Teaching Statistical Computing Using 3D Graphics in R

Duncan Murdoch

Department of Statistical and Actuarial Sciences
University of Western Ontario

June 11, 2010

Teaching

Using 3D

Graphics in R

Duncan Murdoch

Department of Statistical and Actuarial Sciences
University of Western Ontario

June 11, 2010

Outline

(9) Introduction
(2) The Singular Value Decomposition
(3) Nelder-Mead Optimization

4 Conclusion

Why use R?

R is a free software environment for statistical computing and graphics.

- A GNU project distributed under the GPL: students get it for free, and can keep it after the course.
- It runs on a wide variety of platforms. Our university facilities are mostly MS Windows, but the students have a variety of different machines.
- It is highly extensible, with thousands of user-contributed packages available. Our later statistical courses use actuarial packages and others.

R is an environment for statistical computing and graphics

- Data handling and storage
- Calculations on vectors, matrices and more general arrays and structures
- Tools for data analysis
- Graphical support for interactive display and publication quality printing
- A well-developed programming language
- Software development support, including documentation and testing

SS 2864: Statistical Programming

- Introductory programming course for 50-80 statistical and actuarial students.
- Starts with programming; uses R.
- Continues with Monte Carlo simulation, computational linear algebra, and numerical optimization.
- Uses both "classic" S graphics and $r g l$ for debugging and understanding theory and algorithms.
- Today: singular value decompositions, Nelder-Mead and Newton-Raphson optimization, and discussion.

The Singular Value Decomposition

For a square $n \times n$ matrix A, the SVD is

$$
\begin{equation*}
A=U D V^{T} \tag{1}
\end{equation*}
$$

where

- U and V are $n \times n$ orthogonal matrices (i.e. $U^{T} U=V^{T} V=I$)
- D is an $n \times n$ diagonal matrix with non-negative entries
- the superscript T indicates matrix transposition.

Displaying a Matrix Graphically

- Matrices are representations of linear operators on vector spaces.
- The matrix A is characterized by the behaviour of $y=A x$ as we vary x.
- Use the rgl package to develop a graphical representation of 3×3 matrices.
- While the action on the basis vectors is mathematically sufficient, it is hard to visualize the overall effect of the transformation.
- We prefer to use coloured spheres.

Demo 1

Displaying the SVD

$$
A=\left(\begin{array}{rrr}
1 & 0.1 & 0.1 \\
2 & 1 & 0.1 \\
0.1 & 0.1 & 0.5
\end{array}\right)
$$

Identity

A

U
D

Interpolating the SVD

- Static images of a matrix are harder to interpret than dynamic ones.
- We can make an SVD dynamic by interpolating between the identity and each component.
- When U and V are simply rotations, interpolation is linear interpolation of the rotation angle.
- When the singular values are all positive, linear interpolation on the log scale works well.

Interpolating the SVD

- Static images of a matrix are harder to interpret than dynamic ones.
- We can make an SVD dynamic by interpolating between the identity and each component.
- When U and V are simply rotations, interpolation is linear interpolation of the rotation angle.
- When the singular values are all positive, linear interpolation on the log scale works well.
- I don't worry about complete generality in the display!

Demo 2

Does it work?

I put these demos together to:
(1) Teach the SVD.
(2) Teach programming.
(3) Teach visualization techniques.
(4) De-mystify computer graphics.

The last two goals place tight constraints on what I can do. Have I achieved the right balance?

The Nelder-Mead Simplex Method

- A robust derivative-free multi-dimensional minimizer.
- Easy to describe and to visualize
- Implementations of it are within the reach of our introductory students.
- Not very fast, and the visualizations help to illustrate why.

How Nelder-Mead Works

- Start with a non-degenerate simplex in the space of the arguments to the target function.
- Iterate through updates of the simplex until the simplex is determined to be close enough to a local minimum.
- Updates replace the vertex with the highest function value with a new one, either by shrinking, expanding, or reflecting the simplex through the centroid of the other vertices, or shrinking the entire simplex.

Nelder-Mead Proposals

Reflection and Expansion

Contraction 1

Contraction 2

Two Dimensional Example

Demo 3

Nelder-Mead path

Nelder-Mead in higher dimensions

One of the nice features of the Nelder-Mead description is that it is dimension-independent. The four moves in 3-D:

Three Dimensional Example

Density of mixture of three normals (from misc3d package), together with initial simplex.

Demo 4

Newton-Raphson

Newton-Raphson minimizes a function by a sequence of quadratic approximations. We can display these for functions of two variables.

Demo 5

Does it work?

I put these demos together to:
(1) Teach optimization.
(2) Teach programming.
(3) Teach visualization techniques.
(4) De-mystify computer graphics.

The last two goals place tight constraints on what I can do. Have I achieved the right balance?

Conclusions

- We show students that it is possible to generate relatively sophisticated graphics in a fairly easy way.
- Students are already computer users (as game players, etc.); in our class they learn how to be in control.
- They also learn something about linear algebra, optimization, Monte Carlo methods.

What other demos would work?

