirth-Schnatter (2006, p.306), the utility function eta=marstat(xi)
is called.

9.3 The Markov Switching Regression Model 111

Moments and Autocorrelation Functions

The moments of the marginal distribution are obtained by calling the function
moments as discussed in Subsection 2.2.4, see also Frühwirth-Schnatter (2006,
Subsection 10.2.3). The following additional fields are added for a Markov
mixture model, when calling the function moments:

• ergodic, containing the ergodic distribution, stored as 1 x K;
• eigen, containing the eigenvalues of ξ, stored as 1 x K;
• duration, expected duration of each state, stored as 1 x K; see also

Frühwirth-Schnatter (2006, Subsection 10.2.2).
• ac, the autocorrelation function up to 20 lags; see also Frühwirth-Schnatter

(2006, Subsection 10.2.4).
• acsqu, the autocorrelation function of the squared process up to 20 lags;

see also Frühwirth-Schnatter (2006, Subsection 10.2.5).

Visualisation

To plot the density of the unconditional distribution of a finite Markov mix-
ture distribution, defined by the structure array marmix use the function
mixtureplot described in Subsection 2.2.2. This function will also produce a
bar plot of the autocorrelation function of yt and y2

t .

9.3 The Markov Switching Regression Model

9.3.1 Defining the Markov Switching Regression Model

The Markov switching regression model is an extension of finite mixtures of
regression models to time series data. For continuous data, the model reads:

Yt = xtβSt
+ εt, εt ∼ N (

0, σ2
ε,St

)
, (9.1)

where St is a hidden Markov chain and xt is a row vector of explana-
tory variables including the constant, see Frühwirth-Schnatter (2006, Sub-
section 10.3.2) for more details. A similar extension may be formulated for
non-Gaussian time series.

The mixed-effects regression model, considered for continuous data in Sec-
tion 8.3 could be extended in a similar way:

Yt = xf
t α + xr

tβSt
+ εt, εt ∼ N (

0, σ2
ε,St

)
, (9.2)

where xf
t are the fixed effects, whereas xr

t are the random effects, see
Frühwirth-Schnatter (2006, Section 8.4). Again a similar extension may be
formulated for non-Gaussian time series.

112 9 Markov Switching Models for Time Series Data

Both models are defined as a structural array exactly in the same way as
for a hidden indicator St which is multinomial, see Subsection 8.2.1 or Subsec-
tion 8.3.1 for more details. However, as for basic Markov mixture distributions,
the field indicmod has to be added to specify the probability distribution of
St, see again Subsection 9.2.1.

9.3.2 Getting Started Quickly

Several demos are available that demonstrate how to fit a Markov switching
regression model to simulated data:

• demo msreg: fits a standard regression model and Markov mixtures of re-
gression models with K = 2 and K = 3 to data that are simulated from
a Markov mixture of two regression models and selects and evaluates the
model with the largest marginal likelihood (takes about 11 CPU minutes).

• demo msreg mixeffects: fits a standard regression model and a mixed-
effects Markov mixture of regression models with K = 2 and K = 3
to data that are simulated from a mixed-effects Markov mixture of two
regression models and selects and evaluates the model with the largest
marginal likelihood (takes about 11 CPU minutes).

Bayesian estimation using MCMC and prior choices are discussed in Sec-
tion 9.7.

9.3.3 Simulate from a Markov Switching Regression Model

To simulate N = T observations y = (y1, . . . , yN) from a Markov switching
regression model, with or without fixed effects, define the model through a
structure array, say msreg as described above and call

timeseries=simulate(msreg,N);

The hidden Markov chain is simulated as described in Subsection 9.2.3. Con-
ditional on the indicators, simulation proceeds exactly as for finite mixtures
of regression models, see Subsection 8.5.1.

9.4 The Markov Switching Autoregressive Model

Markov switching autoregressive (MSAR) models are discussed in Frühwirth-
Schnatter (2006, Section 12.2) for univariate time series on continuous observa-
tions. In its most general form the MSAR model allows that the autoregressive
coefficients are affected by the hidden Markov chain St:

Yt = ζSt + δSt,1Yt−1 + · · ·+ δSt,pYt−p + εt. (9.3)

εt is an error term with switching variance. A more specific model is obtained,
if the autoregressive coefficients are state independent:

Yt = ζSt + δ1Yt−1 + · · ·+ δpYt−p + εt. (9.4)

9.4 The Markov Switching Autoregressive Model 113

9.4.1 Defining the Markov Switching Autoregressive Model

An MSAR model is defined as a finite Markov mixture model through a struc-
tural array, named for instance msarmodel, with the same fields as described
in Subsection 9.2.1. The field ar is added to specify the order of the model.

For statistical inference, an MSAR model is treated as a Markov switching
regression model where some or all regression coefficients are switching, see
again Subsection 9.3.

Switching AR Coefficients

If no further assumptions are made, then it is assumed that the AR coeffi-
cients are switching. For such a model, the model structure is specified in the
following way:

• The field dist defines the parametric distribution family T (θ) of p(yt|θk, yt−1).
The current version of the package is able to handle the following distri-
bution families:
– ’Normal’: normal distribution N (

µk,t, σ
2
k

)
.

The package will check just the first six characters, therefore the types
may be abbreviated.

• The field K defines the number of states of St.
• The field indicmod specifies the distribution of St as in Subsection 9.2.1.
• The field ar specifies the order of the autoregressive part.

The model reduces to a basic Markov mixture model, if the field ar is missing.
Parameter values are assigned in the following way:

• par specifies the state specific parameters. This is a structural array with
following fields:
– beta contains the intercept and the switching AR coefficients. For a

hidden Markov chain with K states this is a (1+ar) x K numerical
array.

– indexar is a ar x 1 array of indices defining which elements of
beta correspond to the AR coefficients. If this field is missing, then
it is assumed that the first element of beta, i.e. beta(1,:) corre-
sponds to the switching intercept, whereas the remaining elements,
i.e. beta(2:end,:) correspond to the switching AR coefficients.

– The switching variance is stored in the field sigma being a 1 x K nu-
merical array.

• indicmod.xi contains the transition matrix ξ as in Subsection 9.2.1.

State Independent AR Coefficients

For an MSAR model where the autoregressive coefficients are state indepen-
dent, the model structure is specified in the following way:

114 9 Markov Switching Models for Time Series Data

• The field dist defines the parametric distribution family T (θ) of p(yt|θk, yt−1).
The current version of the package is able to handle the following distri-
bution families:
– ’Normal’: normal distribution N (

µk,t, σ
2
k

)
.

The package will check just the first six characters, therefore the types
may be abbreviated.

• The field K defines the number of states of St.
• The field indicmod specifies the distribution of St as in Subsection 9.2.1.
• The field arf specifies the order of the state independent autoregressive

part.

The model reduces to a basic Markov mixture model, if the field arf is missing.
Parameter values are assigned in the following way:

• par specifies the model parameters. This is a structural array with follow-
ing fields:
– beta contains the switching intercept. For a hidden Markov chain with

K states this is a 1 x K numerical array.
– alpha is a arf x 1 numerical array containing the state independent

AR coefficients.
– The switching variance is stored in the field sigma being a 1 x K nu-

merical array.
• indicmod.xi contains the transition matrix ξ as in Subsection 9.2.1.

Mixture AR Models and Standard AR Models

If in the above model definition the number of states is equal to one, then a
standard AR model results. A finite mixture AR model results, if the indicator
model is substituted by a standard finite mixture model, e.g. by leaving the
field indicmod unspecified. These models may be tested against a Markov
switching model through comparing marginal likelihoods, see Subsection 9.8.6.

9.4.2 Getting Started Quickly

Several demos are available, that demonstrate how to fit a Markov switching
autoregressive model to real data:

• The program start gdp.m fits Markov switching autoregressive models
with different number of states and increasing AR order where all param-
eters are switching to the GDP Data (takes about 26 CPU minutes), see
also Subsection 1.2.6.

• The program start gdp swi.m fits Markov switching autoregressive model
with different number of states and increasing AR order where only the
intercept is switching to the GDP Data (takes about 17 CPU minutes),
see also Subsection 1.2.6.

Bayesian estimation using MCMC and prior choices are discussed in Sec-
tion 9.7.

9.5 Markov Switching Dynamic Regression Models 115

9.4.3 Simulate from a Markov Switching Autoregressive Model

To simulate a time series y1, . . . , yN of length N from a Markov switching AR
model define a fully specified model through a structure array, say marmix,
as described in Subsection 9.4.1 and use the function simulate as in Subsec-
tion 9.2.3:

timeseries=simulate(marmix,N);

The starting value S0 is simulated as described as Subsection 9.2.3. The struc-
tural array timeseries has the same structure as in Subsection 9.2.3.

For a Markov switching autoregressive model, starting values y1−p, . . . , y0

are needed to simulate y1, . . . , yN . If y1−p, . . . , y0 are known values, like in sim-
ulation based forecasting, see Subsection 9.9, the structural array timeseries
has to be created before calling simulate and the starting values have to be
stored in the field

• ’ystart’. This is a 1 x p numerical array containing y1−p, . . . , y0, where
p is the order of the AR part.

Then structural timeseries has to be added as a third argument when calling
the function simulate:

timeseries.ystart=
timeseries=simulate(marmix,N,timeseries);

If the function simulate is called with two arguments or with three argu-
ments, but without a field named ystart added to the third argument, then
y1−p, . . . , y0 are set to the long range mean ζS0/(1−δS0,1−· · ·−δS0,p) in state
S0.

9.5 Markov Switching Dynamic Regression Models

The Markov switching dynamic regression model allows to combine the
Markov switching regression model and the Markov switching autoregressive
model, see Frühwirth-Schnatter (2006, Section 12.3). In its most general form
the model reads:

Yt = δSt,1Yt−1 + · · ·+ δSt,pYt−p + xf
i α + xr

i βSt
+ ζSt + εt.

9.5.1 Defining the Markov Switching Dynamic Regression Model

The model is defined in the following way:

• The field dist defines the parametric distribution family of the regression
model. The current version of the package is able to handle the following
distribution families:

116 9 Markov Switching Models for Time Series Data

– ’Normal’: normal distribution N (
µk,t, σ

2
k

)
.

The package will check just the first six characters, therefore the types
may be abbreviated.

• The field K contains the number K of regimes.
• The field d defines the dimension of the regression parameter, including

the intercept (total number of columns in xf
i and xr

i plus 1).
• The field indexdf is a fd x 1 integer array defining which elements in the

regressor matrix data.X correspond to the fixed effects.
• ar specifies the order of the autoregressive part, if the AR coefficients are

switching.
• arf specifies the order of the autoregressive part, if the AR coefficients are

state-independent.

No fixed parameters are present, if the field indexdf is missing.

Assigning Parameter Values

For a model with switching AR coefficients, parameter values are assigned in
the following way:

• par specifies the model parameters. This is a structural array with follow-
ing fields:
– beta contains the switching intercept, the switching regression coef-

ficients and the switching AR coefficients. This is a (d-fd+ar) x K
numerical array.

– indexar is a ar x 1 array of indices defining which elements of beta
correspond to the AR coefficients. If this field is missing, then it is as-
sumed that the first (d-fd) element of beta, i.e. beta(1:d-fd,:) cor-
responds to the switching regression coefficients, whereas the remaining
elements, i.e. beta(end-ar:end,:) corresponds to the switching AR
coefficients.

– alpha is a fd x 1 numerical array containing the state independent
regression coefficients.

– For models based on the normal distributions the switching variance is
stored in the field sigma being a 1 x K numerical array.

• indicmod.xi contains the transition matrix ξ.

If the autoregressive coefficients are state independent, then the parameters
are assigned in the following way:

• par specifies the model parameters. This is a structural array with follow-
ing fields:
– beta contains the switching intercept and the switching regression co-

efficients. For a hidden Markov chain with K states this is a (d-fd) x
K numerical array.

– alpha is a (fd+arf) x 1 numerical array containing the state indepen-
dent regression coefficients and the state independent AR coefficients.

9.5 Markov Switching Dynamic Regression Models 117

– The field indexdf is a fd x 1 integer array defining which elements in
the regressor matrix data.X correspond to the fixed effects.

– indexar being a ar x 1 array of indices defines which elements of
alpha correspond to the AR coefficients. If this field is missing, then
it is assumed that the first fd elements of alpha, i.e. alpha(1:fd,1)
correspond to the fixed regression coefficients, whereas the remaining
elements, i.e. alpha(end-arf+1:end,1) correspond to the fixed AR
coefficients.

– For models based on the normal distributions the switching variance is
stored in the field sigma being a 1 x K numerical array.

• indicmod.xi contains the transition matrix ξ.

9.5.2 Getting Started Quickly

Several demos are available, that demonstrate how to fit a Markov switching
dynamic regression model to simulated data:

• demo msar reg: fits a standard dynamic regression model and Markov
switching dynamic regression models to data that are simulated from a
Markov switching dynamic regression model and selects and evaluates the
model with the largest marginal likelihood (takes about 11 CPU minutes).

• demo msar reg mixeffects: fits a standard dynamic regression model and
mixed-effects Markov switching dynamic regression models to data that
are simulated from a mixed-effects Markov switching dynamic regression
model and selects and evaluates the model with the largest marginal like-
lihood (takes about 11 CPU minutes).

Bayesian estimation using MCMC and prior choices are discussed in Sec-
tion 9.7.

9.5.3 Simulating from the Markov Switching Dynamic Regression
Model

To simulate a time series y1, . . . , yN of length N = T from a Markov switching
dynamic regression model, call the function simulate in the following way:

data=simulate(mixreg,N,data),

where the design matrix has to be stored in data.X by row. If the function
is called without a design, a random design is simulated, where all covariates
are drawn from uniform distribution and the last column of the design matrix
corresponds to the intercept, see also Subsection 8.5.1. The field ystart has
to be added, if starting values of y1−p, . . . , y0 are available, see also Subsec-
tion 9.4.3. If no starting values are provided, these values are set to zero.

118 9 Markov Switching Models for Time Series Data

9.6 State Estimation for Known Parameters

Statistical inference on the states of the hidden Markov chain S for fixed state
parameters and a known transition matrix is discussed in Frühwirth-Schnatter
(2006, Section 11.2). To perform filtering of the states as in Algorithm 11.1
and smoothing of the states as in Algorithm 11.2, call the function

class=dataclass(timeseries,marmix);

where timeseries is a structure array containing the data, see Section 9.1,
and marmix is a structure array defining a finite Markov mixture model, see
Subsection 9.2.1. For state estimation, mix has to be a fully specified model.
The function dataclass which is an extension of the corresponding function
discussed for finite mixtures in Section 4.1 produces a structural array class
with following fields:

• The field t0, if the model contains an autoregressive part and classification
does not start with t = t0 = 1, but with t0 > 1.

• prob are the filtered state probabilities Pr(St = k|yt,ϑ), t = t0, . . . , T ,
being equal to a (data.N-t0+1) x K numerical array, where the rows
sum to 1.

• mixlik is the logarithm of the Markov mixture likelihood function log p(y|ϑ),

p(y|ϑ) =
T∏

t=t0

p(yt|yt−1, ϑ).

evaluated at ϑ equals to the value of marmix.par and marmix.indicmod.xi.
• probsmooth are the smoothed state probabilities Pr(St = k|y, ϑ), t =

t0, . . . , T , being equal to a (data.N-t0+1) x K numerical array, where
the rows sum to 1.

• entropy is the entropy of the filtered state probabilities, defined by
(Frühwirth-Schnatter, 2006, Subsection 2.2.2, pp. 28)

EN(ϑ|y) = −
T∑

t=t0

K∑

k=1

Pr(St = k|yt, ϑ) log Pr(St = k|yt, ϑ). (9.5)

Computation of the Markov Mixture Likelihood

The function dataclass is also called in the package, if the primary aim is
likelihood evaluation rather than classification, because the Markov mixture
likelihood is a byproduct of computing the filtered state probabilities, see
(Frühwirth-Schnatter, 2006, Subsection 11.4.1). In this case, the computation
of the smoothed state probabilities is superfluous and may be suppressed by
calling dataclass with a third input argument being equal to 0:

class=dataclass(timeseries,marmix,0);

This will speed up the computation of the likelihood considerably.

9.7 Bayesian Parameter Estimation with Known Number of States 119

Sampling Posterior Paths of the Hidden Markov Chain

In Section 9.7 a sampled path S(m) = (S(m)
t0−1, S

(m)
1 , . . . , S

(m)
T) of the hidden

Markov chain is needed. This is obtained by calling dataclass with a second
output argument:

[class, S]=dataclass(timeseries,marmix,0)

The output argument S is a 1 x (data.N-t0+2) array containing the sim-
ulated states with S(1) being equal to the starting value S

(m)
t0−1 and S(t+1)

being equal to S
(m)
t+t0 . Furthermore, the following field is added to the structure

array class:

• postS which is equal to the posterior density p(S(m)|y, ϑ) of the simulated
Markov chain.

Again, sampling is speeded up considerably by suppressing the computation
of the marginal smoothed state probabilities Pr(St = k|y,ϑ).

9.7 Bayesian Parameter Estimation with Known
Number of States

9.7.1 Choosing the Prior for the Parameters of a Markov Mixture
Model

Frühwirth-Schnatter (2006, Subsection 11.5.1) discusses in details how to
choose the prior for a Markov mixture model. The prior is the same as defined
in Section 4.2.1 for finite mixture models, however, the prior on η has to be
substituted by a prior on ξ. It is assumed that the rows of ξ are independent
a priori, each following a Dirichlet distribution:

ξk· ∼ D (ek1, . . . , ekK) , k = 1, . . . ,K. (9.6)

To obtain a prior that is invariant to relabeling, Frühwirth-Schnatter (2001)
suggested choosing ekk = eP and ekk′ = eT , if k 6= k′. By choosing eP > eT ,
the Markov switching model is bounded away from a finite mixture model.

The prior is defined through a structural array exactly as in Subsec-
tion 4.2.1, however, the field weight is substituted by the field

• indicmod.xi. This is a K x K numerical array containing the hyper pa-
rameters ek1, . . . , ek,K in the kth row.

Automatic Prior Choices

The toolbox allows an automatic selection of slightly data dependent rather
noninformative prior by calling the function priordefine

120 9 Markov Switching Models for Time Series Data

prior=priordefine(timeseries,marmix);

where timeseries is a structure array containing the data and marmix is a
structure array defining the Markov mixture distribution which need not be
fully specified. Only the fields dist, K and indicmod, with the latter being
equal to ’Markov’, are necessary.

The selected prior is a hierarchical independence prior, where

b0,k = b0, B0,k = Diag (B0,1, . . . , B0,d) , A0 = Diag (A0,1, . . . , A0,r) ,

c0,k = νc, g0 = 0.5, G0 = g0φ(νc − 1)s2
y. (9.7)

s2
y is the sample variance of the dependent variable, νc = 2.5, and φ = 0.5.

b0,j = y with y being the sample mean of the dependent variable if βk,j is
a switching intercept, and b0,j = 0, otherwise. aj = y if αj is a constant
intercept, and aj = 0, otherwise. B0,j = 0.25 if βk,j is a switching AR coeffi-
cient, and B0,j = 10, otherwise. A0,j = 0.25 if αj is a state-independent AR
coefficient, and A0,j = 10, otherwise.

9.7.2 Parameter Estimation for Known States

Parameter estimation for known states is discussed in Frühwirth-Schnatter
(2006, Section 11.3). Estimation of the state specific parameters is essentially
the same as in Section 4.4. The only new step is complete-data Bayesian
estimation of the transition matrix, see Frühwirth-Schnatter (2006, Subsection
11.3.3).

9.7.3 Parameter Estimation Through Data Augmentation and
MCMC

Bayesian estimation of finite Markov mixtures using data augmentation and
MCMC is discussed in great detail in Frühwirth-Schnatter (2006, Section
11.5). MCMC sampling is performed as described in Algorithm 11.3 in
Frühwirth-Schnatter (2006, Subsection 11.5.3). Posterior paths of the hidden
Markov chain are sampled using Algorithm 11.5 in Frühwirth-Schnatter (2006,
Subsection 11.5.3). The method used for sampling the unknown transition ma-
trix depends on the starting distribution of S0. For stationary Markov chains
where the ergodic distribution is used as starting distribution the Metropolis–
Hastings algorithm is applied, whereas for all starting distributions that are
independent of ξ Gibbs sampling is used, see Frühwirth-Schnatter (2006, Sub-
section 11.5.5). To run data augmentation and MCMC, call the function

mcmcout=mixturemcmc(timeseries,marmix,prior,mcmc);

where timeseries is a structure array containing the data, marmix is a struc-
ture array defining the Markov mixture distribution, which should be fit-
ted, and prior is a structure array defining the prior distribution. mcmc is a

9.7 Bayesian Parameter Estimation with Known Number of States 121

structural array controlling MCMC, see Subsection 4.3.1. Unless stated oth-
erwise (see mcmc.ranperm), each sampling step is concluded by a random
permutation step, see Algorithm 11.4 in Frühwirth-Schnatter (2006, Subsec-
tion 11.5.4). The structure of the MCMC output is explained in full detail at
the end of this subsection.

It may take some time to execute MCMC sampling. MCMC estimation
of a Markov mixture model is more time consuming than for a finite mixture
model, because the hidden indicators are correlated and need to be sampled
recursively. Each minute, the function mixturemcmc reports the expected re-
maining execution time.

One may call the function mcmcstart explained in Subsection 4.3 before
starting MCMC to make use of default starting values. The remainder of this
subsection explains, how this starting values are selected.

Default Starting Values

If the logical field startpar has been set to true in the definition of mcmc,
then sampling is started with drawing the allocations S conditional on ϑ(0).
In this case the Markov switching model marmix needs to be fully specified.

Otherwise, MCMC estimation starts with sampling the parameters and
the indicators stored in data.S will be selected as starting value for the clas-
sification S(0). In this case, the Markov mixture model marmix need not be
fully specified. In the model structure, the fields dist and inidicmod have to
be specified in any case. The latter variable has to be equal to ’Markov’ to run
MCMC estimation for a Markov mixture, rather than a finite mixture model.
The field ar has to be added for a Markov switching autoregressive model
with switching autoregressive coefficients, the field arf has to be added for a
Markov switching autoregressive model with state independent autoregressive
coefficients.

If sampling of θk involves more than one block, starting values for
some parameters are needed, which need to be stored in par before calling
mixturemcmc. If a Markov mixture of normal distributions is estimated un-
der an independence prior, a starting value for par.mu is needed. For Markov
switching regression models or for MSAR models based on the normal dis-
tribution sampling of the regression and/or autoregressive coefficients and
the error variances involves two blocks under an independence prior, where
the first block samples the regression and/or autoregressive coefficients con-
ditional on the error variances. Thus starting values for the error variances
are needed which have to be stored in mixmar.par.sigma before calling the
function mixturemcmc. Finally, if the initial distribution of S0 is equal to
the ergodic distribution, then a starting value for ξ is needed to run the
Metropolis-Hastings algorithm for sampling ξ.

For both ways of starting MCMC, you may call the function

[data,mixmar]=mcmcstart(data,mixmar,mcmc);

122 9 Markov Switching Models for Time Series Data

before starting MCMC to make use of default starting values. Automatic
classification is based on the quantiles of the empirical marginal distribution
of the time series.

Under a hierarchical prior the prior parameter, e.g. prior.par.b for a
Markov mixture of Poisson distributions, has to be set to an appropriate
starting value, for instance, the mean of the prior put on the random parame-
ter. Under an automatic prior definition using the function priordefine, see
Subsection 9.7.1 for more details, this value will automatically be chosen as
starting value for MCMC estimation.

MCMC Output

mcmcout is a structure array containing the MCMC draws and consists of the
following fields:

• M contains the number of MCMC draws
• par contains the MCMC draws (θ(m)

1 , . . . , θ
(m)
K) for each parameter in

marmix.par. In general, the field par has the same structure as the corre-
sponding field in definition of the Markov switching model.

• indicmod.xi contains the MCMC draws ξ(m) for the transition which are
stored in a M x K x K numerical array.

• acc.xi report acceptance rates, if a Metropolis Hastings algorithm has
been used to sample the transition matrices under a starting distribution
being equal to the ergodic distribution.

• perm is a logical variable, which is true if the MCMC draws are based on
random permutation sampling. Otherwise perm is false.

• hyper is added under a hierarchical prior and contains the MCMC draws
for the random hyperparameter.

• log stores the logarithm of various function evaluated at the MCMC
draws. The field log is a structure array containing the following fields,
each of them being a M x 1 numerical array:
– mixlik stores the log of the Markov mixture likelihood, log p(y|ϑ(m)),

for each MCMC draw ϑ(m).
– mixprior stores the log of the prior, log p(ϑ(m)), for each MCMC draw

ϑ(m).
– cdpost stores the log of the (non-normalized) complete data posterior,

log p(ϑ(m),S(m)|y), which is equal to

p(ϑ(m),S(m)|y) = p(ϑ(m)|y)p(S(m)|ϑ(m),y) ∝ p(y|ϑ(m))p(ϑ(m))p(S(m)|ϑ(m),y)

for each MCMC draw ϑ(m) and S(m).
– The field t0, if the model contains an autoregressive part and compu-

tation of the likelihood does not start with t = t0 = 1, but with the
t0 > 1.

• entropy is a Mx1 numerical array storing the entropy EN(ϑ(m)|y), see
(9.5), for each MCMC draw.

9.8 Bayesian Inference Using the Posterior Draws 123

• S is added, if paths of the hidden Markov chain are stored (see mcmc.storeS
above). The field contains the last L=mcmc.storeS MCMC draws of S(m)

(without the state at 0), stored as a L x N numerical array, where N are
the number of observations.

• ST contains all MCMC draws of the last state S
(m)
T , which are stored

as a M x 1 numerical array. These draws are stored independently of
mcmc.storeS, because they are needed for forecasting purposes.

• post is added, if posterior moments are stored (see mcmc.storepost
above). This is a structure array with the fields par and indicmod.xi:
– indicmod.xi is a M x K x K numerical array containing the moments

e1(S), . . . , eK(S) of the the posterior Dirichlet distributionD (e1(S), . . . , eK(S))
used for simulating the transition matrix ξ(m).

– par contains certain moments of the complete data posterior distri-
butions used for simulating the model parameters. These are used for
computing marginal likelihoods in Subsection 9.8.6.

The following field is added if the ergodic distribution is chosen as initial
distribution:

• acc.xi contains the acceptance rate when sampling ξ by the help of the
Metropolis-Hastings algorithm, see Frühwirth-Schnatter (2006, p.341).

If K is equal to 1, then a single member from the distribution family dist
is fitted and redundant fields like indicmod.xi, S, post.indicmod.xi, and
perm are not added to mcmcout.

9.8 Bayesian Inference Using the Posterior Draws

Frühwirth-Schnatter (2006, Subsection 11.5.8) discusses in detail, how poste-
rior draws could be used for Bayesian inference for Markov mixture models.

9.8.1 Plotting MCMC

The function mcmcplot explained in Subsection 4.5.1 could be used to plot
and monitor the MCMC output. To visualize the posterior density p(ϑ|y)
of a Markov switching model, draws from the posterior density p(ϑ|y) are
used as a sampling representation of the posterior distribution, which is then
visualized as in Subsection 4.5.1 by calling the function mcmcsamrep. This
function produces point process representation of the posterior draws. For
Markov mixtures with univariate component parameter θ, θ

(m)
k is plotted

against the draws the persistence probability ξ
(m)
kk . For Markov mixtures with

bivariate component parameter θ = (θ1, θ2), θ
(m)
1,k is plotted against θ

(m)
2,k . For

Markov mixtures with multivariate components parameters θ, special point
process representations are generated for different models.

124 9 Markov Switching Models for Time Series Data

These scatter plots are closely related to the point process representation
of the underlying marginal mixture distribution discussed in Subsection 9.2.4.
The MCMC draws will scatter around the points corresponding to the true
point process representation, with the spread of the clouds representing the
uncertainty of estimating the points. The number of simulations clusters visi-
ble in these MCMC draws are helpful for Markov mixtures with an unknown
number of states. If the Markov mixture distribution is not overfitting, then K
simulations clusters should be present in these figures. If the Markov mixture
distribution is overfitting, then fewer simulations clusters are present, and a
Markov mixture with less states should be fitted to the time series.

9.8.2 Estimating the State Specific Parameters and the Transition
Matrix

To perform parameter estimation after MCMC sampling, call the function
mcmcestimate introduced in Subsection 4.5.2 with the structure array, say
mcmcout, containing the MCMC output as input argument. If mcmcestimate
is called with two output arguments,

[est,mcmcout]=mcmcestimate(mcmcout);

then the estimators and the identified MCMC output will be added to the
MCMC output mcmcout. The structural array est has the same structure as
discussed in Subsection 4.5.2. For each estimation method, the estimator of
the transition matrix ξ is stored in the field indicmod.xi, e.g.

• est.pm.indicmod.xi – (approximate) posterior mode estimator,
• est.ident.indicmod.xi – ergodic average after identification.

For each estimation method, the estimators of the parameters are stored in
the field par, which has the same structure as for the estimated model.

9.8.3 Bayesian Time Series Segmentation and State Probabilities

It is possible to cluster the time series observations into the different states,
see Frühwirth-Schnatter (2006, Subsection 11.5.8). To carry out time series
segmentation call the function mcmcclust introduced in Subsection 4.5.3:

clust=mcmcclust(timeseries,mcmcout),

If initial observations y1, . . . , yt0−1 have been used to the define the design
matrix of the MSAR model, then clustering starts with t0. In this case, the
field

• t0 containing the index of the first classification

is added to the structural array clust.
To visualize time series segmentation and the estimated state probabilities

Pr(St = k|y), call the function mcmcclustplot in the following way

9.8 Bayesian Inference Using the Posterior Draws 125

[nfig=]mcmcclustplot(timeseries,clust[,nfig]);

where clust is the output from calling the function mcmcclust. Plotting starts
with the input figure number nfig, or with figure one, if the input argument
nfig is missing. The output argument nfig reports the number of the last
figure and may be omitted.

This function produces a plot of the estimated state probabilities Pr(St =
k|y), t ≥ t0 and a plot showing time series segmentation for the different
estimators of S stored in clust.

9.8.4 Diagnosing Markov Mixture Models

As discussed in Frühwirth-Schnatter (2006, Subsection 11.6.1), diagnosing the
goodness-of-fit for Markov switching models may be based on studying the
posterior distribution of certain moments implied by the Markov mixture and
studying the predictive posterior distribution of certain statistics.

The function mcmcdiag introduced in Subsection 5.2 produces various di-
agnostic plot for the comparison of more than one model. The function may be
called simultaneously for more than one MCMC output, in order to compare
the different models:

[nfig=]mcmcdiag(data,mcmcout1,...,mcmcoutK[,nfig]);

where data are the data, and mcmcout1,...,mcmcoutK is an arbitrary number
of structure arrays containing the MCMC output of a certain model. Plotting
starts with the input figure number nfig, or with figure one, if the input
argument nfig is missing. The output argument nfig reports the number of
the last figure and may be omitted.

A particularly useful statistic for assessing goodness-of-fit for a Markov
switching model is the predictive posterior distribution of the implied auto-
correlation function ρYt(h|ϑ) in comparison to the observed autocorrelation
function as well as the autocorrelation function of the squared process. Sev-
eral figures compare the posterior distribution of moments of the marginal
distribution for the different models.

The remaining plots are standard diagnostic predictive checks, based on
the sample moments included in the function datamoments, see Subsec-
tion 3.2.2 for more details. This includes also the empirical autocorrelation
function of the time series and the squared time series. These predictive checks
are based on drawing 200 predictive samples of size T .

9.8.5 Model Choice Criteria

Common model choice criteria are AIC, BIC, and different classification-based
information criteria (Frühwirth-Schnatter, 2006, Section 4.4.2,7.1.4) which are
minimized for the optimal model among a set of potential models. To compute
these criteria from the MCMC output, call the function mcmcic introduced in
Subsection 5.4.

126 9 Markov Switching Models for Time Series Data

9.8.6 Marginal Likelihoods for Markov Switching Models

To compute the marginal likelihood of a Markov switching model (Frühwirth-
Schnatter, 2006, Subsection 11.6.3), call the function

marlik = mcmcbf(data,mcmcout)

introduced in Subsection 5.3.

Marginal Likelihoods for Selecting the AR Order

MCMC estimation and time series segmentation is carried out conditional
on the minimum number of observations needed to define the model, thus
the number of dependent observations is different for models differing in the
AR order. When comparing models of different AR orders through marginal
likelihoods one has to make sure that the number of dependent observa-
tions is the same. If the maximum AR order of all models to be com-
pared is equal to pmax, then all marginal likelihoods have to be computed
as p(ypmax+1, . . . , yT |y1, . . . , ypmax). Thus the first data point has to be set to
pmax + 1. This is achieved by adding the field

• t0, taking the value pmax + 1

to the structure array specifying the data, say timeseries, before calling
mcmcbf.

9.9 Prediction of Time Series Based on Markov
Switching Models

Bayesian forecasting of future observations yf = (yT+1, . . . , yT+H) of a time
series y = (y1, . . . , yT) is based on the predictive density p(yT+1, . . . , yT+H |y).
Algorithm 12.1 in Frühwirth-Schnatter (2006, Section 12.4) shows how to
sample M future sequences y(m)

f = (y(m)
T+1, . . . , y

(m)
T+H), m = 1, . . . ,M of length

H from the posterior predictive distribution p(yT+1, . . . , yT+H |y). This al-
gorithm is based on sampling y(m)

f = (y(m)
T+1, . . . , y

(m)
T+H) from the conditional

density p(yT+1, . . . , yT+H |ϑ(m), S
(m)
T ,y) for each MCMC draw ϑ(m) and S

(m)
T

in the structure array mcmcout. To this aim, the function simulate is called
for each MCMC draw, with the “starting value” of the hidden Markov chain
being fixed at S

(m)
T , see Subsection 9.2.3.

9.9.1 Prediction of a Basic Markov Mixture

If the conditional density p(yt|ϑ, S, yt−1) is independent of the past values
yt−1, like for the basic Markov mixture model considered in Section 9.2,

9.9 Prediction of Time Series Based on Markov Switching Models 127

then p(yT+1, . . . , yT+H |ϑ(m), S
(m)
T) is independent of observed time series

and simulation based forecasting may be implemented by call the function
mcmcpredsam, introduced in Subsection 4.5.4 for finite mixture models in the
same way:

pred=mcmcpredsam(mcmcout,H);

where mcmcout contains the MCMC draws. For a univariate time series pred
is a M x H numerical array, containing the future sequences, i.e. pred(m,:)
contains the mth future sequences y(m)

f = (y(m)
T+1, . . . , y

(m)
T+H).

9.9.2 Prediction of an MSAR Model

If the conditional density p(yt|ϑ, S, yt−1) depends of the past values yt−1, like
for the MSAR model considered in Section 9.4, then the predictive density
p(yT+1, . . . , yT+H |ϑ(m), S

(m)
T , yT−p+1, . . . , yT) depends on the observed time

series which has to be added as a calling argument:

pred=mcmcpredsam(mcmcout,H,timeseries);

To this aim, the function simulate is called for each MCMC draw, with the
“starting value” for the past observations, which are stored in the field ystart
before calling simulate, being fixed at yT−p+1, . . . , yT , see Subsection 9.4.3.

9.9.3 Prediction of Dynamic Regression Models

In the Markov switching regression model considered in Section 9.3, as well
as in the Markov switching dynamic regression model considered in Sec-
tion 9.5, time-varying regressors are present. In this case the predictive density
p(yT+1, . . . , yT+H |ϑ(m), S

(m)
T , yT−p+1, . . . , yT) depends on the future values of

this regressor. These values have to added to the field X, before calling simu-
late:

future = ... (array of size d x H)
timeseries.X=[timeseries.X future];
pred=mcmcpredsam(mcmcout,H,timeseries).

References

Aitkin, M. (1996). A general maximum likelihood analysis of overdispersion
in generalized linear models. Statistics and Computing 6, 251–262.

Bensmail, H., G. Celeux, A. E. Raftery, and C. P. Robert (1997). Inference
in model-based cluster analysis. Statistics and Computing 7, 1–10.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the
American Statistical Association 90, 1313–1321.

Chib, S. (1996). Calculating posterior distributions and modal estimates in
Markov mixture models. Journal of Econometrics 75, 79–97.

Escobar, M. D. and M. West (1998). Computing nonparametric hierarchical
models. In D. Dey, P. Müller, and D. Sinha (Eds.), Practical Nonparametric
and Semiparametric Bayesian Statistics, Number 133 in Lecture Notes in
Statistics, pp. 1–22. Berlin: Springer.

Fernández, C. and M. F. J. Steel (1999). Multivariate student-t regression
models: Pitfalls and inference. Biometrika 86, 153–167.

Fonseca, T. C. O., M. A. R. Ferreira, and H. S. Migon (2008). Objective
Bayesian analysis for the Student-t regression model. Biometrika 95, 325–
333.

Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of clas-
sical and dynamic switching and mixture models. Journal of the American
Statistical Association 96, 194–209.

Frühwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture
and Markov switching models using bridge sampling techniques. The Econo-
metrics Journal 7, 143–167.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models.
Springer Series in Statistics. New York/Berlin/Heidelberg: Springer.

Frühwirth-Schnatter, S., R. Frühwirth, L. Held, and H. Rue (2009). Improved
auxiliary mixture sampling for hierarchical models of non-Gaussian data.
Statistics and Computing 19, forthcoming.

Geweke, J. (1993). Bayesian treatment of the independent Student-t linear
model. Journal of Applied Econometrics 8(Supplement), 19–40.

130 References

Hamilton, J. D. (1989). A new approach to the economic analysis of nonsta-
tionary time series and the business cycle. Econometrica 57, 357–384.

Hurn, M., A. Justel, and C. P. Robert (2003). Estimating mixtures of regres-
sions. Journal of Computational and Graphical Statistics 12, 55–79.

Leroux, B. G. and M. L. Puterman (1992). Maximum-penalized-likelihood
estimation for independent and Markov-dependent mixture models. Bio-
metrics 48, 545–558.

Lin, T. I., J. C. Lee, and W. J. Hsieh (2007). Robust mixture modeling using
the skew t-distribution. Statistics and Computing 17, 81–92.

McCulloch, R. E. and R. S. Tsay (1994). Statistical analysis of economic time
series via Markov switching models. Journal of Time Series Analysis 15,
523–539.

Pauler, D. K., M. D. Escobar, J. A. Sweeney, and J. Greenhouse (1996). Mix-
ture models for eye-tracking data: A case study. Statistics in Medicine 15,
1365–1376.

Richardson, S. and P. J. Green (1997). On Bayesian analysis of mixtures
with an unknown number of components. Journal of the Royal Statistical
Society, Ser. B 59, 731–792.

Stephens, M. (1997). Bayesian Methods for Mixtures of Normal Distributions.
Ph. D. thesis, University of Oxford. CHECK.

Titterington, D. M., A. F. M. Smith, and U. E. Makov (1985). Statistical
Analysis of Finite Mixture Distributions. Wiley Series in Probability and
Statistics. New York: Wiley.

Viallefont, V., S. Richardson, and P. J. Green (2002). Bayesian analysis of
Poisson mixtures. Journal of Nonparametric Statistics 14, 181–202.

Wagner, H. (2007). Bayesian analysis of mixtures of exponentials. Journal of
Applied Mathematics, Statistics and Informatics 3, 165–183.

