
Cross-correlation

Yjt is a (second-order) stationary process with µj = E(Yjt) and

σ2
j = Var(Yjt). Process of the standard scores of Yjt:

SCjt =
Yjt − µj

σj

• SCjt > 0: at time t, process Yjt is above the long-run mean µj

• SCjt < 0: at time t, process Yjt is below the long-run mean µj
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Cross-correlation

Autocorrelation (lag h):

ρjj(h) = E

(
(Yjt − µj)(Yj,t−h − µj)

σ2
j

)
= E(SCjt · SCj,t−h)

Cross correlation:

ρjk(h) = E

(
(Yjt − µj)(Yk,t−h − µk)

σjσk

)
= E(SCjt · SCk,t−h)

Like the autocorrelation, the cross correlation lies between -1 and

1.
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Cross-correlation

h = 0 - simultaneous cross correlation between process Yjt and Ykt:

• ρjk(0) > 0: both processes Yjt and Ykt are on average either

above or below their respective long-run means.

• ρjk(0) < 0: deviations of Yjt and Ykt from their respective

long-run means are negatively correlated.

• ρjk(0) = 0: deviations of Yjt and Ykt from their respective

long-run means are not correlated

h ̸= 0 - ρjk(h) measures delayed cross correlation between process

Yj,· and Yk,·
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Cross-correlation

h > 0: lag h - backward cross correlation: measures dependence of

Yjt on the past of process Yk,t−h

• If the cross correlation ρjk(h) between Yjt and Yk,t−h at lag h is

equal to 0, then the expected level of Yjt is not influenced by the

value of Yk,t−h.

• If ρjk(h) > 0 for lag h and the process Yk,t−h is above (below)

the long-run mean µk at time t − h, then the expected value of

Yj,t will be above (below) the long-run mean µj at time t.
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Cross-correlation

h < 0: lead |h| - forward cross correlation: measures impact of Yjt

on the future of process Yk,t+|h|

• If the cross correlation ρjk(h) between Yjt and Yk,t+|h| at lead h

is equal to 0, then the actual value of Yjt does not influence the

expected future level of Yk,t+h.

• If ρjk(h) > 0 for lead |h| and the process Yjt is above (below) the

long-run mean µj at time t, then the expected value of Yk,t+|h|
will be above (below) the long-run mean µk at time t + |h| ⇒
Yj,· is a leading indicator for Yk,·

Sylvia Frühwirth-Schnatter Econometrics III WS 2012/13 1-63



Autocorrelation matrix

Note that ρjk(−h) is usually different from ρjk(h), however, the

following result holds:

ρjk(−h) = ρkj(h), h > 0.

Entire dependence structure is described by the cross correlations

matrix at lag h:

ρ(h) =


ρ11(h) · · · ρ1m(h)

... . . . ...

ρm1(h) · · · ρmm(h)


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2.2 VAR(1)-Prozesse

• Define a model for multivariate time series that captures au-

tocorrelation, simultaneous cross-correlation, and delayed cross-

correlation

• VAR stands for Vector AutoRegressive

• VAR(1) stands for a model with lag 1, i.e. a model where

only observations of lag 1 enter the model definition, like for a

univariate AR(1)-model.

• Use of matrix notation simplifies notation.
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VAR(1)-Prozesse

Introduce matrix notation for individual modelling of two time series

Y1t and Y2t using an AR(1)-model:

Y1t = φ1Y1,t−1 + c1 + u1t, u1t ∼ Normal
(
0, σ2

u,1

)
,

Y2t = φ2Y2,t−1 + c2 + u2t, u2t ∼ Normal
(
0, σ2

u,2

)
.

Or, equivalently:

Y1t = φ1Y1,t−1 + 0 · Y2,t−1 + c1 + u1t,

Y2t = 0 · Y1,t−1 + φ2Y2,t−1 + c2 + u2t.
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VAR(1)-Prozesse

Rewrite these two equations as:(
Y1t

Y2t

)
=

(
φ1 0

0 φ2

)(
Y1,t−1

Y2,t−1

)
+

(
c1

c2

)
+

(
u1t

u2t

)
.

Define

Φ =

(
φ1 0

0 φ2

)
, c =

(
c1

c2

)
, ut =

(
u1t

u2t

)

Σ =

(
σ2
u,1 0

0 σ2
u,2

)
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VAR(1)-Prozesse

Matrix notation for individual modelling of two AR(1)-processes Y1t

and Y2t:

Yt = ΦYt−1 + c+ ut, ut ∼ Normal (0,Σ) . (3)

• Special case of a bivariate VAR(1)-model, where Φ and Σ are

diagonal matrices

• In a more general bivariate VAR(1)-model, Φ and Σ are not

reduced to be diagonal matrices.

• It is evident from (3) why this model is called VAR(1).
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VAR(1)-Prozesse
General bivariate VAR(1)-model:

Φ =

(
φ1 0

0 φ2

)
⇒ Φ =

(
Φ11 Φ12

Φ21 Φ22

)
,

Σ =

(
σ2
u,1 0

0 σ2
u,2

)
⇒ Σ =

(
σ2
u,1 σ2

u,12

σ2
u,21 σ2

u,2

)
.

Rewrite the bivariate VAR(1)-model as a system of two equations:

Y1t = Φ11Y1,t−1 +Φ12Y2,t−1 + c1 + u1t,

Y2t = Φ21Y1,t−1 +Φ22Y2,t−1 + c2 + u2t.
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Capturing cross correlation

• The conditional expectation E(Y1t|Yt−1) depends not only on

Y1,t−1, but also on Y2,t−1, as long as Φ12 ̸= 0; similarly for

E(Y2t|Yt−1).

• Conditional variance: Var (Yjt|Yt−1) = σ2
u,j, j = 1, 2.

• Conditional covariance: Cov(Y1t, Y2t|Yt−1) = σ2
u,12 ⇒ simulta-

neous correlation of Y1t and Y2t, if σ
2
u,12 ̸= 0.

• Regression model for Y1t and Y2t with identical predictors Y1,t−1

and Y2,t−1, however different coefficients.
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Stationary VAR(1)-Models

• c is a vector with parameters c1 and c2 which are unconstrained.

• Σ is a covariance matrix, hence a symmetric matrix with the

3 parameters σ2
u,1, σ

2
u,21, and σ2

u,2, such that the simultaneous

correlation ρ12(0) = σ2
u,21/(σu,1σu,2) lies between -1 and 1.

• Φ is a square matrix with the 4 parameters Φ11, Φ12, Φ21, and

Φ22. For a stationary bivariate VAR(1)-model, the parameters in

Φ are selected in such a way, that the resulting process is second

order stationary.

Not all matrices Φ lead to stationary processes.
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Stationarity condition

All eigenvalues of the matrix Φ lie within the unit circle.

Under this condition the following holds:

• If the errors are normally distributed, then the VAR(1)-process is

strictly stationary

• If the errors are not normally distributed, but are second order

stationary, i.e. E(ut) = 0 and Var (ut) = Σ, then the VAR(1)-

process is second order stationary.

Long-run mean µj = E(Yjt) and variance Var (Yjt) and all cross

correlations ρ12(h) available from Φ, c, and Σ.
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Stationarity condition

For instance, the long-run mean µ = (µ1, µ2)
′
, where E(Yjt) = µj,

satisfies the equation:

E(Yt) = ΦE(Yt−1) + c+ E(ut),

µ = Φµ+ c,

which may be solved for µ:

µ = (I−Φ)−1c,

where I is the identity matrix.

Computation of Var (Yjt) and ρ12(h) is more involved, but possible.
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Stationarity condition

Use c = (I−Φ)µ = µ−Φµ to represent a stationary VAR(1)-

process as deviations from the long-run mean:

Yt − µ = Φ(Yt−1 − µ) + ut.

Rewrite this representation as a system of two equations:

Y1t − µ1 = Φ11(Y1,t−1 − µ1) + Φ12(Y2,t−1 − µ2) + u1t,

Y2t − µ2 = Φ21(Y1,t−1 − µ1) + Φ22(Y2,t−1 − µ2) + u2t.
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Example: individual AR(1)-Modeling

Φ =

(
0.8 0

0 0.5

)
, Σ =

(
2 0

0 3

)
.

Var (Yt) =

(
5.5556 0

0 4

)
, ρ(0) =

(
1 0

0 1

)

Sylvia Frühwirth-Schnatter Econometrics III WS 2012/13 1-75



Example: individual AR(1)-Modeling

Cross correlation between Yjt and Yk,t−h

h 1 2 3 4 5

j = k = 1 0.800 0.640 0.512 0.410 0.328

j = 1, k = 2 0 0 0 0 0

j = 2, k = 1 0 0 0 0 0

j = k = 2 0.500 0.250 0.125 0.063 0.031
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Example: bivariate VAR(1)-Model

Φ =

(
0.5 0.2

−0.3 0.7

)
, Σ =

(
1 0.6

0.6 1

)
,

Var (Yt) =

(
1.6341 0.8116

0.8116 1.5808

)
, ρ(0) =

(
1 0.5049

0.5049 1

)
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Example: bivariate VAR(1)-Model

Cross correlation between Yjt and Yk,t−h

h 1 2 3 4 5

j = k = 1 0.599 0.309 0.125 0.024 −0.023

j = 1, k = 2 0.449 0.332 0.214 0.121 0.057

j = 2, k = 1 0.049 −0.149 −0.199 −0.177 −0.131

j = k = 2 0.546 0.245 0.070 −0.016 −0.048
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VAR(1)-Model

VAR(1)-Modeling of m time series:

Φ =


Φ11 · · · Φ1m

... . . . ...

Φm1 · · · Φmm

 , c =


c1
...

cm

 ,

ut =


u1t

...

umt

 , Σ =


σ2
u,11 · · · σ2

u,1m

... . . . ...

σ2
u,m1 · · · σ2

u,mm

 .
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VAR(1)-Model

Φ has m2 parameters, Σ has m(m+1)/2 parameters, c has m free

parameters. Total number of parameters is equal to m2 +m(m +

1)/2 +m and increases rapidly:

• m = 2: 9 parameters

• m = 3: 18 parameters

• m = 4: 30 parameters
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Trivariate VAR(1)-Model

Rewrite this representation as a system of three equations:

Y1t = Φ11Y1,t−1 +Φ12Y2,t−1 +Φ13Y3,t−1 + c1 + u1t,

Y2t = Φ21Y1,t−1 +Φ22Y2,t−1 +Φ23Y3,t−1 + c2 + u2t,

Y3t = Φ31Y1,t−1 +Φ32Y2,t−1 +Φ33Y3,t−1 + c3 + u3t.

Regression model for Y1t, Y2t, and Y3t with identical predictors

Y1,t−1, Y2,t−1, and Y3,t−1, however different coefficients.
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VAR(p)-Process

Definition:

Yt = Φ1Yt−1 + . . .+ΦpYt−p + c+ ut, ut ∼ Normal (0,Σ)

• Φ1, . . . ,Φp are m×m-Matrizen ⇒ pm2 parameters

• IfΦ1, . . . ,Φp andΣ are diagonal matrices, then individual AR(p)-

modeling of each time series results.
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Trivariate VAR(2)-Model

Rewrite this representation as a system of three equations:

Y1t = Φ1,11Y1,t−1 +Φ1,12Y2,t−1 +Φ1,13Y3,t−1

+ Φ2,11Y1,t−2 +Φ2,12Y2,t−2 +Φ2,13Y3,t−2 + c1 + u1t,

Y2t = Φ1,21Y1,t−1 +Φ1,22Y2,t−1 +Φ1,23Y3,t−1

+ Φ2,21Y1,t−2 +Φ2,22Y2,t−2 +Φ2,23Y3,t−2 + c2 + u2t,

Y3t = Φ1,31Y1,t−1 +Φ1,32Y2,t−1 +Φ1,33Y3,t−1

+ Φ2,31Y1,t−2 +Φ2,32Y2,t−2 +Φ2,33Y3,t−2 + c3 + u3t.

Conditional expectation E(Yjt|Yt−1,Yt−2) depends not only on

Yj,t−1 and Yj,t−2, but also on Yk,t−1 and Yk,t−2.
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