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Multivariate time series

e Spurios regression and Cointegration
e Modeling cross- and autocorrelation
e Stationary VAR-Models

e Non-stationary VAR-Models
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Describing uncertainty

e Econometric models often are based on the ,,first” and ,,second”
moments of the conditional distribution p(Y'|X) by specify the
expectation and the variance of Y under the assumption that X
is known, i.e. E(Y|X) and Var(Y|X)

e Alternatively, specify the first and second moments of the joint
. . . /
distribution p(X,Y’) of the random vector (X,Y) through the
expectation vector and the covariance matrix:

E(X) Var(X) Cov(X,Y)
EY) |’ Cov(X,Y) Var(y) /|
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ll.1 Spurios regression and Cointegration

Consider a regression model where both the response Y; and the
predictor X; are time series:

Y: = Bo + B1 Xt + . (1)

If X; and Y; are stationary time series, then two cases have to be
distinguished concerning u;:

e Econometrics I: u; is a white noise process, i.e. E(u;) = 0,
Var(u;) = 02, Corr(us,us) = 0 for all s ¢t = OLS estimation
is BLUE
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Spurios regression and Cointegration

e Econometrics Il: u; is a stationary process, E(u;) = 0, Var(us) =
0%, Corr(us, ug) = p(t — s) for all s # t (correlation depends on
the lag h =t — s between t and s) = OLS is consistent, but
inefficient; include ARMA terms

What happens, if the time series X; and Y; are non-stationary?

e u; might be a non-stationary process =- spurios regression may
occur

e u; Is stationary = the time series are cointegrated
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Stationarity versus non-stationarity
Examples from Econometrics II: assume that u; ~ Normal (0, 2) is
a white noise process

e Random process: Y; = 0.2 + u; - stationary; no autocorrelation;
E(Y:) = E(Yy|Y:—1) = 0.2, Var(Y;) = Var(Y;|Yi—1) = 2,

e AR(1)-process: Y; = 0.9Y;_1 + 0.2 + u; - stationary (¢ = 0.9
satisfies the stationarity condition |p| < 1); autocorrelation:
Corr(us, us) = @' % E(Yy|Y;_1) = 0.9Y;_1 + 0.2 # E(Y;) = 2;
Var(Y:|Y;—1) = 2 # Var(Y;) = 10.53.

e Random walk with drift: Y; = Y;_1 4+ 0.2 4+ u; - non-stationary;
E(YHYO) = E(YO) + O.Qt; Var(Yt|Y0) = 2t.
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Stationarity versus non-stationarity

A random process versus a stationary AR process:
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Stationarity versus non-stationarity

Stationary AR processes versus random walk processes:
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First differences

Recall from Econometrics |l

e A random walk with (or without drift) is an AR(1) process, where
the AR(1)-coefficient is equal to 1 (,,unit root”)

e Use the (augmented) Dickey-Fuller test to test the null hypothe-
sis, that a time series Y; is non-stationary

e The process of first differences, i.e.
VYi=Y — Y1,

is often stationary; Y; is integrated of order 1 (I(1)-process).
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First differences

A random walk process and the corresponding process of first
differences
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Spurios regression

If the response Y; and the predictor X; in a regression model are
non-stationary time series, then spurios regression might be present.

e Spurios regression means that Y; and X; are independent, but
the regression coefficient 31 in regression model (2) is highly
significant (large t-value, small p-value).

e With increasing number of observations 7', the t-value might
even converge to oo, although the null hypothesis 81 = 0 is
true. The risk of rejecting a true null hypothesis 5; = 0 may be
considerably larger (up to 100%) than the assumed significance
level of, say, 5%.
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Spurios regression

e What is the reason? If the response Y; and the predictor X; are
non-stationary time series, then the error term wu; in regression
model (2) might be a non-stationary process.

e If the error term u; in regression model (2) is a non-stationary
process, then econometric inference for the regression parameters
Bo and 81 may be misleading.

e However, the error term wu; in regression model (2) could be a
stationary process, even if the response Y; and the predictor X;
are non-stationary time series. In this case, the time series X;
and Y; are called cointegrated.
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Example: Regression involving random walk processes

Assume that Y; = Y;_; +u; and X; = X;_1 +u;* follow indepen-
dent random walk processes, i.e. uf and uf( are independent white

noise processes. Rewrite regression model (2):

u—1 = Yi1 — B1Xe—1 — Do,
w = Yy — Xy —Bo=Yi1+u — i Xe1— Biui — Bo

Z
= Ut = Up—1 + Uy,

where uZ = uy — Siu;* is a white noise process (superposition of

the white noise processes u;* and u; ). The error term u; follows

a random walk.
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How to deal with spurios regression?

e Check stationarity /non-stationarity for the response and all ran-
dom predictors in a regression model.

e Check stationarity of the OLS residuals.

e Check for extremely large t-values in combination with a Durbin
Watson statistic d close to 0 (remember d ~ 2(1 — 1), where 4
is the autocorrelation of the residuals at lag 1).

If spurios regression seems to be present, then consider first diffe-
rences instead of levels for all non-stationary variables.
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Example: Regression involving random walk processes

Assume that Y; = Y;_1 + uf and X; = X;_1+ u%X follow indepen-
dent random walk processes. Then

Y: = Bo + B1.X: + uy, Yic1 = Bo+ L1 Xe—1 + ug—1,

where u; follows a random walk. Hence,

Y, =Y = Bi( Xy — Xy—1) + (ug — ug—1),
Considering the first differences V.X; and VY; instead of the levels

X; and Y; for the non-stationary variables leads to the regression
model (2) with stationary error distribution Vu; = us — uz_1.
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EVIEWS Exercise : Case Study nasdag?2

Monthly equity prices X; and Y; of two US firm listed at the
NASDAQ (January 1992 to December 2011)

e Unit root hypothesis (including intercept) not rejected for log Y;
(p-value: 0.58) and log X; (p-value: 0.39)

e OLS regression in the levels: significantly negative regression
coefficient = E(log Y;| X;) = —0.21 - log X; — 0.74

e Durbin-Watson statistics very small (= 0.1), ACF of the residuals:
AR(1) coefficient close to 1 - spurios regression?
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EVIEWS Exercise : Case Study nasdag?2

e Unit root hypothesis (no intercept) for the residual series not
rejected (p-value: 0.14) = spurios regression!

e Unit root hypothesis (including intercept) rejected for VlogV;
(p-value: 0.0) and Vlog X; (p-value: 0.0): difference processes
are stationary

e OLS regression in the differences: regression coefficient of X; not
significant (p-value: 0.967) = E(VlogY;|X;) = E(VlogV;)

e F-test for the null hypothesis 5y = 51 = 0 not rejected (p-value:
0.967) = E(VlogY;) = 0; logY; is a random walk

Sylvia Frithwirth-Schnatter Econometrics Il WS 2012/13  1-47



Cointegration

If the response Y; and the predictor X; in regression model (2)
are non-stationary time series, but the error term wu; is a stationary
process, then the time series X; and Y; are called cointegrated.

A linear combination of X; and Y; is a stationary process (i.e. a
1(0)-process):

_5 X
w = Y, — Xy — By = 11 Yt — Bo
t

If X; and Y; are I(1)-processes, then a linear combination of X,
and Y; is a 1(0)-process, i.e. has a lower order of integration. The
processes move together
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Cointegration

Two random walk processes versus two cointegrated processes
(the black process is the same in both figures)
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Testing for Cointegration

If 5o and 51 were known, then we could compute u; = Y;— 581 X:—Bo
and perform a unit root test on u;.

Engle-Granger two-step method:

e Run OLS regression with the levels Y; and X; and determine the
OLS residuals .

e If the unit root hypothesis (no intercept) for the residual series
U Is rejected, then X; and Y; are co-integrated.
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EVIEWS Exercise : Case Study exchange-rates

Daily exchange rate X; of the Swedish krona against the Euro and

Y; of the Norwegian krone against the Euro (January 1, 2002 to
April 4, 2012)

e Unit root hypothesis (including intercept) not rejected for log Y;
(p-value: 0.08) and log X; (p-value: 0.17)

e OLS regression in the levels: significantly positive regression
coefficient = E(log Y;|X;) = 0.62 - log X; 4+ 0.7

e Unit root hypothesis (no intercept) for the residual series rejected
(p-value: 0.0047) = time series are cointegrated
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Cointegration

Some open issues:

e Which variables is the left hand side, which one is the right hand
side variable?

e To forecasts future values Y;.1,Y:19,..., we need to forecast
future values of X1, X340,....

e How to proceed, if we have more than two time series?
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Modeling cross- and autocorrelation

e Multivariate time series y;,t = 1,...,1": simultaneous modeling
of more than one time series (z.B. GDP, industrial production,
inflation)

e vy, is a realization of a multivariate stochastic process Y, t =
L,....1"

(yu\ _(Ylt\
v ey

Yyt
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Individual modeling of each process

{y1:},t =1,...,T: Realization of Y1,

{yme},t =1,...,T: Realization of Y,,,;

Independent individual modeling of each process Y;;, e.g. AR(1):

Yt = ;Y 11+ ¢; + uji, ujir ~ Normal ((), O'Z,]) ,
Cov(uje, uge) =0, Vj # Kk,
Cov(uj¢, ug—pn) =0, Vh #0.
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Individual modeling of each process

Conditional distribution of Y, given all past values Y;_;:

e Conditional expectation:
E(}/jt‘Yt—l) = Spj)/j,t—l -+ Cj (independent of Yk,t—l)

e Conditional variance:
Var(}/jt’Yt—l) = 0'2 :

u,j

e Conditional covariance:

COV(ifjt,th‘Yt_l) = COV(th,ukt) =0 (Y}t and th are uncor-
related)
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Individual modeling of each process

Dependence structure:

e autocorrelation within each time series:
2 . h
Cov(Yjt, Yji—n) = Ou,i¥j

e no simultaneous cross correlation (j # k):
COV(Y}'t, th) =0

e no cross correlation across time (h # 0):
COV(th, Ykz,t—h) =0
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Joint modeling of all processes

Multivariate time series:

e Conditional expectation E(Y;¢|Y;_1) depends not only on Y ;_1,
but may also depend on all other past values Yy ;_1,k # j.

e Simultaneous correlation of Y;; and Yy for all & # j

e Y, is allowed to be correlated with past and future values of all
processes Yy t_p, k # J
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EViews Exercise - Case Study Industrial Production

Industrial production - quarterly data for various European coun-
tries from 1970:1 to 2001:4; consider France (ip-fra), Germany
(ip—-deu), and Spain (ip-esp)

e Show time series plot of all time series

e Define process of relative differences through dlog

e Discuss autocorrelation for each time series, simultaneous corre-
lation, and cross correlation between the different countries

e Regression modeling of one time series in terms of lagged values
of the other time series
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