The Classical Regression Model

The error u in the multiple regression model (50) is independent of X_1, \ldots, X_K and follows a normal distribution:

$$u \sim \text{Normal}\left(0, \sigma^2\right).$$
 (51)

This assumption implies the more general assumptions (28) and (39):

$$E(u|X_1, \dots, X_K) = E(u) = 0,$$

Var $(u|X_1, \dots, X_K) = Var(u) = \sigma^2.$

The Classical Regression Model

It follows that the conditional distribution of Y given X_1, \ldots, X_K follows a normal distribution:

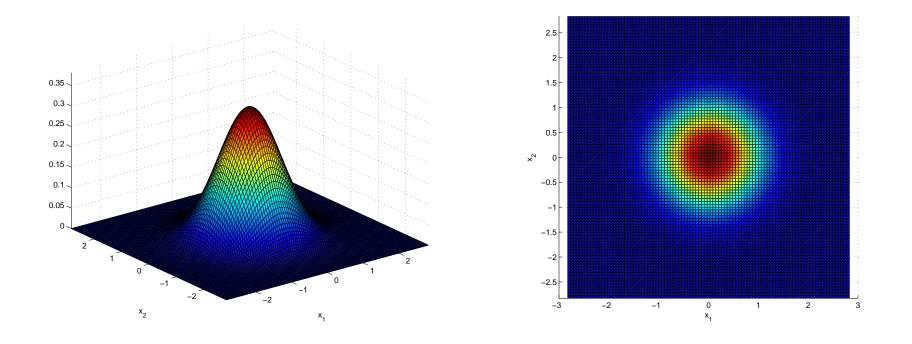
$$Y|X_1,\ldots,X_K \sim \operatorname{Normal}\left(\beta_0+\beta_1X_1+\ldots+\beta_jX_j+\ldots+\beta_KX_K,\sigma^2\right).$$

Furthermore, because the observations are a random sample, the vector \boldsymbol{u} has a multivariate normal distribution with independent components:

$$\boldsymbol{u} \sim \operatorname{Normal}_{N} \left(\boldsymbol{0}, \sigma^{2} \mathbf{I} \right).$$

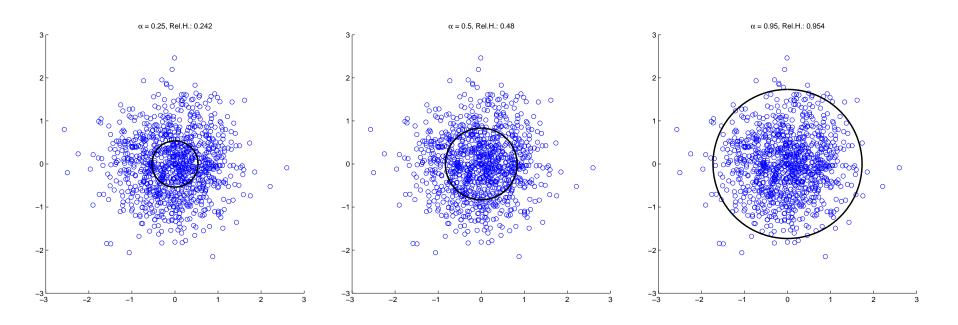
Multivariate normal distributions - independent componer

Density of the bivariate normal distribution $\text{Normal}_2(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma^2 = 0.5$.



Multivariate normal distributions - independent componer

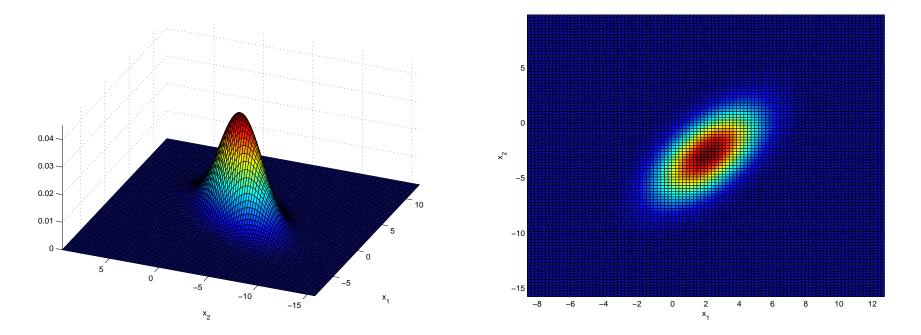
1000 observations from Normal₂ ($\mathbf{0}, 0.5\mathbf{I}$) in comparison to 100α %confidence region (from the left to the right: $\alpha = 0.25, \alpha = 0.5, \alpha = 0.95$)



Multivariate normal distributions - dependent components

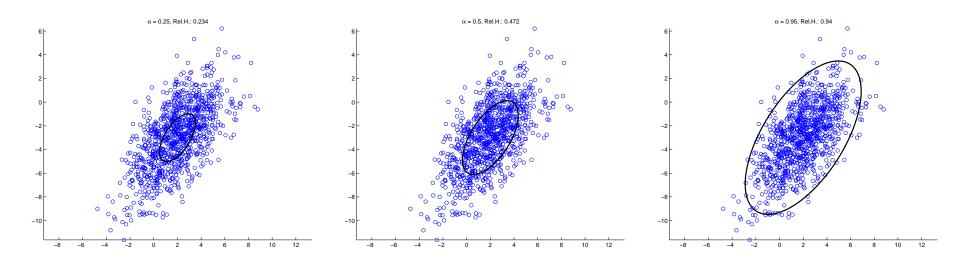
Density of the bivariate normal distribution $\operatorname{Normal}_2({oldsymbol \mu},{oldsymbol \Sigma})$ with

$$oldsymbol{\mu} = (2, -3)'$$
 and $oldsymbol{\Sigma} = \left(egin{array}{cc} 4 & 3.2 \ 3.2 & 7 \end{array}
ight)$



Multivariate normal distributions - dependent components

1000 observations from Normal₂ (μ , Σ) in comparison to 100 α %confidence region (from the left to the right: $\alpha = 0.25, \alpha = 0.5, \alpha = 0.95$)



Distribution of the OLS estimator

Using (38), we obtain:

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \sim \operatorname{Normal}_{K+1} \left(\mathbf{0}, \operatorname{Cov}(\hat{\boldsymbol{\beta}}) \right), \quad \operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}.$$

Deviations between the true value and the OLS estimator are usually correlated.

All marginal distributions are normal, hence:

$$\hat{\beta}_{j} - \beta_{j} \sim \text{Normal}\left(0, \text{sd}(\hat{\beta}_{j})^{2}\right),$$
$$\frac{\hat{\beta}_{j} - \beta_{j}}{\text{sd}(\hat{\beta}_{j})} \sim \text{Normal}\left(0, 1\right).$$
(52)

Testing a single coefficient - the t-test

If the null hypothesis $\beta_j = 0$ is valid, then possible differences between the OLS-estimator $\hat{\beta}_j$ and 0 may be quantified using the following statistical inequalities:

$$\frac{|\hat{\beta}_j|}{\operatorname{sd}(\hat{\beta}_j)} \le c_{\alpha},\tag{53}$$

where c_{α} is equal to the $(1 - \alpha/2)$ -quantile of the standard normal distribution. (53) is used to construct a test statistic:

$$t_j = \frac{\hat{\beta}_j}{\mathrm{sd}(\hat{\beta}_j)}.$$
 (54)

Testing a single coefficient - the t-test

If (51) holds and σ^2 is known, then t_j follows a standard normal distribution under the null hypothesis:

- Choose a significance level α .
- Determine the corresponding critical value c_{α} .
- If $|t_j| > c_{\alpha}$: reject the null hypothesis (risk to reject the null hypothesis although it is true is equal to α).
- If $|t_j| \leq c_{\alpha}$: do not reject the null hypothesis (risk to "accept" a wrong null hypothesis may be arbitrarily large).

Choice of c_{α} , when σ^2 is unknown

If σ^2 is unknown and estimated as described above, then $\operatorname{sd}(\hat{\beta}_j)$ is substituted by $\operatorname{se}(\hat{\beta}_j)$, yielding the test statistic:

$$t_j = \frac{\hat{\beta}_j}{\operatorname{se}(\hat{\beta}_j)}.$$
(55)

Choosing the quantiles of the normal distributions would lead to a test which rejects the null-hypothesis more often than desired, e.g. for $\alpha = 0.95$ and K = 3:

	10	20	30	40	50	100
Prob(reject H_0)	0.09	0.07	0.06	0.05	0.05	0.05

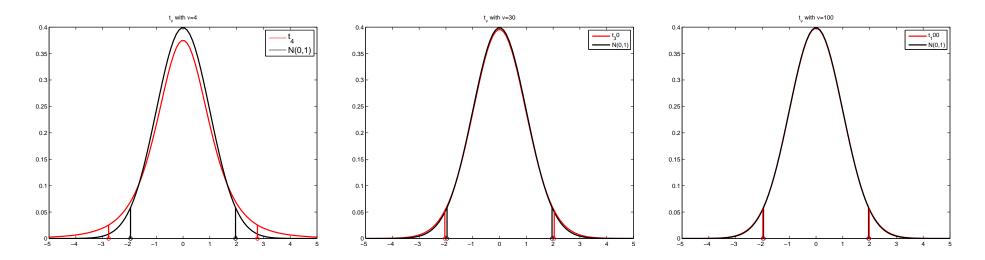
Choice of c_{α} , when σ^2 is unknown

The reason is that t_j no longer follows a normal distribution, but a $t_{\rm df}$ -distribution where df = (N-K-1). The critical values $t_{{\rm df},1-\alpha/2}$ depend on df and are equal to the quantiles of the $t_{\rm df}$ -distribution. For $\alpha = 0.95$ and for a regression model with 3 parameters, e.g. these values are:

df = N - 3	7	17	27	37	47	97
$t_{ m df,0.975}$	2.37	2.11	2.05	2.02	2.00	1.96

The student t-distribution

The following figures show the density of the student t_{df} distribution for various degrees of freedom (from the left to the right: df = 4, df = 30, df = 100)



The $t_{\rm df}\mbox{-}{\rm distribution}$ converges to the standard normal distribution, as df goes to infinity.

The *p*-value

The p-value is derived from the distribution of the t-statistics under the null hypothesis and is easier to interpret than the t-statistics which has to be compared to the right quantiles:

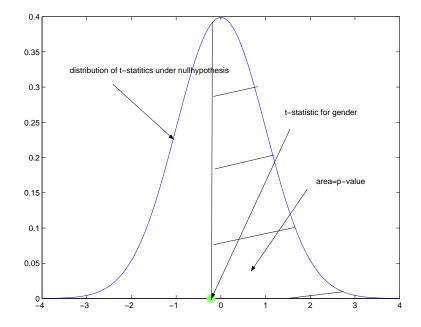
- Choose a significance level α .
- If $p < \alpha$: reject the null hypothesis (risk to reject the null hypothesis although it is true is at most equal to α).
- If $p \ge \alpha$: do not reject the null hypothesis (risk to "accept" a wrong null hypothesis may be arbitrarily large).

Discuss in EVIEWS how to formulate sensible null hypotheses and how to test them using the t-statistic and the p-value.

- Case Study profit, workfile profit;
- Case Study Chicken, workfile chicken;
- Case Study Marketing, workfile marketing;

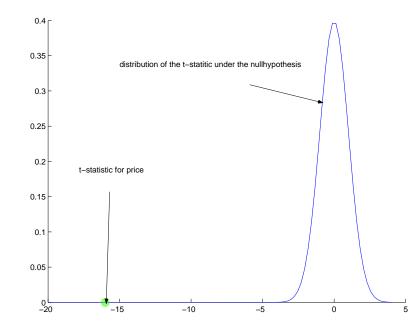
Case Study Marketing

The t-statistic for the variable gender is equal to -0.38, p-value:0.704



Case Study Marketing

The *t*-statistic for the variable price is equal to -16.1, p-value:0



• A small *p*-value shows that the value observed for the *t*-statistic is unlikely under the null hypothesis, thus we reject the null hypothesis for small *p*-values.

 \Rightarrow There is high evidence in the data that $\beta_j \neq 0$.

• A *p*-value considerable larger than 0 shows that the observed value for the *t*-statistic is likely under the null hypothesis. Do not reject the null hypothesis that $\beta_j = 0$.

 \Rightarrow There is no evidence in the data that we should reject the null hypothesis. Note, however, this does not necessarily mean that $\beta_j = 0$ (risk to accept a wrong null hypothesis is not controlled).

Confidence intervals for the unknown coefficients

The marginal distribution (52) is also useful for obtaining $100(1-\alpha)$ confidence regions for the unknown regression coefficients (e.g. $\alpha = 0.05$ leads to a 95% confidence region).

Two-sided confidence regions:

$$\Pr\{-c_{1-\alpha/2} \le \frac{\hat{\beta}_j - \beta_j}{\operatorname{sd}(\hat{\beta}_j)} \le c_{1-\alpha/2}\} = 1 - \alpha, \quad (56)$$

where c_p is the *p*-quantile of the standard normal distribution, i.e. the confidence interval reads:

$$[\hat{\beta}_j - c_{1-\alpha/2} \operatorname{sd}(\hat{\beta}_j), \hat{\beta}_j + c_{1-\alpha/2} \operatorname{sd}(\hat{\beta}_j)]$$

Confidence intervals for the unknown coefficients

One-sided confidence regions:

$$\Pr\{\frac{\hat{\beta}_j - \beta_j}{\mathrm{sd}(\hat{\beta}_j)} \le c_{1-\alpha}\} = 1 - \alpha,$$
$$\Pr\{-c_{1-\alpha} \le \frac{\hat{\beta}_j - \beta_j}{\mathrm{sd}(\hat{\beta}_j)}\} = 1 - \alpha$$

This yields (with probability $1 - \alpha$):

- $\hat{\beta}_j c_{1-\alpha} \operatorname{sd}(\hat{\beta}_j)$ is a lower bound for β_j ,
- $\hat{\beta}_j + c_{1-\alpha} \operatorname{sd}(\hat{\beta}_j)$ is an upper bound for β_j .

Confidence intervals for the unknown coefficients

If σ^2 is unknown, then $\operatorname{sd}(\hat{\beta}_j)$ is substituted by $\operatorname{se}(\hat{\beta}_j)$. Instead of (52), we obtain with $\operatorname{df} = (N - K - 1)$:

$$\frac{\hat{\beta}_j - \beta_j}{\operatorname{se}(\hat{\beta}_j)} \sim t_{\mathrm{df}},$$

This yields with $t_{df,p}$ being the *p*-quantiles of the t_{df} -distribution:

- β_j lies in $[\hat{\beta}_j t_{df,1-\alpha/2} \operatorname{se}(\hat{\beta}_j), \hat{\beta}_j + t_{df,1-\alpha/2} \operatorname{se}(\hat{\beta}_j)]$
- $\hat{\beta}_j + t_{df,1-\alpha} \operatorname{se}(\hat{\beta}_j)$ is an upper bound for β_j ;

•
$$\hat{\beta}_j - t_{df,1-\alpha} \operatorname{se}(\hat{\beta}_j)$$
 is a lower bound for β_j .

More about the distribution of the OLS estimator

• For any subset of coefficients $\tilde{\boldsymbol{\beta}} = (\beta_{j_1}, \dots, \beta_{j_q})'$, the OLS estimator $\tilde{\boldsymbol{\beta}} = (\hat{\beta}_{j_1}, \dots, \hat{\beta}_{j_q})'$, follows a multivariate normal distribution:

$$\tilde{\hat{\boldsymbol{\beta}}} - \tilde{\boldsymbol{\beta}} \sim \operatorname{Normal}_{q} \left(\mathbf{0}, \operatorname{Cov}(\tilde{\hat{\boldsymbol{\beta}}}) \right),$$
 (57)

where $\operatorname{Cov}(\hat{\hat{\beta}})$ is obtained from the rows and columns j_1, \ldots, j_q of $\operatorname{Cov}(\hat{\beta})$.

• This result may be used to construct 95%-confidence ellipsoids for all pairs of parameters $(\beta_{j_1}, \beta_{j_2})$.

- Testing the null hypothesis $\beta_j = 0$ based on t_j is only valid, if all other parameters remain in the model.
- Often, we want to test joint hypotheses about our parameters.
- E.g. if the t_j -statistics is not significant for more than one parameter j_1, \ldots, j_q , then one needs to test, if $\beta_{j_1} = 0, \ldots, \beta_{j_q} = 0$ simultaneously.
- We cannot simply check each t_j -statistic separately. It is possible for jointly insignificant regressors to be individually significant (and vice versa).

Given the data, is it possible to reject the null hypothesis $\beta_{j_1} = 0, \ldots, \beta_{j_q} = 0$?

Reject the null hypothesis, if the distance between the OLS estimator $\hat{\hat{\beta}} = (\hat{\beta_{j_1}}, \dots, \hat{\beta_{j_q}})'$ and 0 is "large " (one-sided test).

The corresponding test statistic has to take into account that

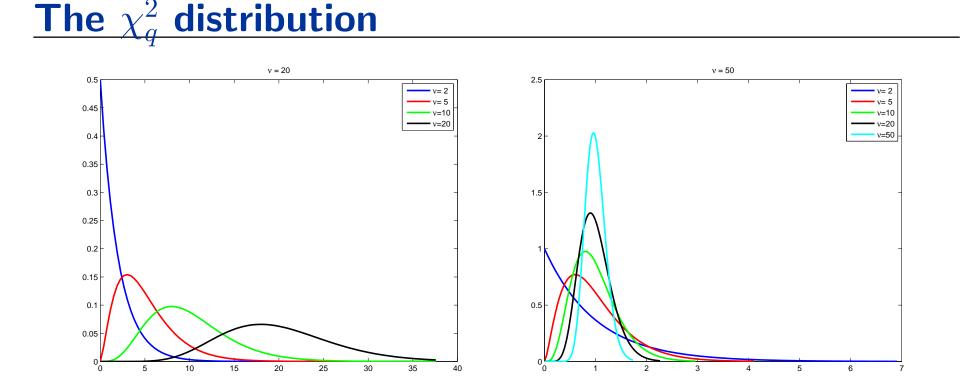
- the standard deviations of the various OLS estimators are different.
- deviations of the OLS estimators from the true value are likely to be correlated.

Aggregate $t_{j_l} = \hat{\beta}_{j_l} / \operatorname{sd}(\hat{\beta}_{j_l})$ for $l = 1, \ldots, q$, e.g. by taking the sum of squared t statistics?

If the deviations of the OLS estimators $\hat{\beta_{j_1}}, \ldots, \hat{\beta_{j_q}}$ from the true values are uncorrelated, then the aggregated test statistic

$$\sum_{l=1}^{q} \frac{\hat{\beta_{j_l}}^2}{\mathrm{sd}(\hat{\beta_{j_l}})^2}$$

is the sum of q independent squared standard normal random variables. Such a random variable follows a χ^2_q -distribution with q degrees of freedom.



Left hand side: density of the χ_q^2 -distribution; right hand side: density of the random variable X/q, where $X \sim \chi_q^2$ -distribution (q = 2, 5, 10, 20)

Usually, the deviations of the OLS estimators $\hat{\beta}_{j_1}, \ldots, \hat{\beta}_{j_q}$ from the true values are correlated:

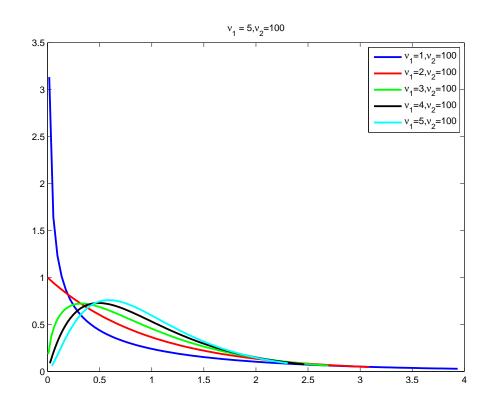
• Transform the deviations to a coordinate system with independent standard normal random variables. In this new coordinate system, the sum of squared deviations follow a χ^2_q -distribution with q degrees of freedom. The appropriate transformation reads:

$$\tilde{\hat{\boldsymbol{\beta}}}' \operatorname{Cov}(\tilde{\hat{\boldsymbol{\beta}}})^{-1} \tilde{\hat{\boldsymbol{\beta}}} \sim \chi_q^2$$

• Note: the χ^2_q -distribution results only, if σ^2 is known.

- The F-statistic is obtained by substituting the unknown variance σ^2 by $\hat{\sigma}^2$ and dividing by q.
- The *F*-statistic is the ratio of two (independent) sum of squares, divided by the degrees of freedom, i.e. a χ_q^2/q and χ_{df}^2/df , where df = N K 1.
- If the null hypothesis $\beta_{j_1} = 0, \ldots, \beta_{j_q} = 0$ is true, then the *F*-statistic follows a $F_{q,df}$ -distribution with parameters q (number of tested coefficients) and df = N K 1.
- Remark: for q = 1, $F = t_j^2$, where t_j is the t-statistic.

The F-distribution



Density of the $F_{q,df}$ -distribution with parameters df = 100 and $q = 1, \ldots, 5$.

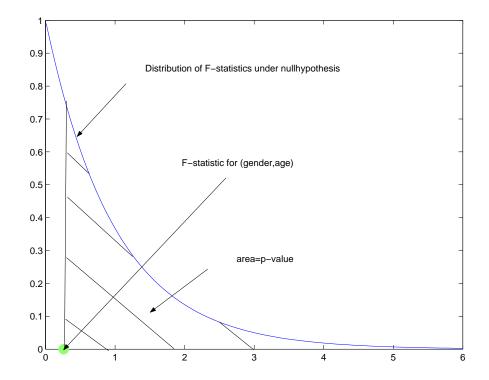
Reject the null-hypothesis, if

- the *F*-statistic is larger than the critical value from the corresponding $F_{q,df}$ -distribution (one-sided test).
- the corresponding *p*-value is smaller than the significance level.
 A *p*-value close to 0 shows that the value observed for the *F*-statistic is unlikely under the null hypothesis.
- \Rightarrow At least one of the coefficients $\beta_{j_1}, \ldots, \beta_{j_q}$ is different from 0.

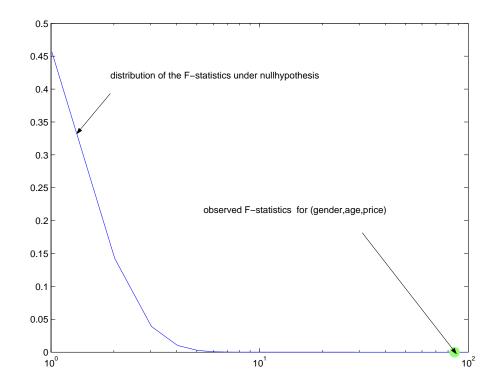
Do not reject the null-hypothesis, if

- the *F*-statistic is smaller than the critical value from the corresponding $F_{q,df}$ -distribution (one-sided test).
- The corresponding *p*-value is larger than the significance level. A *p*-value considerably larger than 0 shows that the observed value for the *F*-statistic is likely under the null hypothesis.
- \Rightarrow There is no evidence in the data that we should reject the null hypothesis that all coefficients $\beta_{j_1}, \ldots, \beta_{j_q}$ are equal to 0.

The F-statistic for testing the variables gender, age is equal to 0.263, p-value:0.769



The F-statistic for testing the variables gender, age, price is equal to 86.24, p-value:0.



An alternative form of the F-statistic

Equivalent forms of the F-statistic show that the F-statistic measures the loss of fit from imposing the q restrictions on the model:

$$F = \frac{(\text{SSR}_r - \text{SSR})/q}{\text{SSR/df}}, \qquad F = \frac{(\text{R}^2 - \text{R}_r^2)/q}{(1 - \text{R}^2)/\text{df}},$$

- SSR is the minimum sum of squared residuals and R^2 is the coefficient of determination for the unrestricted regression model.
- SSR_r is the minimum sum of squared residuals and R_r^2 is the coefficient of determination for the restricted regression model.

• Note that
$$SSR_r > SSR$$
 and $R_r^2 < R^2$.

Testing the whole regression model

In the standard regression output of EViews, a F-statistic is available by default. This F-statistics test the hypothesis that none of the predictor variables influences the response variable:

$$\beta_1 = 0, \ldots, \beta_K = 0$$

In this case, $R_r^2 = 0$, and the F-statistic reads:

$$F = \frac{\mathrm{R}^2/K}{(1 - \mathrm{R}^2)/\mathrm{df}}.$$

Under the null hypothesis, $F \sim F_{K,df}$ -distribution. Hopefully, the corresponding *p*-value is close to 0. Otherwise, the usefulness of the whole regression model is somewhat doubtful.