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MSMs and HMMs MSM

A continuous-time Markov switching model (MSM)

Observation process R = (Rt)t∈[0,T ], e.g. stock returns,

Rt =

∫ t

0

µs ds +

∫ t

0

σs dWs

Drift µt = b⊤Yt =
∑

biY
i
t , b ∈ Rd , and volatility σt = a⊤Yt , a ∈ Rd

>0

Y = (Yt)t∈[0,T ) continuous-time Markov chain with states {e1, . . . , ed}

W standard Brownian motion, independent of Y

Jumps are governed by rate matrix Q ∈ Rd×d

Diagonal: Exponential rate of leaving state ek ,

λk = −Qkk =
∑

l 6=k

Qkl < ∞

Conditional transition probability:

P(Yt = el |Yt− = ek ,Yt 6= Yt−) = Qkl/λk
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MSMs and HMMs MSM

Example: Simulated data
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MSMs and HMMs Multivariate stock index data

Exmple: Daily returns of stock indices
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Figure: Daily returns over 10 years for S&P 500, IPC, MerVal, Bovespa
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MSMs and HMMs Multivariate stock index data

Estimation of state probabilities
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Estimation by MCMC methods in Hahn/Frühwirth-Schnatter/S. (2010)
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MSMs and HMMs MSM and HMM

Properties, motivation of MSM, HMM

Properties, see Rydén/Teräsvirta/Åsbrink (1998), Timmermann (2000):

Wide ranges for skewness, kurtosis, tails; leverage and volatility clustering

Negative: No jumps, decay of autocorrelation of |∆R|, ∆R2 too fast

Interpretation:

State process models unobservable underlying economic variable

Rare jumps – structural breaks, frequent jumps – arrival of news

Many applications, e.g. in biophysics, finance, signal processing

MSM and HMM: Since

[R]t =

∫ t

0

σ2
s ds =

d∑

i=1

a2i

∫ t

0

1{Ys=ei}ds,

we distinguish

MSM if ai 6= aj for all i , j .

HMM if a1 = . . . = ad (hidden Markov model).
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Partial information and filtering

Partial information and filtering
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Partial information and filtering Information

Partial information

HMM is MSM with a1 = . . . = ad = σ. In the HMM we observe

Rt =

∫ t

0

µs ds + σWt , where µs = b⊤Ys .

An investor observing R has partial information only, information at t is

FR
t ( Ft .

Then, the best estimator for µt is the filter

µ̂t = E[µt | F
R
t ] = b⊤E[Yt | F

R
t ] = b⊤Ŷt ,

where Ŷt = E[Yt | F
R
t ] is the Wonham filter for Yt .

In the MSM with switching volatility σt = a⊤Yt , Yt can in theory be observed
via [R]t . Thus there is no filtering problem in the MSM, Y is not hidden!

For time-discrete observations Y is hidden for both constant and switching σ.
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Partial information and filtering Filtering in the HMM

Filtering in the HMM

We consider dRt = µt dt + σ dWt and use dZt = −Zt(σ
−1µt)

⊤ dWt .

Under P̃ ∼ P by
dP̃

dP
= ZT , W̃ = σ−1R is Brownian motion indep. of Y .

We need µ̂t = b⊤Ŷt for Ŷt = E[Yt | F
R
t ]. Let Ẑt = E[Zt | F

R
t ].

The unnormalized filter ρt(Y ) := Ẽ[Z−1
t Yt | F

R
t ] satisfies Zakai-equation

dρt(Y ) = Q⊤ρt(Y ) dt +Diag(ρt(Y ))b σ−2dRt , ρ0(Y ) = E[Y0].

Using Ẑ−1
t = 1⊤ρt(Y ), Bayes’ formula yields Ŷt =

ρt (Y )
1⊤ρt(Y )

.
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Portfolio optmization

Portfolio optimization
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Portfolio optmization Trading

Trading in a HMM

One money market with interest rate 0 and one stock with returns

dRt = µt dt + σ dWt

Xt wealth (portfolio value) at t.

π = (πt)t∈[0,T ] trading strategy

πt is fraction of wealth Xt invested in stock.

π has to be FR -adapted.

Xt = Xπ
t is controlled by π.

For initial capital x0 > 0 we have

dXt = Xt πtdRt , X (0) = x0.

Xt(1− πt) is invested in the money market (self-financing).
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Portfolio optmization Utility maximization problem

Utility maximization

Evaluation of terminal wealth by increasing, concave utility function U, e.g.

Uα(x) =
xα

α
, α < 1, α 6= 1 or U0(x) = log(x).

Stochastic control problem: Maximize expected utility

E[U(Xπ
T )] over admissible π for x0 > 0.

For constant µ

π∗
t =

1

1− α

µ

σ2
, t ∈ [0,T ], Merton strategy.

For non-constant µ we expect a dependency on µ̂t and its dynamics.

In general X ∗
T = (U ′)−1(yẐT ), where ẐT = E[ZT | FR

T ], Ẽ[X
∗
T ] = x0.

π∗ from
∫ T

0
(π∗

t )σdW̃t = X ∗
T − x0 =

∫ T

0
E[DtX

∗
T |F

R
t ]dW̃t if latter exists.
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Portfolio optmization Optimal strategies

Optimal trading strategies

In the HMM (S./Haussmann 2004)

π∗
t =

1

(1− α)E
[
Ẑ

α

α−1

t,T | ρt

]
{
σ−2b⊤ŶtE

[
Ẑ

2α−1
α−1

t,T | ρt

]

+ σ−1E
[
Ẑ

2α−1
α−1

t,T

∫ T

t

(Dtρt,s)bσ
−2dRs

∣∣∣ ρt
]}

.

For U = log this becomes π∗
t = σ−2µ̂t = σ−2b⊤Ŷt .

In the MSM (Bäuerle/Rieder 2004) for

π∗
t =

1

1− α

b⊤Yt

(a⊤Yt)2
.

For U = log this becomes π∗
t = σ−2

t µt = (a⊤Yt)
−2b⊤Yt .
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Continuous versus discrete time

Continuous versus discrete time
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Continuous versus discrete time Continuous-time optimal strategies

Optimal risky fractions in the HMM

For utility functions U0(x) = log(x) and Uα(x) = xα/α, α < 1, α 6= 0:
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Continuous versus discrete time Application of optimal strategies and discretization

Implementation of optimal strategies

For maximizing E [log(Xπ
T )], the optimal risky fraction is π∗

t = σ−2 µ̂t .

Constrained strategy: No short selling, no borrowing: Cut off π∗ at 0, 1.

Average log-utilities (500 simulations) for different trading frequencies:

strategy 10/day 5/day 4/day 2/day daily every 2 days

constrained 0.261 0.256 0.246 0.230 0.192 0.165

for d = 2, σ = 0.4, b⊤ = (2.5,−1.5), Q12 = 60, Q21 = 40, i.e. E[µt ] = 0.1.

In discretized model same results as for constrained strategy.

Thus in the HMM, the discretized model is well approximated by the
continuous time model with constraints (or with mild parameters).

Optimal constrained strategy in continuous-time MSM leads to optimal
expected utilities about 0.968 versus 0.192.

Thus, continuous-time MSM is poor approximation for discrete-time MSM.
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Continuous versus discrete time Why MSM?

Reminder

Reminder: From the econometric properties, the continuous-time MSM is
preferable to the continuous-time HMM.
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HMMs with non-constant volatility

HMMs with non-constant volatility
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HMMs with non-constant volatility Filter based volatility

MSM versus HMM with non-constant volatility

The continuous-time MSM is a poor approximation for the discrete time
model in view of portfolio optimization.

Idea: Consider a HMM with a non-constant volatility model,

dRt = b⊤Yt + σt dWt ,

where σt = f (Ŷt), as approximation for the MSM.

This yields consistent continuous-time approximations, since

For non-constant σt filters can be computed (Haussmann/S. 2004).

For non-constant σt , optimal strategy π∗
t can be computed as above.

It then has an additional term due to the dynamics of σt .

The dependency can be modelled such that f (Yt) = a⊤Yt .

Any dynamic volatility model w.r.t. W̃ can be used.
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HMMs with non-constant volatility Filter based volatility

Daily returns and volatility process
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HMMs with non-constant volatility Filter based volatility

HMM with non-constant volatility closest to MSM

Consider for FR adapted (σt)t∈[0,T ]

dRt = b⊤Ytdt + a⊤YtdWt and dRH
t = b⊤Ytdt + σtdWt

The mean squared distance of the return processes is

MSE(R ,RH) =
1

T
E

[∫ T

0

(Rt − RH
t )2dt

]
.

We have

MSE(R,RH) =
1

T

∫ T

0

∫ t

0

E
[
(a⊤Ys − σs)

2
]
ds dt.

This is minimized by

σt = E
[
a⊤Yt | F

R
t

]
= a⊤Ŷt .

In this sense, the HMM with σt = a⊤Ŷt is the HMM closest to MSM.
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HMMs with non-constant volatility Filter based volatility

Comparison of some econometric properties

Square distance of HMM with σt and
MSM with volatility a⊤Yt is minimized
by

σt = f (Ŷt) = a⊤Ŷt .
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Conclusion

Conclusion
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Conclusion Extensions

Model choice, risk constraints and expert opinions

Model choice: Wrong model might work better in view of estimation errors:
In a Black Scholes model with µ ∈ [a, b] using an HMM with states a, b
outperforms using constant but estimated µ.

Suitable bounds a, b can be obtained by semi-dynamic risk constraints, see
Cuoco/He/Issaenko 2007, Putschögl/S. 2011.

Static risk constraints on the distribution of the terminal wealth can be
included. E.g., for ε = 0.01 and binding constraint E[ẐT (X

∗
T − q)−] = ε:
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See Basak/Shapiro 2001, Gabih/S./Wunderlich 2009, S./Wunderlich 2010

Expert opinions: Frey/Gabih/Wunderlich 2012/14, G./Kondakji/S./W. 2014
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Conclusion Summary

Summary and related models

Differences of HMM and MSM:

In HMM: Full and partial information. Partial information with constraints on
strategy is consistent approximation for discrete-time model.

In MSM: In continuous time only full information. No good approximation for
discretized model.

But MSM has better econometric properties

HMM with non-constant volatility might be a good compromise.

Non-constant volatility can be chosen to minimize distance HMM–MSM.

Filtering, estimation and optimization work for n stocks.

Similar questions regarding continuous versus discrete-time model for models
with Lévy noise with compound Poisson part.

Other models for µ which allow for explicit filtering and computation of
optimal strategies:

µ as an Ornstein-Uhlenbeck process; leads to Kalman filtering (Lakner 1998).
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