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Advanced Econometrics

• Modelling Volatility: ARCH and GARCH Models

• Multivariate time series (spurios regression, cointegration, VAR)

• Endogeneity and IV estimation

• Panel data analysis

Wooldridge, Introductory Econometrics, Thompson 2009; Hackl,

Einführung in die Ökonometrie, Pearson Verlag, 2005.
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Mile stone I

Modelling Volatility: ARCH and GARCH Models

• Modeling (conditional) volatility

• ARCH models

• GARCH models
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Modeling (conditional) volatility

• In finance, the volatility is the standard deviation of logarith-

mic returns derived for some financial instrument (stock prices,

exchange rates).

• In many econometric time series such as returns the variance

of the disturbance term is not constant, i.e. the assumption of

homoscedasticity is violated.

• ARIMA models are models for the conditional mean of a time

series. ARCH and GARCH models are models for the conditional

variance.
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EVIEWS Exercise : Case Study nasdaq

• Monthly equity prices pt of a US firm listed at the NASDAQ

(January 1992 to December 2011)

• Is the Random Walk Yt = Yt−1 + ut a good model for the time

series Yt = log pt?

• σ̂2 = 1.0015

• Are the returns ut autocorrelated?

• Is the variance Var(ut) of the returns constant?
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EVIEWS Exercise : Case Study nasdaq
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The returns of nasdaq has periods with smaller variance than

σ̂2 = 1.0015 and periods with larger variance than σ̂2.
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EVIEWS Exercise : Case Study nasdaq

• The series shows volatility clusters, i.e. small and high volatility

persists for many months.

• The uncertainty of short-term forecasts derived from a constant

volatility model is overestimated in periods of small volatility and

underestimated in periods of high volatility

• Periods of high volatility are periods of great potential and high

risk. Capturing dependence in the volatility would be important.
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EVIEWS Exercise : Case Study nasdaq

• How to measure dependence (autocorrelation) in volatility (which

is unobserved)?

• The volatility (ut − µ)2 (deviation from the mean), seems to be

correlated

• Consider correlogram of the squared residuals u2
t and test for

autocorrelation.
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ARCH(1) processes

• In an Autoregressive Conditional Heteroscedasticity, or ARCH

Model the variance of Yt is modelled as a function of past values

of the time series.

• Yt is an ARCH(1) process with mean µ if ut is a white noise

process with Var(ut) = 1 and

Yt − µ = ut ·
√

α0 + α1(Yt−1 − µ)2, α0, α1 > 0

Hence,

σ2
t = Var(Yt|Yt−1) = α0 + α1(Yt−1 − µ)2.
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ARCH(1) processes

• An ARCH(1) process is stationary, if α1 < 1.

• Moments of a stationary ARCH(1) Process

E(Yt) = µ, Var(Yt) =
α0

1− α1

• The conditional mean equals the long-run mean

E(Yt|Yt−1, . . . , ) = E(Yt) = µ

• The conditional variance Var(Yt|Yt−1) differs from the marginal

variance:
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ARCH(1) processes

• The conditional variance Var(Yt|Yt−1) = α0 + α1(Yt−1 − µ)2

grows with the deviation of the past value Yt−1 from the long-run

mean µ. In particular:

Var(Yt|Yt−1) > Var(Yt) ⇔ (Yt−1 − µ)2 > Var(Yt)

Proof:

Var(Yt|Yt−1) = α0 + α1(Yt−1 − µ)
2
>

α0

1 − α1

= Var(Yt)

⇔ α0 − α0α1 + α1(1 − α1)(Yt−1 − µ)
2
> α0

⇔ (1 − α1)(Yt−1 − µ)
2
> α0
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ARCH(1) processes

• Yt is not correlated with Yt−s for s ̸= 0

E(Yt − µ)(Yt−s − µ) = 0

• Adjacent values however are not independent, as the conditional

variance of Yt depends on Yt−1

• Squared residuals follow an AR(1) process.

• The actual volatility persists for a long time if α1 is close to 1.
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ARCH(1) processes

The process of squared residuals (Yt − µ)2 is correlated as

(Yt − µ)2 = u2
t ·
(
α0 + α1(Yt−1 − µ)2

)
=

= α0 + α1(Yt−1 − µ)2 + u∗
t

where u∗
t = (u2

t − 1)
(
α0 + α1(Yt−1 − µ)2

)
• E(u∗

t ) = 0

• u∗
t is uncorrelated
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Normal ARCH(1)Processes

Assumes that ut ∼ i.i.d. Normal (0, 1) is normal.

• The conditional distribution of Yt|Yt−1 is a normal distribution

with mean µ and variance σ2
t = α0 + α1(Yt−1 − µ)2

• The marginal distribution of Yt however is not normal

– its 3. moment is 0 =⇒ symmetric

– its kurtosis (4. central moment) is K =
3(1−α2

1)

1−3α2
1

K is finite if 3α2
1 < 1, otherwise infinite

The marginal distribution has fatter tails than the normal distri-

bution
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ARCH(r) Processes

• In an ARCH(r) process the conditional variance does not only

depend on Y t−1, but also on Yt−1, . . . , Yt−r

• Yt = µ + utσt is an ARCH(r) process with mean µ, if ut is a

white noise process with Var(ut) = 1 and

σ2
t = α0 +

r∑
i=1

αi(Yt−i − µ)2, α0, α1, . . . , αr > 0

– r is the order of the ARCH process

– α0, α1, . . . , αr are the ARCH parameters
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ARCH(r) Processes

• An ARCH(r) process is stationary, if
∑r

i=1αi < 1

• The moments of a stationary ARCH(r) process are

E(Yt) = µ

Var(Yt) =
α0

1−
∑r

i=1αi

• (Yt − µ)2 is an autoregressive process of order r

(Yt − µ)2 = α0 +

r∑
i=1

αi(Yt−i − µ)2 + u∗
t
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EVIEWS Exercise : Case Study nasdaq

Discuss fitting of ARCH(r) processes in EViews.

• Inspect the marginal distribution of dlog(nasdaq)

• Fit ARCH(r) processes of different order to dlog(nasdaq)

• Determine whether the process is stationary.
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Estimation of ARCH(r) Processes

An ARCH(r) model Yt−µ ∼ Normal
(
0, σ2

t (α0, α1, . . . , αr)
)
, where

σ2
t (α0, α1, . . . , αr) = α0 +

r∑
i=1

αi(Yt−i − µ)2

is to be fitted to the time series y1, . . . , yT

Estimation Problem:

• How can the parameters θ = (µ, α0, α1, . . . , αr) be estimated

from the data?

• What are the statistical properties of the estimator?
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Estimation of ARCH(r) Processes

• Maximize the log of the likelihood-function

p(y1, . . . , yT |θ) = p(yT |yT−1, ·)p(yT−1|yT−2, ·) · · · p(yr+1|yr, . . . , y1),

which is given by:

l(θ) = constant−1

2

( T∑
t=r+1

(yt − µ)2

σ2
t (α0, α1, . . . , αr)

+lnσ2
t (α0, α1, . . . , αr)

)

• The log-likelihood-function is maximized numerically using an

iterative algorithm

Sylvia Frühwirth-Schnatter Econometrics III WS 2012/13 1-18



Statistical properties of the ML estimator

• The MLE is consistent and for normal ARCH models also efficient

• Standard errors of the MLE can be determined from the Hesse

Matrix of the log-likelihood function J(θ) =
(
∂2l(θ)
∂θ∂θ′

)−1

• ML-estimators are asymptotically normally distributed (under

mild regularity assumptions)

• To test hypotheses about the parameters t− and F−statistics

can be used.
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Selection of model order

• Overfitting : Choose r large and test H0 : αr = 0

• Model selection criteria: choose the model where r minimizes the

AIC or the Schwarz criterion

AIC = −2

n
log l(θ̂) +

2k

n

SC = −2

n
log l(θ̂) +

lnn · k
n

,

where θ̂ is the ML estimator and k is the number of parameters,

e.g. k = r + 2, if µ ̸= 0.
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Model Checking
Model checking is based on the standardized prediction error

rt =
(yt − µ̂)2

σ2
t (α̂0, α̂1, . . . , α̂r, µ̂)

• no autocorrelation of rt: correlogram of rt

• no autocorrelation of r2t : correlogram of r2t

• normal distribution of rt (validity of standard errors): histogramm,

Jarque-Bera

• homoscedasticity of rt: time series plot of rt (no more volatility

clusters)
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Violations of model assumptions

Autocorrelations in rt:

• the model for the conditional mean E(Yt|Yt−1, . . . ) = µ is not

appropriate =⇒ Combine the ARCH Model for the conditional

variance with an ARMA Model for the conditional mean

Autocorrelations in r2t :

• Model order is to small =⇒ Increase the model order

• Use a different model specification =⇒ Use a GARCH Model
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Violations of model assumptions

rt is not normally distributed:

• MLEs are consistent, but not efficient

• Standard errors are biased (usually downwards, i.e. underestima-

ted)

• Correct estimators of standard errors are obtained by multiplica-

tion of the matrix J with a correction matrix C as J∗ = J · C

• Using the option Heteroskedasticity Consistent Covariance

in EVIEWS produces corrected standard errors
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GARCH Models

• In a generalized ARCH model, or GARCH model the variance of

Yt is modelled as a function of past deviations of Yt from the

mean and past values of the variance.

• Yt is a GARCH(1,1) process with mean µ if ut is a white noise

process with Var(ut) = 1 and

Yt − µ = ut · σt

σ2
t = α0 + α1(Yt−1 − µ)2 + γ1σ

2
t−1, α0, α1, γ1 ≥ 0

• The ARCH(1) process is a special case of the GARCH(1,1)

process for γ1 = 0
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The GARCH(1,1) Process

• A GARCH(1,1) process is stationary, if

α1 + γ1 < 1

• Moments of a stationary GARCH(1,1) Process

E(Yt) = µ, Var(Yt) =
α0

1− α1 − γ1

• The conditional mean equals the long-run mean

E(Yt|Yt−1, . . . , ) = E(Yt) = µ
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Conditional variance of the GARCH(1,1) process

The conditional variance of the GARCH(1,1) process is

Var(Yt|Yt−1, . . . , ) = σ2
t = α0 + α1(Yt−1 − µ)2 + γ1σ

2
t−1

Substituting σ2
t−1 gives

σ
2
t = α0 + α1(Yt−1 − µ)

2
+ γ1

(
α0 + α1(Yt−2 − µ)

2
+ γ1σ

2
t−2

)
Substituting σ2

t−2, σ
2
t−3, . . . successively shows that a GARCH(1,1)

model corresponds to an ARCH model of order ∞

σ
2
t =

α0

1 − γ1

+ α1

∞∑
j=1

γ
j−1
1 (Yt−j − µ)

2
= α

∗
0 +

∞∑
j=1

α
∗
j(Yt−j − µ)

2
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Conditional variance of the GARCH(1,1) process
The coefficients α∗

j of (Yt−j − µ)2 decay exponentially:

Lag squared deviation α∗
j

1 (Yt−1 − µ)2 α1

2 (Yt−2 − µ)2 α1γ1 < α1

3 (Yt−3 − µ)2 α1γ
2
1 < α1γ1

The actual information (= squared deviation from the mean) has

the largest weight, information into the past is down weighted with

γ1(< 1) for each step.

In classical variance estimation, all squared deviation have equal

weight

σ̂2 = 1
t−2

∑t−1
i=1(Yt−i − µ)2
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Autocorrelation

• The process (Yt − µ) is not autocorrelated

• The process of squared residuals (Yt − µ)2 however is correlated

and has a representation as an ARMA(1,1) process:

(Yt − µ)2 =α0 + (α1 + γ1)(Yt−1 − µ)2 + u∗
t − γ1u

∗
t−1

where u∗
t is white noise process.

• The actual volatility persists for a long time if α1 + γ1 is close to

1.
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GARCH(r,s) Processes

• Yt = µ+ ut · σt is a GARCH(r,s) process with mean µ, if ut is a

white noise process and

σ2
t = α0 + α1(Yt−1 − µ)2 + · · ·+ αr(Yt−r − µ)2+

+ γ1σ
2
t−1 + · · ·+ γsσ

2
t−s

• The GARCH(r,s) process is stationary if

r∑
i=1

αi +
s∑

j=1

γj < 1
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GARCH(r,s) Processes

• Moments of a stationary GARCH(r,s) Process

E(Yt) = µ, Var(Yt) =
α0

1−
∑r

i=1αi −
∑s

j=1 γj

• The process of squared residuals (Yt − µ)2 is an ARMA(r,s)

process

• Parameters of a GARCH(r,s) process are estimated by the ML-

method.

• Model selection using overfitting and AIC/Schwarz criterion
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EVIEWS Exercise : Case Study exchange rates

Daily exchange rate of the Swedish krona against the Euro (January

3, 2000 to April 4, 2012)

• Discuss fitting an ARCH(1) model and a GARCH(1,1) model in

EViews

• Discuss forecasting with a GARCH(1,1) model

• Compare volatility forecasts with ARCH(1) and GARCH(1,1)

models

• Discuss fitting of GARCH(r,s) models and forecasting with

GARCH(r,s) models in EViews
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ARMA and regression models with ARCH errors

• ARMA models and regression models are models for the condi-

tional mean - the variance is assumed to be constant (homosce-

dasticity)

• GARCH Models are models for the conditional variance, the

conditional mean is assumed to be constant

• Combining both types of models allows to model the conditional

mean and the conditional variance
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