Y_{jt} is a (second-order) stationary process with $\mu_j = E(Y_{jt})$ and $\sigma_j^2 = Var(Y_{jt})$. Process of the standard scores of Y_{jt} :

$$SC_{jt} = \frac{Y_{jt} - \mu_j}{\sigma_j}$$

- $SC_{jt} > 0$: at time t, process Y_{jt} is above the long-run mean μ_j
- $SC_{jt} < 0$: at time t, process Y_{jt} is below the long-run mean μ_j

Autocorrelation (lag h):

$$\rho_{jj}(h) = \mathbb{E}\left(\frac{(Y_{jt} - \mu_j)(Y_{j,t-h} - \mu_j)}{\sigma_j^2}\right) = \mathbb{E}(SC_{jt} \cdot SC_{j,t-h})$$

Cross correlation:

$$\rho_{jk}(h) = \mathbf{E}\left(\frac{(Y_{jt} - \mu_j)(Y_{k,t-h} - \mu_k)}{\sigma_j \sigma_k}\right) = \mathbf{E}(SC_{jt} \cdot SC_{k,t-h})$$

Like the autocorrelation, the cross correlation lies between -1 and 1.

h = 0 - simultaneous cross correlation between process Y_{jt} and Y_{kt} :

- $\rho_{jk}(0) > 0$: both processes Y_{jt} and Y_{kt} are on average either above or below their respective long-run means.
- $\rho_{jk}(0) < 0$: deviations of Y_{jt} and Y_{kt} from their respective long-run means are negatively correlated.
- $\rho_{jk}(0) = 0$: deviations of Y_{jt} and Y_{kt} from their respective long-run means are not correlated

 $h \neq 0$ - $\rho_{jk}(h)$ measures delayed cross correlation between process $Y_{j,\cdot}$ and $Y_{k,\cdot}$

h > 0: lag h - backward cross correlation: measures dependence of Y_{jt} on the past of process $Y_{k,t-h}$

- If the cross correlation $\rho_{jk}(h)$ between Y_{jt} and $Y_{k,t-h}$ at lag h is equal to 0, then the expected level of Y_{jt} is not influenced by the value of $Y_{k,t-h}$.
- If $\rho_{jk}(h) > 0$ for lag h and the process $Y_{k,t-h}$ is above (below) the long-run mean μ_k at time t - h, then the expected value of $Y_{j,t}$ will be above (below) the long-run mean μ_j at time t.

h<0: lead |h| - forward cross correlation: measures impact of Y_{jt} on the future of process $Y_{k,t+|h|}$

- If the cross correlation $\rho_{jk}(h)$ between Y_{jt} and $Y_{k,t+|h|}$ at lead h is equal to 0, then the actual value of Y_{jt} does not influence the expected future level of $Y_{k,t+h}$.
- If $\rho_{jk}(h) > 0$ for lead |h| and the process Y_{jt} is above (below) the long-run mean μ_j at time t, then the expected value of $Y_{k,t+|h|}$ will be above (below) the long-run mean μ_k at time $t + |h| \Rightarrow Y_{j,\cdot}$ is a leading indicator for $Y_{k,\cdot}$

Autocorrelation matrix

Note that $\rho_{jk}(-h)$ is usually different from $\rho_{jk}(h)$, however, the following result holds:

$$\rho_{jk}(-h) = \rho_{kj}(h), \qquad h > 0.$$

Entire dependence structure is described by the cross correlations matrix at lag h:

$$\boldsymbol{\rho}(h) = \begin{pmatrix} \rho_{11}(h) & \cdots & \rho_{1m}(h) \\ \vdots & \ddots & \vdots \\ \rho_{m1}(h) & \cdots & \rho_{mm}(h) \end{pmatrix}$$

- Define a model for multivariate time series that captures autocorrelation, simultaneous cross-correlation, and delayed crosscorrelation
- VAR stands for Vector AutoRegressive
- VAR(1) stands for a model with lag 1, i.e. a model where only observations of lag 1 enter the model definition, like for a univariate AR(1)-model.
- Use of matrix notation simplifies notation.

Introduce matrix notation for individual modelling of two time series Y_{1t} and Y_{2t} using an AR(1)-model:

$$Y_{1t} = \varphi_1 Y_{1,t-1} + c_1 + u_{1t}, \quad u_{1t} \sim \text{Normal} \left(0, \sigma_{u,1}^2 \right),$$

$$Y_{2t} = \varphi_2 Y_{2,t-1} + c_2 + u_{2t}, \quad u_{2t} \sim \text{Normal} \left(0, \sigma_{u,2}^2 \right).$$

Or, equivalently:

$$Y_{1t} = \varphi_1 Y_{1,t-1} + 0 \cdot Y_{2,t-1} + c_1 + u_{1t},$$

$$Y_{2t} = 0 \cdot Y_{1,t-1} + \varphi_2 Y_{2,t-1} + c_2 + u_{2t}.$$

Rewrite these two equations as:

$$\left(\begin{array}{c}Y_{1t}\\Y_{2t}\end{array}\right) = \left(\begin{array}{c}\varphi_1 & 0\\0 & \varphi_2\end{array}\right) \left(\begin{array}{c}Y_{1,t-1}\\Y_{2,t-1}\end{array}\right) + \left(\begin{array}{c}c_1\\c_2\end{array}\right) + \left(\begin{array}{c}u_{1t}\\u_{2t}\end{array}\right).$$

Define

$$\boldsymbol{\Phi} = \begin{pmatrix} \varphi_1 & 0 \\ 0 & \varphi_2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \boldsymbol{u}_t = \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$
$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{u,1}^2 & 0 \\ 0 & \sigma_{u,2}^2 \end{pmatrix}$$

Matrix notation for individual modelling of two AR(1)-processes Y_{1t} and Y_{2t} :

$$\mathbf{Y}_t = \mathbf{\Phi} \mathbf{Y}_{t-1} + \mathbf{c} + \boldsymbol{u}_t, \quad \boldsymbol{u}_t \sim \operatorname{Normal}\left(\mathbf{0}, \boldsymbol{\Sigma}\right). \tag{3}$$

- \bullet Special case of a bivariate VAR(1)-model, where Φ and Σ are diagonal matrices
- In a more general bivariate VAR(1)-model, Φ and Σ are not reduced to be diagonal matrices.
- It is evident from (3) why this model is called VAR(1).

General bivariate VAR(1)-model:

$$\begin{split} \mathbf{\Phi} &= \begin{pmatrix} \varphi_1 & 0 \\ 0 & \varphi_2 \end{pmatrix} \Rightarrow \mathbf{\Phi} = \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \end{pmatrix}, \\ \mathbf{\Sigma} &= \begin{pmatrix} \sigma_{u,1}^2 & 0 \\ 0 & \sigma_{u,2}^2 \end{pmatrix} \Rightarrow \mathbf{\Sigma} = \begin{pmatrix} \sigma_{u,1}^2 & \sigma_{u,12}^2 \\ \sigma_{u,21}^2 & \sigma_{u,2}^2 \end{pmatrix} \end{split}$$

Rewrite the bivariate VAR(1)-model as a system of two equations:

$$Y_{1t} = \Phi_{11}Y_{1,t-1} + \Phi_{12}Y_{2,t-1} + c_1 + u_{1t},$$

$$Y_{2t} = \Phi_{21}Y_{1,t-1} + \Phi_{22}Y_{2,t-1} + c_2 + u_{2t}.$$

Capturing cross correlation

- The conditional expectation $E(Y_{1t}|\mathbf{Y}_{t-1})$ depends not only on $Y_{1,t-1}$, but also on $Y_{2,t-1}$, as long as $\Phi_{12} \neq 0$; similarly for $E(Y_{2t}|\mathbf{Y}_{t-1})$.
- Conditional variance: Var $(Y_{jt}|\mathbf{Y}_{t-1}) = \sigma_{u,j}^2$, j = 1, 2.
- Conditional covariance: $\operatorname{Cov}(Y_{1t}, Y_{2t} | \mathbf{Y}_{t-1}) = \sigma_{u,12}^2 \Rightarrow \operatorname{simulta-}$ neous correlation of Y_{1t} and Y_{2t} , if $\sigma_{u,12}^2 \neq 0$.
- Regression model for Y_{1t} and Y_{2t} with identical predictors $Y_{1,t-1}$ and $Y_{2,t-1}$, however different coefficients.

Stationary VAR(1)-Models

- c is a vector with parameters c_1 and c_2 which are unconstrained.
- Σ is a covariance matrix, hence a symmetric matrix with the 3 parameters $\sigma_{u,1}^2$, $\sigma_{u,21}^2$, and $\sigma_{u,2}^2$, such that the simultaneous correlation $\rho_{12}(0) = \sigma_{u,21}^2/(\sigma_{u,1}\sigma_{u,2})$ lies between -1 and 1.
- Φ is a square matrix with the 4 parameters Φ₁₁, Φ₁₂, Φ₂₁, and Φ₂₂. For a stationary bivariate VAR(1)-model, the parameters in Φ are selected in such a way, that the resulting process is second order stationary.

Not all matrices Φ lead to stationary processes.

Stationarity condition

All eigenvalues of the matrix Φ lie within the unit circle.

Under this condition the following holds:

- If the errors are normally distributed, then the VAR(1)-process is strictly stationary
- If the errors are not normally distributed, but are second order stationary, i.e. $E(u_t) = 0$ and $Var(u_t) = \Sigma$, then the VAR(1)-process is second order stationary.

Long-run mean $\mu_j = E(Y_{jt})$ and variance $Var(Y_{jt})$ and all cross correlations $\rho_{12}(h)$ available from Φ , \mathbf{c} , and Σ .

Stationarity condition

For instance, the long-run mean $\boldsymbol{\mu} = (\mu_1, \mu_2)'$, where $E(Y_{jt}) = \mu_j$, satisfies the equation:

$$E(\mathbf{Y}_t) = \mathbf{\Phi} E(\mathbf{Y}_{t-1}) + \mathbf{c} + E(\mathbf{u}_t),$$
$$\boldsymbol{\mu} = \mathbf{\Phi} \boldsymbol{\mu} + \mathbf{c},$$

which may be solved for μ :

$$\boldsymbol{\mu} = (\mathbf{I} - \boldsymbol{\Phi})^{-1} \mathbf{c},$$

where \mathbf{I} is the identity matrix.

Computation of Var (Y_{jt}) and $\rho_{12}(h)$ is more involved, but possible.

Stationarity condition

Use $\mathbf{c} = (\mathbf{I} - \Phi)\boldsymbol{\mu} = \boldsymbol{\mu} - \Phi\boldsymbol{\mu}$ to represent a stationary VAR(1)process as deviations from the long-run mean:

$$\mathbf{Y}_t - \boldsymbol{\mu} = \boldsymbol{\Phi}(\mathbf{Y}_{t-1} - \boldsymbol{\mu}) + \boldsymbol{u}_t.$$

Rewrite this representation as a system of two equations:

$$Y_{1t} - \mu_1 = \Phi_{11}(Y_{1,t-1} - \mu_1) + \Phi_{12}(Y_{2,t-1} - \mu_2) + u_{1t},$$

$$Y_{2t} - \mu_2 = \Phi_{21}(Y_{1,t-1} - \mu_1) + \Phi_{22}(Y_{2,t-1} - \mu_2) + u_{2t}.$$

Example: individual AR(1)-Modeling

$$\mathbf{\Phi} = \begin{pmatrix} 0.8 & 0 \\ 0 & 0.5 \end{pmatrix}, \quad \mathbf{\Sigma} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

$$\operatorname{Var}\left(\mathbf{Y}_{t}\right) = \left(\begin{array}{cc} 5.5556 & 0\\ 0 & 4 \end{array}\right), \quad \boldsymbol{\rho}(0) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$

Example: individual AR(1)-Modeling

Cross correlation between Y_{jt} and $Y_{k,t-h}$

h	1	2	3	4	5
j = k = 1	0.800	0.640	0.512	0.410	0.328
j = 1, k = 2	0	0	0	0	0
j = 2, k = 1	0	0	0	0	0
j = k = 2	0.500	0.250	0.125	0.063	0.031

Example: bivariate VAR(1)-Model

$$\mathbf{\Phi} = \begin{pmatrix} 0.5 & 0.2 \\ -0.3 & 0.7 \end{pmatrix}, \quad \mathbf{\Sigma} = \begin{pmatrix} 1 & 0.6 \\ 0.6 & 1 \end{pmatrix},$$

$$\operatorname{Var}\left(\mathbf{Y}_{t}\right) = \left(\begin{array}{ccc} 1.6341 & 0.8116\\ 0.8116 & 1.5808 \end{array}\right), \quad \boldsymbol{\rho}(0) = \left(\begin{array}{ccc} 1 & 0.5049\\ 0.5049 & 1 \end{array}\right)$$

Example: bivariate VAR(1)-Model

Cross correlation between Y_{jt} and $Y_{k,t-h}$

h	1	2	3	4	5
j = k = 1	0.599	0.309	0.125	0.024	-0.023
j = 1, k = 2	0.449	0.332	0.214	0.121	0.057
j = 2, k = 1	0.049	-0.149	-0.199	-0.177	-0.131
j = k = 2	0.546	0.245	0.070	-0.016	-0.048

VAR(1)-Model

VAR(1)-Modeling of m time series:

$$\boldsymbol{\Phi} = \begin{pmatrix} \Phi_{11} & \cdots & \Phi_{1m} \\ \vdots & \ddots & \vdots \\ \Phi_{m1} & \cdots & \Phi_{mm} \end{pmatrix}, \quad \boldsymbol{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}, \\ \boldsymbol{u}_t = \begin{pmatrix} u_{1t} \\ \vdots \\ u_{mt} \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{u,11}^2 & \cdots & \sigma_{u,1m}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{u,m1}^2 & \cdots & \sigma_{u,mm}^2 \end{pmatrix}$$

٠

VAR(1)-Model

 Φ has m^2 parameters, Σ has m(m+1)/2 parameters, \mathbf{c} has m free parameters. Total number of parameters is equal to $m^2 + m(m+1)/2 + m$ and increases rapidly:

- m = 2: 9 parameters
- m = 3: 18 parameters
- m = 4: 30 parameters

Trivariate VAR(1)-Model

Rewrite this representation as a system of three equations:

$$Y_{1t} = \Phi_{11}Y_{1,t-1} + \Phi_{12}Y_{2,t-1} + \Phi_{13}Y_{3,t-1} + c_1 + u_{1t},$$

$$Y_{2t} = \Phi_{21}Y_{1,t-1} + \Phi_{22}Y_{2,t-1} + \Phi_{23}Y_{3,t-1} + c_2 + u_{2t},$$

$$Y_{3t} = \Phi_{31}Y_{1,t-1} + \Phi_{32}Y_{2,t-1} + \Phi_{33}Y_{3,t-1} + c_3 + u_{3t}.$$

Regression model for Y_{1t} , Y_{2t} , and Y_{3t} with identical predictors $Y_{1,t-1}$, $Y_{2,t-1}$, and $Y_{3,t-1}$, however different coefficients.

VAR(p)-Process

Definition:

 $\mathbf{Y}_t = \mathbf{\Phi}_1 \mathbf{Y}_{t-1} + \ldots + \mathbf{\Phi}_p \mathbf{Y}_{t-p} + \mathbf{c} + \mathbf{u}_t, \quad \mathbf{u}_t \sim \operatorname{Normal}\left(\mathbf{0}, \mathbf{\Sigma}\right)$

- Φ_1, \ldots, Φ_p are $m \times m$ -Matrizen $\Rightarrow pm^2$ parameters
- If Φ_1, \ldots, Φ_p and Σ are diagonal matrices, then individual AR(p)-modeling of each time series results.

Trivariate VAR(2)-Model

Rewrite this representation as a system of three equations:

$$\begin{split} Y_{1t} &= \Phi_{1,11}Y_{1,t-1} + \Phi_{1,12}Y_{2,t-1} + \Phi_{1,13}Y_{3,t-1} \\ &+ \Phi_{2,11}Y_{1,t-2} + \Phi_{2,12}Y_{2,t-2} + \Phi_{2,13}Y_{3,t-2} + c_1 + u_{1t}, \\ Y_{2t} &= \Phi_{1,21}Y_{1,t-1} + \Phi_{1,22}Y_{2,t-1} + \Phi_{1,23}Y_{3,t-1} \\ &+ \Phi_{2,21}Y_{1,t-2} + \Phi_{2,22}Y_{2,t-2} + \Phi_{2,23}Y_{3,t-2} + c_2 + u_{2t}, \\ Y_{3t} &= \Phi_{1,31}Y_{1,t-1} + \Phi_{1,32}Y_{2,t-1} + \Phi_{1,33}Y_{3,t-1} \\ &+ \Phi_{2,31}Y_{1,t-2} + \Phi_{2,32}Y_{2,t-2} + \Phi_{2,33}Y_{3,t-2} + c_3 + u_{3t}. \end{split}$$

Conditional expectation $E(Y_{jt}|\mathbf{Y}_{t-1}, \mathbf{Y}_{t-2})$ depends not only on $Y_{j,t-1}$ and $Y_{j,t-2}$, but also on $Y_{k,t-1}$ and $Y_{k,t-2}$.