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Portfolio Optimization

◮ Consider a market consisting of m assets.

Optimal Asset Allocation Problem

Choose the weights vector w ∈ R
m to make the portfolio return

high, whilst keeping the associated risk ρ(w) low.

◮ Portfolio optimization problem:

minimize
w∈Rm

ρ(w)

subject to w ∈ W.

◮ Popular risk measures ρ:
◮ Variance → Markowitz model
◮ Value-at-Risk → Focus of this talk
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Value-at-Risk: Definition

◮ Let r̃ denote the random returns of the m assets.

◮ The portfolio return is therefore wT r̃ .

Value-at-Risk (VaR)

The minimal level γ ∈ R such that the probability of −wT r̃
exceeding γ is smaller than ǫ.

VaRǫ(w) = min
{

γ : P

{

γ ≤ −wT r̃
}

≤ ǫ
}

Zymler, Kuhn and Rustem Worst-Case Value-at-Risk of Non-Linear Portfolios



Theoretical and Practical Problems of VaR

◮ VaR lacks some desirable theoretical properties:
◮ Not a coherent risk measure.
◮ Needs precise knowledge of the distribution of r̃ .
◮ Non-convex function of w

→ VaR minimization intractable .

◮ To optimize VaR: resort to VaR approximations.

◮ Example: assume r̃ ∼ N (µr ,Σr), then

VaRǫ(w) = −µT
r w − Φ−1(ǫ)

√

wT Σrw ,

◮ Normality assumption unrealistic
→ may underestimate the actual VaR.

Zymler, Kuhn and Rustem Worst-Case Value-at-Risk of Non-Linear Portfolios



Worst-Case Value-at-Risk

◮ Only know means µr and covariance matrix Σr ≻ 0 of r̃ .

◮ Let Pr be the set of all distributions of r̃ with mean µr and
covariance matrix Σr .

Worst-Case Value-at-Risk (WCVaR)

WCVaRǫ(w) = min
{

γ : sup
P∈Pr

P

{

γ ≤ −wT r̃
}

≤ ǫ

}

◮ WCVaR is immunized against uncertainty in P:
distributionally robust.

◮ Unless the most pessimistic distribution in Pr is the true
distribution, actual VaR will be lower than WCVaR.

Zymler, Kuhn and Rustem Worst-Case Value-at-Risk of Non-Linear Portfolios



Robust Optimization Perspective on WCVaR

◮ El Ghaoui et al. have shown that

WCVaRǫ(w) = −µT w + κ(ǫ)
√

wT Σw ,

where κ(ǫ) =
√

(1 − ǫ)/ǫ.

◮ Connection to robust optimization:

WCVaRǫ(w) = max
r∈Uǫ

−wT r ,

where the ellipsoidal uncertainty set Uǫ is defined as

Uǫ =
{

r : (r − µr )
T
Σ

−1
r (r − µr) ≤ κ(ǫ)2

}

.

◮ Therefore,

min
w∈W

WCVaRǫ(w) ≡ min
w∈W

max
r∈Uǫ

−wT r .
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Worst-Case VaR for Derivative Portfolios

◮ Assume that the market consists of:
◮ n ≤ m basic assets with returns ξ̃, and
◮ m − n derivatives with returns η̃.
◮ ξ̃ are only risk factors.

We partition asset returns as r̃ = (ξ̃, η̃).

◮ Derivative returns η̃ are uniquely determined by basic
asset returns ξ̃. There exists f : R

n → R
m with r̃ = f (ξ̃).

◮ f is highly non-linear and can be inferred from:
◮ Contractual specifications (option payoffs)
◮ Derivative pricing models
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Worst-Case VaR for Derivative Portfolios

◮ WCVaR is applicable but not suitable for portfolios
containing derivatives:

◮ Moments of η̃ are difficult to estimate accurately.
◮ Disregards perfect dependencies between η̃ and ξ̃.

◮ WCVaR severly overestimates the actual VaR, because:
◮ Σr only accounts for linear dependencies
◮ Uǫ is symmetric but derivative returns are skewed
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Generalized Worst-Case VaR Framework

◮ We develop two new Worst-Case VaR models that:
◮ Use first- and second-order moments of ξ̃ but not η̃.
◮ Incorporate the non-linear dependencies f

Generalized Worst-Case VaR

Let P denote set of all distributions of ξ̃ with mean µ and
covariance matrix Σ.

min
{

γ : sup
P∈P

P

{

γ ≤ −wT f (ξ̃)
}

≤ ǫ

}

◮ When f (ξ̃) is:
◮ convex polyhedral → Worst-Case Polyhedral VaR (SOCP)
◮ nonconvex quadratic → Worst-Case Quadratic VaR (SDP)
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Piecewise Linear Portfolio Model

◮ Assume that the m − n derivatives are European put/call options
maturing at the end of the investment horizon T .

◮ Basic asset returns: r̃j = fj(ξ̃) = ξ̃j for j = 1, . . . , n.

◮ Assume option j is a call with strike kj and premium cj on basic
asset i with initial price si , then r̃j is

fj(ξ̃) =
1
cj

max
{

0, si(1 + ξ̃i) − kj

}

− 1

= max
{

−1, aj + bj ξ̃i − 1
}

, where aj =
si − kj

cj
, bj =

si

cj
.

◮ Likewise, if option j is a put with premium pj , then r̃j is

fj(ξ̃) = max
{

−1, aj + bj ξ̃i − 1
}

, where aj =
kj − si

pj
, bj = −si

pj
.
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Piecewise Linear Portfolio Model

◮ In compact notation, we can write r̃ as

r̃ = f (ξ̃) =

(

ξ̃

max
{

−e, a + Bξ̃ − e
}

)

.

◮ Partition weights vector as w = (wξ, wη).

◮ No derivative short-sales: w ∈ W =⇒ wη ≥ 0.

◮ Portfolio return of w ∈ W can be expressed as

wT r̃ = wT f (ξ̃)

= (wξ)T ξ̃ + (wη)T max
{

−e, a + Bξ̃ − e
}

.
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Worst-Case Polyhedral VaR

◮ Use the piecewise linear portfolio model:

wT f (ξ̃) = (wξ)T ξ̃ + (wη)T max
{

−e, a + Bξ̃ − e
}

.

Worst-Case Polyhedral VaR (WCPVaR)

For any w ∈ W, we define WCPVaRǫ(w) as

WCPVaRǫ(w) = min
{

γ : sup
P∈P

P

{

γ ≤ −wT f (ξ̃)
}

≤ ǫ

}

.
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Worst-Case Polyhedral VaR: Convex Reformulations

Theorem: SDP Reformulation of WCPVaR
WCPVaR of w can be computed as an SDP:

WCPVaRǫ(w) = min γ

s. t. M ∈ S
n+1

, y ∈ R
m−n

, τ ∈ R, γ ∈ R

〈Ω, M〉 ≤ τǫ, M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

»

0 wξ + BT y
(wξ + BT y)T −τ + 2(γ + yT a − eT wη)

–

< 0

Where we use the second-order moment matrix Ω:

Ω =

»

Σ + µµT µ

µT 1

–
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Worst-Case Polyhedral VaR: Convex Reformulations

Theorem: SOCP Reformulation of WCPVaR
WCPVaR of w can be computed as an SOCP:

WCPVaRǫ(w) = min
0≤g≤wη

−µ
T (wξ + BT g) + κ(ǫ)

‚

‚

‚Σ
1/2(wξ + BT g)

‚

‚

‚

2
. . .

. . . − aT g + eT wη

◮ SOCP has better scalability properties than SDP.
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Robust Optimization Perspective on WCPVaR

◮ WCPVaR minimization is equivalent to:

min
w∈W

max
r∈Up

ǫ

−wT r .

where the uncertainty set Up
ǫ ⊆ R

m is defined as

Up
ǫ

=







r ∈ R
m :

∃ξ ∈ R
n such that

(ξ − µ)T
Σ

−1(ξ − µ) ≤ κ(ǫ)2 and
r = f (ξ)







◮ Unlike Uǫ, the set Up
ǫ is not symmetric!
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Robust Optimization Perspective on WCPVaR
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Example: WCPVaR vs WCVaR

◮ Consider Black-Scholes Economy containing:
◮ Stocks A and B, a call on stock A, and a put on stock B.
◮ Stocks have drifts of 12% and 8%, and volatilities of 30%

and 20%, with instantaneous correlation of 20%.
◮ Stocks are both $100.
◮ Options mature in 21 days and have strike prices $100.

◮ Assume we hold equally weighted portfolio.

◮ Goal: calculate VaR of portfolio in 21 days.
◮ Generate 5,000,000 end-of-period stock and option prices.
◮ Calculate first- and second-order moments from returns.
◮ Estimate VaR using: Monte-Carlo VaR, WCVaR, and

WCPVaR.
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Example: WCPVaR vs WCVaR
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◮ At confidence level ǫ = 1%:
◮ WCVaR unrealistically high: 497%.
◮ WCVaR is 7 times larger than WCPVaR.
◮ WCPVaR is much closer to actual VaR.
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Delta-Gamma Portfolio Model

◮ m − n derivatives can be exotic with arbitrary maturity time.
Value of asset i = 1 . . . m is representable as vi(ξ̃, t).

◮ For short horizon time T , second-order Taylor expansion is
accurate approximation of r̃i :

r̃i = fi(ξ̃) ≈ θi + ∆
T
i ξ̃ +

1
2

ξ̃T
Γi ξ̃ ∀i = 1, . . . , m.

◮ Portfolio return approximated by (possibly non-convex):

wT r̃ = wT f (ξ) ≈ θ(w) + ∆(w)T ξ̃ +
1
2

ξ̃T
Γ(w)ξ̃,

where we use the auxiliary functions

θ(w) =

m
∑

i=1

wiθi , ∆(w) =

m
∑

i=1

wi∆i , Γ(w) =

m
∑

i=1

wiΓi .

◮ We now allow short-sales of options in w
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Worst-Case Quadratic VaR

Worst-Case Quadratic VaR (WCQVaR)

For any w ∈ W, we define WCQVaR as

min
{

γ : sup
P∈P

P

{

γ ≤ −θ(w) − ∆(w)T ξ̃ − 1
2
ξ̃T

Γ(w)ξ̃

}

≤ ǫ

}

Theorem: SDP Reformulation of WCQVaR

WCQVaR can be found by solving an SDP:

WCQVaRǫ(w) = min γ

s. t. M ∈ S
n+1, τ ∈ R, γ ∈ R

〈Ω, M〉 ≤ τǫ, M < 0, τ ≥ 0,

M +

[

Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

]

< 0

◮ There seems to be no SOCP reformulation of WCQVaR.
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Robust Optimization Perspect on WCQVaR

◮ WCQVaR minimization is equivalent to:

min
w∈W

max
Z∈Uq

ǫ

−〈Q(w), Z〉

where

Q(w) =

[ 1
2Γ(w) 1

2∆(w)
1
2∆(w)T θ(w)

]

,

and the uncertainty set Uq
ǫ ⊆ S

n+1 is defined as

Uq
ǫ

=

{

Z =

[

X ξ

ξT 1

]

∈ S
n+1 : Ω − ǫZ < 0, Z < 0

}

◮ Uq
ǫ is lifted into S

n+1 to compensate for non-convexity.
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Robust Optimization Perspect on WCQVaR

◮ There is a connection between Uǫ ⊆ R
m and Uq

ǫ ⊆ S
n+1.

◮ If we impose: w ∈ W =⇒ Γ(w) < 0 then robust
optimization problem reduces to:

min
w∈W

max
r∈Uq′

ǫ

−wT r

where the uncertainty set Uq′

ǫ ⊆ R
m is defined as

Uq′

ǫ
=







r ∈ R
m :

∃ξ ∈ R
n such that

(ξ − µ)T
Σ

−1(ξ − µ) ≤ κ(ǫ)2 and
ri = θi + ξT

∆i + 1
2ξT

Γiξ ∀i = 1, . . . , m







◮ Unlike Uǫ, the set Uq′

ǫ is not symmetric!
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Robust Optimization Perspective on WCQVaR
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Example: WCQVaR vs WCVaR

◮ Now we want to estimate VaR after 2 days (not 21 days).
◮ VaR not evaluated at option maturity times

→ use WCQVaR (not WCPVaR).
◮ Use Black-Scholes to calculate prices and greeks.
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◮ At ǫ = 1%: WCVaR still 3 times larger than WCQVaR.
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Index Tracking using Worst-Case Quadratic VaR

◮ Total test period: Jan. 2nd, 2004 – Oct. 10th, 2008.
◮ Estimation Window: 600 days. Out-of-sample returns: 581.
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◮ Outperformance: option strat 56%, stock-only strat 12%.
◮ Sharpe Ratio: option strat 0.97, stock-only strat 0.13.
◮ Allocation option strategy: 89% stocks, 11% options.
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Questions?

◮ Paper available on optimization-online.
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