
II.9 Regression Models with Heteroscedastic Errors
If assumption (39) (homoscedastic errors) is violated, one has to

deal with heteroscedastic errors, i.e. the variance differs among the

observations:

Var (ui|X1, . . . , XK) = σ2
i . (75)

• Standard errors of OLS estimation are no longer valid; efficiency

of OLS estimation is lost.

• OLS estimations looses optimality, better estimation methods

exist.
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Case Study Profit

Demonstration in EVIEWS, workfile profit:

yi = β0 + β1x1,i + β2x2,i + ui,

yi . . . profit 1994

x1,i . . . profit 1993

x2,i . . . turnover 1994

Variances increases with size of the firm
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OLS Estimation under Heteroscedasticity

Simulate data from a regression model with β0 = 0.2 and β1 = −1.8

and heteroscedastic errors:

yi = 0.2− 1.8xi + ui, ui ∼ Normal
(
0, σ2

i

)
,

σ2
i = σ2 · (0.2 + xi)

2.

⇒

MATLAB Code: reghet.m
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OLS Estimation under Heteroscedasticity
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OLS Estimation under Heteroscedasticity
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Left hand side: estimation errors obtained from a simulation study

with 200 data sets (each N = 50 observations); right hand side:

contours show estimation error according to OLS estimation
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Weighted Least Square Estimation
If the variance increases with an observed variable Zi,

Var (ui) = σ2
i , σ2

i = σ2Zi,

then a simple transformation leads to a model with homoscedastic

variances:

u⋆
i =

ui√
Zi

,

Var (u⋆
i ) = σ2.
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Weighted Least Square Estimation

Therefore a simple transformation of regression model

yi = β0 + β1x1,i + . . .+ βKxK,i + ui,

leads to a model with homoscedastic variances:

yi√
Zi

= β0
1√
Zi

+ β1
x1,i√
Zi

+ . . .+ βK
xK,i√
Zi

+ u⋆
i . (76)

Regression model (76) has identical parameters as the original

model, but a transformed response variable as well as transformed

predictors.
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Weighted Least Square Estimation

Rewrite model (76) as

y⋆i = β0x
⋆
0,i + β1x

⋆
1,i + . . .+ βKx⋆

K,i + u⋆
i , (77)

where

y⋆i =
yi√
Zi

, x⋆
0,i =

1√
Zi

,

x⋆
j,i =

xj,i√
Zi

, ∀j = 1, . . . ,K.

Note that model (77) fulfills assumption (39), i.e. it is a model

with homoscedastic errors.
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Weighted Least Square Estimation

Use OLS estimation for the transformed model (77):

y⋆i = β0x
⋆
0,i + β1x

⋆
1,i + . . .+ βKx⋆

K,i + u⋆
i ,

and minimize the sum of squared residuals in the transformed model:

SSR =

N∑
i=1

(u⋆
i )

2
.
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Weighted Least Square Estimation

Due to the following relation

u⋆
i =

ui√
Zi

,

the OLS estimator of the transformed model is equal to a weighted

least square estimator in the original model:

SSR =
N∑
i=1

(u⋆
i )

2
=

N∑
i=1

u2
i

1

Zi
.
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Weighted Least Square Estimation

Residuals ui for observations with big variances are down-weighted,

while residuals for observations with small variances obtain a higher

weight. Hence the name weighted least square estimation.

There is no “intercept” in the model (77), only covariates. Using

the matrix formulation of the multiple regression model (77), we

obtain following matrix of predictors and observation vector:

X⋆ = Diag (w1 · · ·wN)X, y⋆ = Diag (w1 · · ·wN)y.

where

wi =
1√
Zi

, i = 1, . . . , N.
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Weighted Least Square Estimation

The OLS estimator is computed for the transformed model, i.e.

β̂ = ((X⋆)
′
X⋆)−1(X⋆)

′
y⋆.

This is equal to following WLS estimator, which is expressed entirely

in terms of the original variables:

β̂ = (X
′
WX)−1X

′
Wy, (78)

where W = Diag
(
w2

1 · · ·w2
N

)
.
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Testing for Heteroscedasticity

• Classical tests of heteroscedasticity are based on the squared

OLS-residuals û2
i , e.g. the White or the Breusch-Pagan hete-

roscedasticity test: test for dependence of the squared residuals

on any of the predictor variables using a regression type model:

û2
i = γ0 + γ1x1,i + . . .+ γKxK,i + ξi,

and test, if γ0 = . . . = γK = 0 using the F-test.

• Problem: test not reliable, as the errors ξi of this regression

model are not normal
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Case Study Profit

Demonstration in EVIEWS, workfile profit:

yi = β0 + β1x1,i + β2x2,i + ui.

• Discuss classical tests of heteroscedasticity

• Possible choice for Zi: Zi = x2,i (um94)

• Show how to estimate the transformed model

• Perform residual diagnostics for the transformed model
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