Cross-correlation

Y;: is a (second-order) stationary process with p; = E(Y;;) and
032- = Var(Y,). Process of the standard scores of Y;:

Yo —
0

SCjt —

e SC;+ > 0: at time ¢, process Y,; is above the long-run mean p;

e SC;; < 0: at time ¢, process Yj; is below the long-run mean p;
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Cross-correlation

Autocorrelation (lag h):

9

Voo — MY o v — 11
pij(h) =E <( it = 1) Wt “«7)> = B(SCjs - SCj4n)
Cross correlation:

pin(h) =E ((th — 1) (Y, e—n — Nk)) — E(SC;; - SCrs—n)

0,0k

Like the autocorrelation, the cross correlation lies between -1 and
1.
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Cross-correlation

h = 0 - simultaneous cross correlation between process Y;; and Y}:

e pi(0) > 0: both processes Y,; and Y} are on average either
above or below their respective long-run means.

® p;i(0) < 0: deviations of Y;; and Y, from their respective
long-run means are negatively correlated.

e p;ix(0) = 0: deviations of Y;; and Y, from their respective
long-run means are not correlated

h # 0 - pjr(h) measures delayed cross correlation between process
Y},. and Yk,.
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Cross-correlation

h > 0: lag h - backward cross correlation: measures dependence of
Y+ on the past of process Yy ;_p,

e If the cross correlation p;;(h) between Y, and Yy at lag h is
equal to 0, then the expected level of Y}, is not influenced by the

value of Yk,t—h-

o If pi(h) > 0 for lag h and the process Y} ;_j is above (below)
the long-run mean uy at time ¢t — A, then the expected value of

Y+ will be above (below) the long-run mean p; at time ¢.
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Cross-correlation

h < 0: lead |h| - forward cross correlation: measures impact of Y
on the future of process Y, ;45|

e If the cross correlation p,;(h) between Y,; and Yj t+n at lead A
is equal to 0, then the actual value of Y); does not influence the
expected future level of Yy ¢4,

o If p;ir(h) > 0 for lead |h| and the process Y;; is above (below) the
long-run mean p; at time ¢, then the expected value of Yj, ;4
will be above (below) the long-run mean pj at time t + |h| =
Y, . is a leading indicator for Y .
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Autocorrelation matrix

Note that p,x(—h) is usually different from p,i(h), however, the
following result holds:

pik(—h) = pr;(h), h > 0.

Entire dependence structure is described by the cross correlations
matrix at lag h:

/pu(h> le(h)\
p(h) = o '

\pml(h) pmm(h))
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2.2 VAR(1)-Prozesse

e Define a model for multivariate time series that captures au-
tocorrelation, simultaneous cross-correlation, and delayed cross-
correlation

e VAR stands for Vector AutoRegressive

e VAR(1) stands for a model with lag 1, i.e. a model where
only observations of lag 1 enter the model definition, like for a
univariate AR(1)-model.

e Use of matrix notation simplifies notation.
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VAR(1)-Prozesse

Introduce matrix notation for individual modelling of two time series
Y1: and Y5 using an AR(1)-model:

Yie=@1Y14-1+c1 +ue, uy ~ Normal (0,07 ),

u, 1

Yor = @Yo 11+ co+ ug, Ut ~ Normal (O, 0,3,2) :
Or, equivalently:

Yii=01Y14t-1+0-Yo 1 +c1 + upy,
Yor =0-Y1 -1+ paYo 1+ ca + uoy.
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VAR(1)-Prozesse

Rewrite these two equations as:

Y- 0 Y1+ C U
1t _ P1 1,t—1 i 1 n 1t |
Yor 0 2 Yoi-1 C2 Ut

Define
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VAR(1)-Prozesse

Matrix notation for individual modelling of two AR(1)-processes Y7,
and YQt:

Y, =®Y, 1 +c+u; u; ~Normal (0,X). (3)

e Special case of a bivariate VAR(1)-model, where ® and X are
diagonal matrices

e In a more general bivariate VAR(1)-model, ® and X are not
reduced to be diagonal matrices.

e It is evident from (3) why this model is called VAR(1).
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VAR(1)-Prozesse

General bivariate VAR(1)-model:
0 d ®
H — Y1 P — 11 12
0 o Poy1 Doy
2:<O-’3,1 0 >$2:< u,1 Z,12>
0 ‘73,2 05,21 3,2

Rewrite the bivariate VAR(1)-model as a system of two equations:

Yie=P11Y1,0-1+ Pra2Yo 1 + 1 + upy,
Yor = ®o1Y71 41 + PoaYo i1 + 2 + uoy.
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Capturing cross correlation

e The conditional expectation E(Y7;|Y;_1) depends not only on
Y1 +—1, but also on Y51, as long as ®;2 # 0; similarly for
E(Y2|Y;_1).

e Conditional variance: Var (Yj|Y,_1) =0, ;, j =1,2.

e Conditional covariance: Cov (Y1, Y2|Yi—1) = 07 15 = simulta-

neous correlation of Yy, and Y, if o, 5 # 0.

e Regression model for Y7; and Ys; with identical predictors Y7 ;1
and Y5 ;_1, however different coefficients.
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Stationary VAR(1)-Models

e C is a vector with parameters c¢; and ¢y which are unconstrained.

e X is a covariance matrix, hence a symmetric matrix with the
3 parameters o7 |, 0 5, and o, 5, such that the simultaneous

correlation p12(0) = 0. 51/(0u,104,2) lies between -1 and 1.

e P is a square matrix with the 4 parameters ®11, ®12, P27, and
$o5. For a stationary bivariate VAR(1)-model, the parameters in
P are selected in such a way, that the resulting process is second
order stationary.

Not all matrices ® lead to stationary processes.
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Stationarity condition

All eigenvalues of the matrix @ lie within the unit circle. |

Under this condition the following holds:

e If the errors are normally distributed, then the VAR(1)-process is
strictly stationary

e If the errors are not normally distributed, but are second order
stationary, i.e. E(u;) = 0 and Var (u;) = X, then the VAR(1)-
process is second order stationary.

Long-run mean p; = E(Y};) and variance Var (Y};) and all cross
correlations py2(h) available from @, ¢, and X.
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Stationarity condition

For instance, the long-run mean p = (u1, jt2) , where E(Y;:) = i,
satisfies the equation:

E(Yt) — q)E(Yt_l) + C + E(’U,t),
p=2ep+c,

which may be solved for pu:
H = (I - (I))—lca

where I is the identity matrix.

Computation of Var (Y;;) and pi2(h) is more involved, but possible.
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Stationarity condition

Usec=(I—®)u = pu — Pu to represent a stationary VAR(1)-
process as deviations from the long-run mean:

Yt — = q)(Yt—l — [,L) -+ Uy

Rewrite this representation as a system of two equations:

Yie — H1 = (I)ll(Yl,t—l — ,u1) + (I)12(Y2,t—1 — M2) + U1¢,
Yor — pro = ®o1(Yii—1 — p1) + Poa(Yo,im1 — o) + uay.
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Example: individual AR(1)-Modeling

(I):<O.8 0 ) N

0 05
5.5556 0 10

Var(Yt):( 0 4>> P(O):<O 1)

|
R
o N
LD O
N~
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Example: individual AR(1)-Modeling

Cross correlation between Y;; and Y

h 1 2 3 4 D

j=k=1 0800 0.640 0.512 0.410 0.328
j=1L,k=2 0 0 0 0 0

7=k=2 0.500 0.250 0.125 0.063 0.031
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Example: bivariate VAR(1)-Model

0.0 0.2 1 0.6
@ — ’ 2 — Y
( ~0.3 0.7 ) ( 0.6 1 >

1.6341 0.8116 1 0.5049
Var (Yt) — ; P(O) =
0.8116 1.5808 0.5049 1
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Example: bivariate VAR(1)-Model

Cross correlation between Y;; and Y

h 1 2 3 4 D
j=k=1 0599 0.309 0.125 0.024 —-0.023
j=1k=2 0449 0332 0.214 0.121  0.057
j=2k=1 0.049 -0.149 -0.199 -0.177 —-0.131
j=k=2 0546 0.245 0.070 —-0.016 —0.048
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VAR(1)-Model

VAR(1)-Modeling of m time series:

(@11 (I)lm\ (01\

\cb:nl @ém) \c;n)
( Uit \ ( 0121,,11 0-721,,1m \

2 2
\ Umt ) \ Ouml """ Ou,mm )

,

U =
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VAR(1)-Model

® has m? parameters, X has m(m+1)/2 parameters, ¢ has m free
parameters. Total number of parameters is equal to m? + m(m +
1)/2 + m and increases rapidly:

e m = 2: 9 parameters
e m = 3: 18 parameters

e m = 4: 30 parameters
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Trivariate VAR(1)-Model

Rewrite this representation as a system of three equations:

Yii=Pui1Y1-1 +PraYo 1+ PraYs 1+ 1 + U,
Yor = ®o1Y71 41+ PoaYo s 1 + Poa3Y3 1 + co + uay,
Y3 = ®31Y1 11 + P3aYo 1 + P33Y3 1 + c3 + uss.

Regression model for Yi;, Yo, and Y3; with identical predictors
Yi+-1, Yo:—1, and Y3 ;_1, however different coefficients.
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VAR(p)-Process

Definition:
Yt = q)lYt—l + ...+ @th—p + C + U+, Uy N~ Normal (0, E)
e &, ... P, are m x m-Matrizen = pm? parameters

o If®y,...,®,and X are diagonal matrices, then individual AR(p)-
modeling of each time series results.
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Trivariate VAR(2)-Model

Rewrite this representation as a system of three equations:

Yi¢

_|_

Yo

_|_

Y3,
_I_

Oy 11Y1 41+ PraoYo 1+ PrasYs3 o1
Do 11Y1,0—2+ P 12Yo o+ Po13Y3 0 + 1 + Uy,
D1 01Y1t-1+ProoYo 1+ Py o3Y3 i
Do 21Y1 -0+ P2 22Yo 1o+ o 93Y3 1o+ co + Uy,
D1 31Y16-1+Pr32Yo 1+ Pr 33341
D2 31Y1 40+ Po3aYo o+ Po33Y3 49+ 3+ us:.

Conditional expectation E(Y;¢|Y:_1,Y;_2) depends not only on
Y;t—1and Y, o, but also on Y3 ;1 and Y} ;_o.

Sylvia Frithwirth-Schnatter Econometrics Il WS 2012/13 1-83



