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Introductory Econometrics

• Milestone I: Basic Concepts of Econometric Modelling

• Milestone II: The Multiple Regression Model

• Milestone III: Advanced Multiple Regression Models

• Wooldridge, J.: Introductory Econometrics. Thompson South-

Western, 2009.

• Hackl, Peter: Einführung in die Ökonometrie. Pearson Verlag,

2005.
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Mile stone I

Basic Concepts of Econometric Modelling

• Step 1: What is econometric modelling?

• Step 2: Understanding common data structures

• Step 3: First steps in EViews

• Step 4: The simple regression model
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I.1 Econometric Modelling

Econometrics deals with learning about a phenomenon (e.g. status

of the economy, influence of product attributes, volatility on financial

markets, wage mobility) from data

• Econometric model: description of the phenomenon involving

quantities that are observable

• Data are collected for the observable variables

• Econometric inference: draw conclusions from the data about

the phenomenon of interest
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Econometric Modelling

Example: relationship between price and demand

• Description of the phenomenon involving quantities that are

observable

• simplified description of the process behind the data based on a

deterministic economic model;

• stochastic model rather than a deterministic model.
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Deterministic Economic Model

Exact quantitative relationship between the variables of interest is

assumed to be known

Example: Deterministic Relationship between Demand and Price

D = f(p),

where D is the demand and p is the price.
Linear model:

D = β0 + β1p

Non-linear model:
D = β0p

β1
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Econometric Model

Exact quantitative relationship between the variables of interest is

NOT known, but disturbed by a (stochastic) error term

Example: Stochastic Relationship between Demand and Price

D = f(p, u)

where D is the demand, p is the price, and u is an unobservable error.
Linear model:

D = β0 + β1p+ u

Non-linear model:
D = β0p

β1u
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Econometric Model
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Where does the error come from?

• u aggregates variables, that are not included into the model

because

– their influence is not known apriori

– these variables are unobservable or difficult to quantify

• u aggregates measurement errors which are caused by quantifying

economic variables

• u captures the unpredictable randomness in the left hand side

variable of the model
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Where does the error come from?

To sum up, an econometric model consists of

• a structural part which describes how the variables are related, if

there was no error;

• an error model which describes the properties of the error term.
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Econometric Inference

Example: Relationship between Demand and Price
Estimate β1 and β2 from the linear model:

D = β1 + β2p+ u

or from the non-linear model:

D = β1p
β2u

from data. For the second model β2 is the price elasticity
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Econometric Inference

Econometric inference is, in general, concerned with drawing con-

clusions from observed data about quantities that are unobserved.

Unobserved quantities:

• quantities that are not directly observable such as parameters

that govern the process leading to the observed data, e.g. price

elasticities

• potentially observable quantities such as future observations

• hypothesis about the process we observe
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Econometric Inference

Due to this impossibility to observe these quantities of interest, any

statement about these quantities will be uncertain, even in the light

of the data one actually has observed.

• Classical inference: parameter estimation and hypothesis testing

to deal with this uncertainty

• Bayesian inference: is based on the concept that the state of

knowledge about any unknown quantity is best expressed in

terms of a probability distribution.
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Practical Econometric Inference

• Model formulation

• Model estimation

• Econometric inference: parameter estimation, hypothesis testing,

forecasting

• Model choice

• Model checking
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I.2 EViews

• Use a software package for practical econometric inference

• We will use EViews 7

• Detailed instruction on how to use EViews is given in the tutorial
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I.3 Data Structure

Experimental data: data obtained through a designed experiment

(medicine, travel time to university, ...) - rare in economics (and

many other areas without laboratories) to have experimental data.

Non-experimental (observational) data:

• Cross-sectional data

• Time series data

• Panel data
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Cross-sectional data

• we are interested in variables (Y,X) (e.g. relationship between

demand D and price P ) or a set of variables (Y,X1, . . . , XK)

• we are observing these variables simultaneously for N subjects

drawn randomly from a population (e.g. for various individual,

firm, supermarkets, countries) at a point in time

Typically, cross sectional data are indexed as follows:

(yi, xi), (yi, x1i, . . . , xKi), i = 1, . . . , N (1)

If the data set is not a random sample, there is a sample-selection

problem.
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EVIEWS Exercise I.3.1

Demonstrate in EViews how cross-sectional data are organized

• Case Study profit, workfile profit;

• Case Study Chicken, workfile chicken;

• Case Study Marketing, workfile marketing;
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Time Series Data

• we are interested in a single variable Y (e.g. the return of a

financial asset);

• we are observing this variable over time (e.g. every month)

• data cannot be regarded as random sample; it is important to

account for trends and seasonality

Typically, time series data are indexed as follows:

yt, t = 1, . . . , T (2)
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EVIEWS Exercise I.3.2

Demonstrate in EViews how time series data are organized

• Case Study Stock Vienna Stocks, workfile viennastocks;

• Case Study Stock Returns, workfile stockreturns;

• Case Study Yields, workfile yieldus;
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Panel Data

• Pooled cross-section: Random cross sections can be pooled and

treated similar to normal cross section, accounting for differences

over time.

• Panel data or longitudinal data: The same (random) individual

observations Yi is followed over time, i.e., we have a time series

for each cross-section unit.

Typically, panel data are indexed as follows:

yit, i = 1, . . . , N, t = 1, . . . , T (3)
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I.4 The Simple Regression Model

• Step 1: Model Formulation and basic assumptions

• Step 2: Ordinary least squares (OLS) estimation

• Step 3: The Log-linear Regression Model

• Step 4: Statistical properties of OLS

Sylvia Frühwirth-Schnatter Econometrics I WS 2012/13 1-20



Cross-sectional data

• We are interested in a dependent (left-hand side, explained, re-

sponse) variable Y , which is supposed to depend on an explana-

tory (right-hand sided, independent, control, predictor) variables

X

• Examples: demand is a response variable and price is a predictor

variable); wage is a response and years of education is a predictor

variable

• Data: we are observing these variables for N subjects drawn

randomly from a population (e.g. for various supermarkets, for

various individuals): (yi, xi), i = 1, . . . , N
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I.4.1 Model formulation

The simple linear regression model describes the dependence bet-

ween the variables X and Y as:

Y = β0 + β1X + u. (4)

The parameters β0 and β1 need to be estimated:

• β0 is referred to as the constant or intercept

• β1 is referred to as slope parameter.
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Basic Assumptions

• The average value of the error term u in the population is 0 (not

restrictive, we can always use β0 to normalize E(u) to 0):

E(u) = 0. (5)

• A more crucial assumption is that

E(u|X) = E(u). (6)

Sylvia Frühwirth-Schnatter Econometrics I WS 2012/13 1-23



Basic Assumptions

• This means that the conditional mean of u is zero, i.e., knowing

something about X does not give us any information about u.

• Assumption (6) implies:

E(Y |X) = β0 + β1X. (7)

E(Y |X) is a linear function of X.

• For a fixed value of X = x, the distribution of Y |X = x is

centered about its conditional mean E(Y |X = x).
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Understanding the regression model

• Simulate data from a simple regression model with β0 = 0.2 and

β1 = −1.8:

Y = 0.2− 1.8X + u, (8)

• Specification of the error term:

u ∼ Normal
(
0, σ2

)
(9)

• Demonstration ⇒

MATLAB Code: regsim.m
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Understanding the regression model
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Understanding the parameters

Expected value of Y , given X = x:

E(Y |X = x) = β0 + β1x

Expected value of Y , if the predictor X is changed by 1:

E(Y |X = x+ 1) = β0 + β1(x+ 1).

Thus β1 is the expected absolute change of the response variable

Y , if the predictor X is increased by 1:

E(∆Y |∆X = 1) = E(Y |X = x+ 1)− E(Y |X = x) = β1.
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Understanding the parameters

• The effect of changing X is independent of the level of X

• The sign shows the direction of the expected change:

– If β1 > 0, then the changes of X and Y go into the same

direction.

– If β1 < 0, then the changes of X and Y go into different

directions.

– If β1 = 0, then a change in X has no influence on Y .
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I.4.2 OLS-Estimation

The population parameters β0 and β1 are estimated from a sample.

The parameters estimates (coefficients) are typically denoted by a

hat: β̂0 and β̂1.

Let (yi, xi), i = 1, . . . , N, denote a random sample of size N from

the population. Hence, for each i:

yi = β0 + β1xi + ui. (10)

• Estimation problem: how to choose the unknown parameters β0

and β1?
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OLS-Estimation

• Estimation as Black Box? Very conveniently, the estimation

problem is solved by software packages like EViews. It helps,

however, to have a deeper understanding of what is going on.

• The commonly used method to estimate the parameters in a

simple regression model is ordinary least square (OLS) estimation.
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OLS-Estimation

• For each observation xi, the prediction ŷi of yi depends on

(β0, β1):

ŷi(β0, β1) = β0 + β1xi. (11)

• For each observation xi define the regression residuals (prediction

error) ui(β0, β1) as:

ui(β0, β1) = yi − ŷi(β0, β1) = yi − (β0 + β1xi). (12)

• For each parameter value (β0, β1), an overall measure of fit is

obtained by aggregating these prediction errors.
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OLS-Estimation

• The sum of squared residuals (SSR):

SSR =
N∑
i=1

ui(β0, β1)
2 =

N∑
i=1

(yi − β0 − β1xi)
2. (13)

• The OLS-estimator β̂ = (β̂0, β̂1) is the parameter that minimizes

the sum of squared residuals.
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OLS-Estimation for the Simple Regression Model

Intuitively, OLS is fitting a line through the sample points such that

the sum of squared residuals is as small as possible.

Demonstration: ⇒

MATLAB Code: regest.m
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How to compute the OLS Estimator?

Simple regression model:

β̂1 =
sy
sx
rxy, β̂0 = y − β̂1x, (14)

x mean of x1, . . . , xN , y mean of y1, . . . , yN

sx standard deviation of x1, . . . , xN , sy standard deviation of y1, . . . , yN

rxy correlation coefficient
The only requirement is that we have sample variation in X

(s2x > 0).
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Proof
The OLS estimator is obtained as solution to the following minimi-

zation problem:

min
β0,β1

N∑
i=1

(yi − β0 − β1xi)
2

The first-order conditions are:

−2

N∑
i=1

(yi − β0 − β1xi) = 0, (15)

−2
N∑
i=1

xi(yi − β0 − β1xi) = 0. (16)
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Proof
From (15) we have:

y = β̂0 + β̂1x. (17)

Implications (algebraic properties of OLS):

• The regression line passes through the sample midpoint.

• The sum (average) of the OLS residuals ûi = yi − β̂0 − β̂1xi is

equal to zero. Follows from (15):

1

N

N∑
i=1

ûi =
1

N

N∑
i=1

(yi − β̂0 − β̂1xi) = 0.
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Proof
Substituting β̂0 = y − β̂1x into (16) and solving for β̂1 we obtain,

provided that
∑N

i=1(xi − x)2 > 0 (or s2x > 0):

β̂1 =

∑N
i=1(xi − x)(yi − y)∑N

i=1(xi − x)2
=

sy
sx
rxy. (18)

Implications (algebraic properties of OLS):

• The slope estimate is the sample covariance between X and Y ,

divided by the sample variance of X.

• If X and Y are positively (negatively) correlated, the slope will

be positive (negative).
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Proof

• The sample covariance between the regressor and the OLS resi-

duals is zero. Follows from (16):

1

N

N∑
i=1

xiûi =
1

N

N∑
i=1

xi(yi − β̂0 − β̂1xi) = 0.
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