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Regression models

Often we are interested in making forecasts or predictions (e.g.
inflation).

One generic method for prediction is regression where we
assume that there are observed predictors which can be used
to help. The model for predicting j periods ahead is

yt+j = α +

p∑
k=1

xt ,kβk + εt , t = 1,2, . . . ,T

where
• yt is the observation of the response variable at time t .
• xt ,k is the value of the k -th predictor at time t .
• βk is the coefficient for the k -th predictor.
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Example: equity premium

We used the data set of Goyal and Welch (2008)

• The response variable is the value weighted monthly return
of the S & P 500 obtained from the CRSP database.

• The sample period is May 1937 to December 2002.
• The set of twelve predictors includes variables relating to

dividends, earnings, interest rates, bond yields and
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Equity premium: regressions over decades
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Comments

• The previous results show that the coefficient estimates
are changing over time which suggests that the
relationship between the predictors and the response is
changing over time.

• The results also suggest that some predictors may not be
important for predicting the response at all times or at
some times.

• This is an explanation of why “static” regression models,
where predictor effects are assumed constant over time
often produce poor out-of-sample forecasts or predictions
when fitted to different time periods (see Fisher and
Statman (2006), Paye and Timmermann (2006) and Dangl
and Halling (2012)).
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Dynamic regression model

One solution is the dynamic regression model.

The model
assumes that
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Estimation

The model cannot be directly estimated since there are
(p + 1)T coefficients and only T observations.

One standard solution assumes that
β1,1, . . . , β1,p, . . . , βT ,1, . . . , βT ,p follows a stochastic process
such as a random walk

βt ,k = β(t−1),k + νt ,k

or vector autoregressive process

βt = Λβt−1 + νt

where νt ,k and νt are random disturbances.
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Dynamic regression models with many regressors

Our focus is on how to construct a stochastic process for βt ,k
which corresponds to the findings from the results

1 Many values of βt ,k will be close to zero.
2 βt ,k will be close to zero at all times or at some times for

some predictors.
3 Some coefficients will have values of βt ,k which are away

from zero for all or most times.
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Bayesian regularization

Returning to the static regression model, the coefficients β
need to be given a prior distribution.

If there are many predictors, it is natural to assume that some
(perhaps, many) coefficients will have values close to zero.

The proportion of such predictors is often called the sparsity of
the regression problem.

A prior distribution which can express different levels of sparsity
is the normal-gamma, which has been suggested as a prior
distribution in regression problems by Caron and Doucet (2008)
and Griffin and Brown (2010).
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Normal-gamma distribution

The normal-gamma prior can be written as

βk |ψk ∼ N(0, ψk ), ψk ∼ Ga(λ, λ/µ)

where ψk will be called the relevance parameter for the k -th
predictor.

The distribution of ψk expresses our prior belief about the
relevance of the k -th predictor.

The choice of λ and µ determines how much mass is placed
close to or away from zero.
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Normal-gamma distribution
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Normal-gamma autoregressive process

For dynamic regression models, we will construct a stochastic
process for the coefficients whose marginal distribution is
normal-gamma.

We write βt ,k =
√
ψt ,kφt ,k where

• φ1,k , . . . , φT ,k follows an AR(1) process with a standard
normal stationary distribution and AR parameter ϕk .

• ψ1,k , . . . , ψT ,k follows an AR(1) process with a gamma
marginal distribution with parameters λk and µk and AR
parameter ρk (Pitt and Walker, 2005).

The processes φ1,k , . . . , φT ,k is independent of ψ1,k , . . . , ψT ,k .
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NGAR process (λk = 0.2)
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NGAR process (λk = 1)
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Comments

• λk controls the proportion of time that the process is close
to zero.

• µk controls the scale of the process.
• The parameters ϕk and ρk control the length of each

period away from zero. Therefore, we choose priors for
these parameters with most of their mass close to 1.
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Further prior modelling

The NGAR process defines a process which spends some time
close to zero and some time away from zero.

However, “close”
and “away” are relative to the parameter µk which controls
scale.

We define a second level of prior on µk so that

µk ∼ (λ?, λ?/µ?).

Smaller values of λ? suggests that more coefficients are close
to zero at all times.

The intercept αt is assumed to follow a random walk.
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Stochastic volatility

The dynamic regression model is

yt+j = αt +

p∑
k=1

xt ,kβt ,k + εt , t = 1,2, . . . ,T

which is completed by assuming that εt ∼ N(0, σ2
t ) where σ2

t is
a given an AR(1) process with a gamma marginal distribution.



Simulated example
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Equity premium

We used the data set of Goyal and Welch (2008)
• The response variable is the value weighted monthly return

of the S & P 500 obtained from the CRSP database.
• The sample period is from May 1937 to December 2002.
• The set of twelve predictors includes variables relating to

dividends, earnings, interest rates, bond yields and
inflation.



Equity premium: coefficients
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Equity premium: relevance
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Inflation

• We constructed a data set using data series obtained from:
FRED, the consumer survey database of the University of
Michigan, the Federal Reserve Bank of Philadelphia, and
the Institute of Supply Management.

• We predict the gross domestic product (GDP) deflator.
• The sample period is from Q2 of 1965 to Q1 of 2011.
• The data set includes 31 predictors, from activity and term

structure variables to survey forecasts and previous lags.
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GDP deflator: coefficients
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GDP deflator: relevance
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Out-of-sample prediction

We compare the DR model with the NGAR process prior to
• Time Varying Dimension (TVD) models (Chan et al, 2012),
• Dynamic Model Average (DMA) approach (Koop and

Korobilis, 2011),
• Hierarchical shrinkage (HierShrink) (Belmonte et al, 2011).
• Rolling window Bayesian Model Averaging (BMA) using a

g-prior for prediction.
• Random walk model of Atkeson and Ohanian (2001).

RMSE =

√√√√ 1
T − s

T∑
t=s+1

(yt − E [yt |y1, . . . , yt−1, x1, . . . xt ])
2



Out-of-sample prediction: RMSE

Equity Premium PCE Inflation GDP Inflation
RW 1.100 0.635 0.373

NGAR 0.977 0.611 0.410
DMA 1.01 0.660 0.422
TVD1 2.193 2.688 2.688
TVD2 0.986 0.623 0.481
TVD3 0.992 0.628 0.500

HierShrink 1.547 1.131 2.556
gprior1 2.822 0.796 0.660
gprior2 1.648 0.712 0.588
gprior3 1.282 0.681 0.516

The window lengths for the three g-priors were 100 (gprior1),
200 (gprior2) and 300 (gprior3) for the equity premium data and
50 (gprior1), 70 (gprior2) and 90 (gprior3) for the inflation data.



• The DR model with NGAR process prior is the best
performing approach for two data sets (equity premium
and PCE inflation) and the second best performing for the
GDP inflation data (with only the random walk giving better
predictions).

• In general, the approaches which allow the complexity of
the regression model to change over time (NGAR, TVD
and DMA) outperform the other approaches (HierShrink
and rolling window g-prior). This illustrates the importance
of allowing time-variation in the relevance of regression
coefficients.



Summary

In this talk, I’ve presented a method which allows the effects of
predictors in a regression model to vary over time and which
allows their value to be very close to zero for some proportion
of time.

Bayesian inference about this model allows this proportion to
adapt to the data.

The method also allows some predictor to have their
coefficients close to zero at all times (effectively removing the
predictor).
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