
The Classical Regression Model

The error u in the multiple regression model (50) is independent

of X1, . . . , XK and follows a normal distribution:

u ∼ Normal
(
0, σ2

)
. (51)

This assumption implies the more general assumptions (28) and

(39):

E(u|X1, . . . , XK) = E(u) = 0,

Var (u|X1, . . . , XK) = Var (u) = σ2.
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The Classical Regression Model

It follows that the conditional distribution of Y given X1, . . . , XK

follows a normal distribution:

Y |X1, . . . , XK ∼ Normal
(
β0 + β1X1 + . . .+ βjXj + . . .+ βKXK, σ2

)
.

Furthermore, because the observations are a random sample, the

vector u has a multivariate normal distribution with independent

components:

u ∼ NormalN
(
0, σ2I

)
.
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Multivariate normal distributions - independent components

Density of the bivariate normal distribution Normal2
(
0, σ2I

)
with

σ2 = 0.5.
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Multivariate normal distributions - independent components

1000 observations from Normal2 (0, 0.5I) in comparison to 100α%-

confidence region (from the left to the right: α = 0.25, α = 0.5, α =

0.95)
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Multivariate normal distributions - dependent components

Density of the bivariate normal distribution Normal2 (µ,Σ) with

µ = (2,−3)′ and Σ =

(
4 3.2

3.2 7

)
.
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Multivariate normal distributions - dependent components

1000 observations from Normal2 (µ,Σ) in comparison to 100α%-

confidence region (from the left to the right: α = 0.25, α = 0.5, α =

0.95)
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Distribution of the OLS estimator
Using (38), we obtain:

β̂ − β ∼ NormalK+1

(
0,Cov(β̂)

)
, Cov(β̂) = σ2(X

′
X)−1.

Deviations between the true value and the OLS estimator are usually

correlated.

All marginal distributions are normal, hence:

β̂j − βj ∼ Normal
(
0, sd(β̂j)

2
)
,

β̂j − βj

sd(β̂j)
∼ Normal (0, 1) . (52)
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Testing a single coefficient - the t-test

If the null hypothesis βj = 0 is valid, then possible differences

between the OLS-estimator β̂j and 0 may be quantified using the

following statistical inequalities:

|β̂j|
sd(β̂j)

≤ cα, (53)

where cα is equal to the (1− α/2)-quantile of the standard normal

distribution. (53) is used to construct a test statistic:

tj =
β̂j

sd(β̂j)
. (54)
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Testing a single coefficient - the t-test

If (51) holds and σ2 is known, then tj follows a standard normal

distribution under the null hypothesis:

• Choose a significance level α.

• Determine the corresponding critical value cα.

• If |tj| > cα: reject the null hypothesis (risk to reject the null

hypothesis although it is true is equal to α).

• If |tj| ≤ cα: do not reject the null hypothesis (risk to “accept” a

wrong null hypothesis may be arbitrarily large).
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Choice of cα, when σ2 is unknown
If σ2 is unknown and estimated as described above, then sd(β̂j) is

substituted by se(β̂j), yielding the test statistic:

tj =
β̂j

se(β̂j)
. (55)

Choosing the quantiles of the normal distributions would lead to a

test which rejects the null-hypothesis more often than desired, e.g.

for α = 0.95 and K = 3:

N 10 20 30 40 50 100

Prob(reject H0) 0.09 0.07 0.06 0.05 0.05 0.05
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Choice of cα, when σ2 is unknown

The reason is that tj no longer follows a normal distribution, but a

tdf-distribution where df = (N−K−1). The critical values tdf,1−α/2

depend on df and are equal to the quantiles of the tdf-distribution.

For α = 0.95 and for a regression model with 3 parameters, e.g.

these values are:

df = N − 3 7 17 27 37 47 97

tdf,0.975 2.37 2.11 2.05 2.02 2.00 1.96
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The student t-distribution

The following figures show the density of the student tdf distribution

for various degrees of freedom (from the left to the right: df =

4, df = 30, df = 100)
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The tdf-distribution converges to the standard normal distribution,

as df goes to infinity.
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The p-value

The p-value is derived from the distribution of the t-statistics under

the null hypothesis and is easier to interpret than the t-statistics

which has to be compared to the right quantiles:

• Choose a significance level α.

• If p < α: reject the null hypothesis (risk to reject the null

hypothesis although it is true is at most equal to α).

• If p ≥ α: do not reject the null hypothesis (risk to “accept” a

wrong null hypothesis may be arbitrarily large).
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EVIEWS Exercise II.6.1

Discuss in EVIEWS how to formulate sensible null hypotheses and

how to test them using the t-statistic and the p-value.

• Case Study profit, workfile profit;

• Case Study Chicken, workfile chicken;

• Case Study Marketing, workfile marketing;
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Case Study Marketing

The t-statistic for the variable gender is equal to -0.38, p-

value:0.704
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Case Study Marketing

The t-statistic for the variable price is equal to -16.1, p-value:0
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Understanding p-values

• A small p-value shows that the value observed for the t-statistic

is unlikely under the null hypothesis, thus we reject the null

hypothesis for small p-values.

⇒ There is high evidence in the data that βj ̸= 0.

• A p-value considerable larger than 0 shows that the observed

value for the t-statistic is likely under the null hypothesis. Do not

reject the null hypothesis that βj = 0.

⇒ There is no evidence in the data that we should reject the null

hypothesis. Note, however, this does not necessarily mean that

βj = 0 (risk to accept a wrong null hypothesis is not controlled).
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Confidence intervals for the unknown coefficients
The marginal distribution (52) is also useful for obtaining 100(1−α)

confidence regions for the unknown regression coefficients (e.g.

α = 0.05 leads to a 95% confidence region).

Two-sided confidence regions:

Pr{−c1−α/2 ≤
β̂j − βj

sd(β̂j)
≤ c1−α/2} = 1− α, (56)

where cp is the p-quantile of the standard normal distribution, i.e.

the confidence interval reads:

[β̂j − c1−α/2sd(β̂j), β̂j + c1−α/2sd(β̂j)]
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Confidence intervals for the unknown coefficients

One-sided confidence regions:

Pr{β̂j − βj

sd(β̂j)
≤ c1−α} = 1− α,

Pr{−c1−α ≤ β̂j − βj

sd(β̂j)
} = 1− α.

This yields (with probability 1− α):

• β̂j − c1−αsd(β̂j) is a lower bound for βj,

• β̂j + c1−αsd(β̂j) is an upper bound for βj.

Sylvia Frühwirth-Schnatter Econometrics I WS 2012/13 1-134



Confidence intervals for the unknown coefficients

If σ2 is unknown, then sd(β̂j) is substituted by se(β̂j). Instead of

(52), we obtain with df = (N −K − 1):

β̂j − βj

se(β̂j)
∼ tdf,

This yields with tdf,p being the p-quantiles of the tdf-distribution:

• βj lies in [β̂j − tdf,1−α/2se(β̂j), β̂j + tdf,1−α/2se(β̂j)]

• β̂j + tdf,1−αse(β̂j) is an upper bound for βj;

• β̂j − tdf,1−αse(β̂j) is a lower bound for βj.
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More about the distribution of the OLS estimator

• For any subset of coefficients β̃ = (βj1, . . . , βjq)
′, the OLS estima-

tor
˜̂
β = (β̂j1, . . . , β̂jq)

′, follows a multivariate normal distribution:

˜̂
β − β̃ ∼ Normalq

(
0,Cov(

˜̂
β)
)
, (57)

where Cov(
˜̂
β) is obtained from the rows and columns j1, . . . , jq

of Cov(β̂).

• This result may be used to construct 95%-confidence ellipsoids

for all pairs of parameters (βj1, βj2).
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Testing more than one coefficient

• Testing the null hypothesis βj = 0 based on tj is only valid, if all

other parameters remain in the model.

• Often, we want to test joint hypotheses about our parameters.

• E.g. if the tj-statistics is not significant for more than one para-

meter j1, . . . , jq, then one needs to test, if βj1 = 0, . . . , βjq = 0

simultaneously.

• We cannot simply check each tj-statistic separately. It is possible

for jointly insignificant regressors to be individually significant

(and vice versa).
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Testing more than one coefficient

Given the data, is it possible to reject the null hypothesis

βj1 = 0, . . . , βjq = 0?

Reject the null hypothesis, if the distance between the OLS estimator
˜̂
β = (β̂j1, . . . , β̂jq)

′ and 0 is “large ”(one-sided test).

The corresponding test statistic has to take into account that

• the standard deviations of the various OLS estimators are diffe-

rent.

• deviations of the OLS estimators from the true value are likely to

be correlated.
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Testing more than one coefficient

Aggregate tjl = β̂jl/sd(β̂jl) for l = 1, . . . , q, e.g. by taking the sum

of squared t statistics?

If the deviations of the OLS estimators β̂j1, . . . , β̂jq from the true

values are uncorrelated, then the aggregated test statistic

q∑
l=1

β̂jl

2

sd(β̂jl)
2

is the sum of q independent squared standard normal random

variables. Such a random variable follows a χ2
q-distribution with q

degrees of freedom.
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The χ2
q distribution

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
ν = 20

 

 
ν= 2
ν= 5
ν=10
ν=20

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
ν = 50

 

 
ν= 2
ν= 5
ν=10
ν=20
ν=50

Left hand side: density of the χ2
q-distribution; right hand side:

density of the random variable X/q, where X ∼ χ2
q-distribution

(q = 2, 5, 10, 20)
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Testing more than one coefficient

Usually, the deviations of the OLS estimators β̂j1, . . . , β̂jq from the

true values are correlated:

• Transform the deviations to a coordinate system with independent

standard normal random variables. In this new coordinate system,

the sum of squared deviations follow a χ2
q-distribution with q

degrees of freedom. The appropriate transformation reads:

˜̂
β′Cov(

˜̂
β)−1 ˜̂β ∼ χ2

q

• Note: the χ2
q-distribution results only, if σ2 is known.
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The F-Test

• The F -statistic is obtained by substituting the unknown variance

σ2 by σ̂2 and dividing by q.

• The F -statistic is the ratio of two (independent) sum of squares,

divided by the degrees of freedom, i.e. a χ2
q/q and χ2

df/df, where

df = N −K − 1.

• If the null hypothesis βj1 = 0, . . . , βjq = 0 is true, then the F -

statistic follows a Fq,df-distribution with parameters q (number of

tested coefficients) and df = N −K − 1.

• Remark: for q = 1, F = t2j , where tj is the t-statistic.
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The F-distribution
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The F-Test

Reject the null-hypothesis, if

• the F -statistic is larger than the critical value from the corre-

sponding Fq,df-distribution (one-sided test).

• the corresponding p-value is smaller than the significance level.

A p-value close to 0 shows that the value observed for the

F -statistic is unlikely under the null hypothesis.

⇒ At least one of the coefficients βj1, . . . , βjq is different from 0.
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The F-Test

Do not reject the null-hypothesis, if

• the F -statistic is smaller than the critical value from the corre-

sponding Fq,df-distribution (one-sided test).

• The corresponding p-value is larger than the significance level. A

p-value considerably larger than 0 shows that the observed value

for the F -statistic is likely under the null hypothesis.

⇒ There is no evidence in the data that we should reject the null

hypothesis that all coefficients βj1, . . . , βjq are equal to 0.
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The F-Test

The F -statistic for testing the variables gender,age is equal to

0.263, p-value:0.769
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The F-Test

The F -statistic for testing the variables gender,age,price is equal

to 86.24, p-value:0.
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An alternative form of the F-statistic
Equivalent forms of the F -statistic show that the F-statistic mea-

sures the loss of fit from imposing the q restrictions on the model:

F =
(SSRr − SSR)/q

SSR/df
, F =

(R2 − R2
r)/q

(1− R2)/df
,

• SSR is the minimum sum of squared residuals and R2 is the

coefficient of determination for the unrestricted regression model.

• SSRr is the minimum sum of squared residuals and R2
r is the

coefficient of determination for the restricted regression model.

• Note that SSRr > SSR and R2
r < R2.
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Testing the whole regression model
In the standard regression output of EViews, a F-statistic is available

by default. This F -statistics test the hypothesis that none of the

predictor variables influences the response variable:

β1 = 0, . . . , βK = 0

In this case, R2
r = 0, and the F-statistic reads:

F =
R2/K

(1− R2)/df
.

Under the null hypothesis, F ∼ FK,df-distribution. Hopefully, the

corresponding p-value is close to 0. Otherwise, the usefulness of

the whole regression model is somewhat doubtful.
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