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Abstract

We propose a locally stationary linear model for the evolution of high-dimensional
financial returns, where the time-varying volatility matrix is modelled as a piecewise
constant function of time, with the number of jumps possibly increasing with the sam-
ple size. We show that the proposed model accurately reflects the typical stylised facts
of multivariate returns. We propose a new wavelet-based technique for estimating the
volatility matrix, which combines four essential ingredients: a Haar wavelet decom-
position, variance stabilisation of the Haar coefficients via the Fisz transform prior
to thresholding, a bias correction, and extra time-domain thresholding (soft or hard).
Under the assumption of sparsity, we demonstrate the interval-wise consistency of the
proposed estimators of the volatility matrix and its inverse in the operator norm, with
rates which adapt to the features of the target matrix. We also propose a version of the
estimators based on the polarisation identity, which permits a more precise derivation
of the thresholds. Using the example of a stock index portfolio, we discuss practical
selection of the parameters of our procedure.

1 Introduction

The estimation of volatility matrices, i.e. covariance matrices of multivariate asset returns,
has been a fundamental problem in financial statistics at least since the seminal work of
Markowitz (1952, 1959), whose concept of portfolio efficiency used the standard deviation
of a portfolio as a measure of its uncertainty; consequently, allocating a Markowitz-efficient
portfolio in practice requires accurate estimation of the associated volatility matrix. In
another interesting application, an estimate of the volatility matrix is required in the esti-
mation of factors and their loadings in the factor analysis of panels of asset returns, see e.g.
Motta et al. (2010).

Not being directly observable, volatility, be it univariate or multivariate, is a model-dependent
quantity, and its interpretation and estimation varies between models. For example, consid-
ering the univariate situation, in the ARCH model (Engle, 1982) and its many subsequent
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variants (see e.g. Lunde and Hansen, 2005, for a review), volatility is understood as the
variance of the returns process conditional on its own past values; in Stochastic Volatility
modelling (Taylor, 1986; see Andersen et al., 2009, Part II for a review) it is the variance
conditional on a possibly external random process; in the non-stationary deterministic ap-
proach by Starica and Granger (2005), Fryzlewicz (2005) and Fryzlewicz et al. (2006), it is
the unconditional local variance of the returns process.

The interest of this work lies in multivariate volatility modelling and the associated es-
timation of the volatility matrix. There have been numerous attempts at extending the
(G)ARCH framework to multiple dimensions, although the level of complexity of the pro-
posed multivariate GARCH models has understandably fallen short of that of univariate
models. The VEC (Bollerslev et al., 1988) and the BEKK (Engle and Kroner, 1995) models
are both natural and direct generalisations of the univariate GARCH model to the multi-
variate case. Due to the need to parameterise the evolution of the covariances between the
assets, the numbers of parameters in the general VEC and BEKK models are large, which,
combined with the complicated form of the likelihoods, makes estimation challenging; it is
for this reason that the simplest BEKK model of order (1, 1) is by far the most popular one
in literature. Some efforts have been made to alleviate the parameterisation problem, e.g.
Engle et al. (1990) assume that the conditional covariance matrix is generated by only a few
factors, each of which has a simple GARCH(1,1) structure. Alexander (2001) decorrelates
the multivariate time series of returns via principal components (PC) and applies univariate
GARCH modelling to each PC. Motivated by the fact that PCs are only unconditionally
uncorrelated, Fan et al. (2008a) construct Conditionally Uncorrelated Components and
model each one as univariate GARCH. Using a straightforward but elegant decomposition
of the conditional covariance matrix into conditional standard deviations and correlations,
Bollerslev (1990) models conditional correlations as constant and conditional variances as
univariate GARCH processes, whereas Tse and Tsui (2002) and Engle (2002) introduce
GARCH-type dynamics into the conditional correlation structure. The reader is also re-
ferred to a survey on multivariate GARCH models by Bauwens et al. (2006). There have
been numerous attempts at extending the Stochastic Volatility (SV) framework to multiple
dimensions: we refer the reader to the survey in Andersen et al. (2009), Part II. Estimation
in multivariate Stochastic Volatility models is typically not straightforward and tends to be
performed via computationally intensive approaches. We note that the fact that SV models
tend to be “more difficult to estimate” than ARCH-type models was also noted by Robert
Engle in his Nobel Prize lecture.

The overwhelming majority of existing multivariate GARCH and SV models, including
those listed above, are stationary. Although stationarity is an attractive assumption from
the point of view of estimation and interpretability, some authors point out that the typical
“stylised facts” of financial returns data (i.e. heavy-tailed marginal distribution and signifi-
cant autocorrelation of absolute values and squares) can be better explained by resorting to
non-stationary models, see e.g. Mikosch and Starica (2004), Starica and Granger (2005) and
Fryzlewicz et al. (2008) for arguments in the univariate case. Underlying these approaches
is the observation that given the changing pace of the world economy, it is unlikely that
log-return series should stay stationary over long time intervals. Janeway (2009) goes fur-
ther and claims that traditional models’ stationarity (an attribute which can potentially
translate into lack of flexibility) might have been a contributing factor in the recent finan-
cial crisis, since they could have been too slow to react to early warning signs of the crisis
and therefore might have impeded efficient risk management. In the multivariate GARCH
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setting, non-stationarity tends to be introduced in either of two ways. One is to assume
that some of the parameters of the GARCH model evolve slowly over time, and estimate
them nonparametrically, as in the Semi-Parametric Conditional Correlation GARCH model
of Hafner et al. (2005). The other is to assume that some of the GARCH parameters change
according to a (possibly stationary) regime-switching mechanism, as in the Regime Switch-
ing Dynamic Correlation GARCH model by Pelletier (2006). A computationally intensive
method is required to perform full estimation in the latter modelling approach.

Multivariate GARCH models, while being an intellectually appealing extension of the pop-
ular and successful univariate framework, suffer from a number of issues, which must not
be overlooked by the analyst wishing to apply them in practice. Estimation is not always
easy or reliable (see e.g. Brooks et al. (2003)), and reducing the number of parameters to
aid estimation can result in models that are unlikely to be able to describe the dynamics
of the data accurately. Further, theoretical properties of multivariate GARCH models are
not yet fully understood, and, in some cases, difficult to establish. Thus, it is meaningful,
perhaps more so than in the univariate case, to look for alternatives to multivariate GARCH
modelling.

One such alternative modelling avenue opens up once one relaxes the assumption of station-
arity, as motivated above. An interesting question which can be asked in the non-stationary
setting is whether non-linearity (as present in the data-generating mechanism of GARCH
models) is still needed to model returns data accurately, or whether it is sufficient to stick
to linear models, the latter being conceptually simpler and better understood. Locally
stationary linear models (Dahlhaus (1997), Nason et al. (2000)) seem to be a particularly
interesting option here, as they combine linearity with a modelling approach whereby the
time-varying parameters are modelled as “well-behaved” functions defined on a compact
interval, which enables a meaningful asymptotic estimation theory. Some authors have ap-
plied the locally stationary linear framework to the modelling of univariate returns data;
see for example Clemencon and Slim (2004), who apply the locally stationary covariance
estimation methodology of Donoho et al. (2003) to returns data, Fryzlewicz (2005), who
provides an exploratory analysis of log-returns in the framework of Nason et al. (2000), or
Fryzlewicz et al. (2006), who model volatility as a slow-varying deterministic function, with
an associated “Haar-Fisz” estimation technique. This latter technique will be summarised
in detail later on. The locally stationary linear approach has also been explored in the mul-
tivariate setting. Rodriguez-Poo and Linton (2001) and Herzel et al. (2006) both assume
the locally stationary linear model in which multivariate volatility is understood to be the
local unconditional covariance matrix, and use kernel smoothing to estimate it.

Although using kernel smoothing to estimate time-varying multivariate volatility certainly
has its appeal as it leads to nonnegative-definite estimators without any further fine-tuning,
it also has its drawbacks. Kernel estimators are known to be non-adaptive in that they do
not automatically adapt to the unknown smoothness of the target function. For example,
imagine the simplest possible case where the underlying “true” volatility is constant, or can
be reasonably modelled as such from the point of view of the analyst. A kernel estimator of
such constant volatility will always be oscillatory (however slightly) around the true value.
This is undesirable from the point of view of the analyst (e.g. a trading firm), who will have
to bear unnecessary trading costs in making extra adjustments to their positions at every
time unit, driven by the oscillations of the kernel estimator of volatility, in a situation where
no adjustments are necessary as the true volatility is constant. Thus, it makes perfect sense
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to seek more “adaptive” estimators of multivariate volatility, which would only change in
value whenever necessary, and which would estimate constant volatility as constant, with
high probability. One such estimator is proposed by Haerdle et al. (2003), who search for
the longest interval of approximate constancy of volatility via iterative hypothesis testing.

Our work is motivated by the three arguments summarised above: the need to look for
alternatives to multivariate GARCH modelling; the appeal of non-stationarity in financial
returns modelling; and the need to depart from traditional kernel smoothing in nonpara-
metric estimation of volatility. The aims of this work can be briefly summarised as follows:

• To propose a locally stationary linear model for the evolution of multivariate financial
returns, where the time-varying volatility is modelled as a function, defined in rescaled
time over a compact interval, possessing some degree of regularity. In this work, our
regularity assumption is that the volatility is piecewise-constant, where the number of
the breakpoints can increase with the sample size and they can approach each other
in rescaled time.

• To show that the proposed locally stationary model can accurately reflect the typical
stylised facts of multivariate returns, e.g. those concerning the behaviour of sample
cross-covariances of returns across markets.

• To propose a new wavelet-based technique for estimating the correlation matrix and
the covariance matrix (= volatility matrix) of multivariate returns. The method
combines Haar wavelets and the variance-stabilising Fisz transformation, which is
described in more detail below. Our rationale for choosing wavelets in this setting is
at least fourfold: firstly, wavelets provide an adaptive “bridge” between stationary and
non-stationary estimation in the sense that if the true volatility is constant, then so will
be the wavelet-estimated volatility, with high-probability, which is a desirable feature
of any volatility estimator as described above. Secondly, being piecewise constant,
Haar wavelets also guarantee this property interval-wise, which ensures a degree of
interpretability of our estimator. Thirdly, wavelet estimators are fast to compute,
which is important if the dimension of the volatility matrix is large. Finally, unlike
many other wavelet families, Haar wavelets do not suffer from the boundary issue,
which for our purposes means that our estimators will be theoretically tractable also
at the right-hand end of the data, i.e. at the current time t = T . We describe the
Fisz transform (and why it is needed) in more detail below.

In modern financial statistics, it is impossible to avoid the setting of high-dimensionality,
i.e. the situation where the number of assets considered is high, perhaps even higher than
the effective number of observations for each asset (note that the effective number of ob-
servations may be less than the actual number of observations in a non-stationary setting).
In this challenging setting, one needs to choose paradigms and estimation tools carefully to
ensure good theoretical and practical performance of the volatility matrix estimator, e.g.
its consistency in the desired matrix norm or its stable invertibility. Our paradigm of choice
is sparsity, where, at each time point, only a certain (small, in comparison to the number of
assets) number of true cross-market covariances are assumed to be non-zero. We note that
Bickel and Levina (2008) and El Karoui (2008) proposed thresholding estimators of a sparse
stationary covariance matrix, and Wang and Zou (2010) adapted the former technique to
the context of large (stationary) volatility matrix estimation for high-frequency financial
data. In this work, we consider low-frequency (daily) data, but in a non-stationary setting.

4



Classical function estimation via wavelet thresholding in the function+noise setting re-
quires that the standard deviation of the noise should be constant over time; the value
of the threshold is then, usually, a multiple of this quantity. In our setting however, the
standard deviation of the sample local cross-covariance is a non-trivial function of the local
cross-covariance itself. Thus, in order to apply the wavelet thresholding machinery, variance
stabilisation is required. Our methodology of choice is the Haar-Fisz technique (Fryzlewicz
and Nason (2004), Fryzlewicz (2008)), in which, roughly speaking, empirical wavelet coef-
ficients are standardised by the local maximum likelihood estimates of their own standard
deviations, which ensures variance stabilisation prior to the application of wavelet thresh-
olding. Thus this procedure can be viewed as a type of “studentisation” performed in the
wavelet domain. We note that this technique was applied to univariate volatility estima-
tion in Fryzlewicz et al. (2006); however, critical and interesting differences arise in the
multivariate setting. Another crucial difference between our approach and classical wavelet
thresholding (as well as between multivariate and univariate Haar-Fisz methodology) is that
we apply a certain essential bias correction and perform additional thresholding in the time
domain. These two actions ensure, in our sparse setting, that true zero correlations are
estimated exactly as zero with high probability.

The paper is organised as follows. Section 2 introduces and motivates our model. Section
3 introduces our estimators and studies their theoretial properties. Section 4 offers insights
as to the practical choice of the parameters of our estimators in the context of a stock index
portfolio example. The proofs are in the Appendix.

2 Motivation

2.1 The multivariate model

This section introduces and motivates our locally stationary model for multivariate financial
returns. Let Xt,T , t = 1, . . . , T , be a p-dimensional process of log-returns on financial
instruments, with components Xj,t,T for j = 1, . . . , p, where p can be large and even possibly
larger than T . Marginally, each Xj,t,T is modelled as

Xj,t,T = σj(t/T ) εj,t, (1)

where σj(u) is a positive left-continuous piecewise-constant function of u ∈ (0, 1], bounded
from above and away from zero, with an unknown number of jumps of unknown locations
and magnitudes. The vector random variables εt = (ε1,t, . . . , εp,t)

T are independent, and
distributed such that

E(εt) = 0

Var(εt) = Γ(t/T ),

where the elements of the p × p matrix Γ(t/T ) = (ρi,j(t/T ))pi,j=1 are such that ρi,i(u) ≡ 1,
and ρi,j(u), i 6= j, is a left-continuous piecewise-constant function, with an unknown number
of jumps of unknown locations and magnitudes. Extra distributional assumptions on εj,t

will be specified in Section 3.1. Let Σ(t/T ) = (ci,j(t/T ))pi,j=1 denote the variance matrix of
Xt,T , and let D(t, T ) be a diagonal p× p matrix with σi(t/T ), i = 1, . . . , p on the diagonal.
We have the obvious decomposition

Σ(t/T ) = D(t/T ) Γ(t/T )D(t/T ).
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Further, we assume that all εj,t’s are identically distributed; thus, marginally, each Xj,t,T

follows exactly the same univariate model as that proposed in Fryzlewicz et al. (2006).

Here, Σ(u), or alternatively the pair (D2(u),Γ(u)), can be viewed as the time-dependent
parameter of the proposed model, which needs to be estimated from a single stretch of
observations Xt,T . Note that Σ(u) is defined over the interval (0, 1], which is common
practice in nonparametric regression and is done in order to enable meaningful estimation
theory. In Section 2.2, we demonstrate that piecewise stationarity, which is arguably the
simplest type of departure from stationarity, is already flexible enough to enable realistic
modelling of multivariate volatilities. Note that piecewise-constant modelling of multivariate
volatilities was also considered by Haerdle et al. (2003). Our nonparametric approach allows
us to avoid the restrictions imposed by the parametric structures of ARCH/GARCH models.

2.2 Stylised facts of multivariate asset returns

Fryzlewicz et al. (2006) argued how the univariate model (1) was able to capture typical
stylised facts of univariate financial returns. More specifically, by Proposition 1 of Fryzlewicz
et al. (2006), if the number of jumps in σj(t/T ) is finite and if E(ε8

j,t) < ∞, then the following
holds (the reader is referred to the above work for precise mathematical statements).

• The sample mean of Xj,t,T converges to zero in mean-square.

• The sample kurtosis of Xj,t,T converges in probability to a limit larger than or equal
to E(ε4

j,t), where the equality holds if and only if σj(t/T ) is constant; this implies that
Xj,t,T “spuriously” appears as heavy-tailed if it is non-stationary, when its kurtosis is
estimated by the global sample kurtosis.

• For each fixed lag, the sample autocovariance of Xj,t,T converges to zero in mean-
square.

• For each fixed lag, the sample autocovariance of X2
j,t,T converges in mean-square to

a non-negative quantity, which is zero if and only if σj(t/T ) is constant; this implies
that X2

j,t,T “spuriously” appears as a long memory process if it is non-stationary, when
the global sample autocovariance is used to estimate its autocovariance structure.

The purpose of this section is to demonstrate interesting and important “stylised facts”
of multivariate returns, and argue how our non-stationary linear model can capture them.
The cross-market analogy of squared returns are product returns, defined as Xi,t,T Xj,t,T for
the pair of assets (i, j). The global sample autocovariance of product returns at lag h for
markets (i, j) is defined as

γT
i,j(h) =

1

T

T−h
∑

t=1

Xi,t,T Xj,t,T Xi,t+h,TXj,t+h,T −
(

1

T

T
∑

t=1

Xi,t,T Xj,t,T

)2

.

Obviously, γT
i,i(h) reduces to the global sample autocovariance of squared returns X2

i,t,T .

In this example, we let Xt,T = (X1,t,T , . . . ,X10,t,T )T be the series of logged and differenced
daily closing values, from 3 January 1995 to 10 March 2010, of 10 major stock indices:
All Ordinaries, Bovespa, CAC 40, DAX, Dow Jones Industrial Average, FTSE 100, Hang
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Figure 1: Daily returns on the FTSE index (X6,t, left) and the DJIA index (X5,t, middle)
from 3 January 1995 to 10 March 2010, normalised so that sample variance is one. Right:
sample acf of X1,tX2,t.

Seng, NASDAQ, Nikkei and S&P 500 (respectively). X5,t,T , X6,t,T and γT
5,6(·) (on the auto-

correlation, rather than autocovariance scale) are plotted in Figure 1. If X5,t,T X6,t,T were
generated by a stationary, short-memory time series model with appropriate moment con-
ditions satisfied, we would expect γT

5,6(h) to decay quickly to zero as h increased. However,

empirically, we observe a high degree of persistence of γT
5,6(h), which appears to be mostly

large positive even for lags around h = 50 and possibly beyond. This is by no means an
isolated case. Table 1 lists the quantity 1

30γT
i,j (0)

∑30
h=1 γT

i,j(h), computed empirically for all

pairs (i, j) (multiplied by 100 and rounded). The degree of persistence of the global sam-
ple autocovariance of product returns is high for the overwhelming majority of asset pairs:
indeed, our quantity of interest is less than 5 only for 6 (out of 55) asset pairs: (All Ordinar-
ies, DJIA), (All Ordinaries, NASDAQ), (All Ordinaries, S&P 500), (Nikkei, DJIA), (Nikkei,
NASDAQ), (Nikkei, S&P 500). To see how our model can reproduce this persistence, we
consider the following proposition.

Proposition 2.1 Let the number of jumps in ci,j(u) be finite, and let E(ε8
i,t) < ∞. Let h

be fixed. We then have

γT
i,j(h) →

∫ 1

0
c2
i,j(u)du −

(∫ 1

0
ci,j(u)du

)2

(2)

in mean-square, as T → ∞.

The proof is similar to Proposition 1 in Fryzlewicz et al. (2006) and so we omit it. The
difference of the integrals on the right-hand side of formula (2) is always positive, unless
ci,j(u) is constant, when it is equal to zero. This provides an explanation for the empirically
noted persistence of the global sample autocorrelation of product returns: if the underlying
process in non-stationary (in the sense that the cross-covariance ci,j(u) varies over time),
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Table 1: The quantity

[

100
30γT

i,j
(0)

∑30
h=1 γT

i,j(h)

]

for all pairs (i, j) of assets.

i \ j 1 2 3 4 5 6 7 8 9 10

1 22 5 12 10 1 12 17 -1 18 1
2 21 15 12 17 16 12 18 9 19
3 21 18 12 21 11 9 12 12
4 20 13 18 9 11 10 14
5 24 13 7 24 0 25
6 22 13 10 13 13
7 20 6 18 7
8 23 -1 24
9 21 1
10 26

Table 2: P-values of our test of constancy of cross-market correlations, multiplied by 100
and rounded.

i \ j 1 2 3 4 5 6 7 8 9 10

1 92 97 25 2 67 11 0 99 2 69
2 91 0 0 1 0 13 0 31 1
3 77 76 3 38 51 13 14 3
4 100 1 28 19 1 2 0
5 97 10 3 80 85 99
6 90 32 16 22 11
7 84 23 13 8
8 96 52 99
9 92 88
10 100

then the use of the global sample acf of the product returns (a measure of dependence which
is unsuitable in this non-stationary situation due to its “non-local” nature) results in the
spurious effect of autocorrelation persistence.

Going out step further, recalling that ci,j(u) = σi(u)σj(u)ρi,j(u), it is interesting to inves-
tigate whether the postulated time variation in ci,j(u) (exhibiting itself via the persistent
global acf of the product returns) can be attributed to time variations in σi(u) and σj(u),
in ρi,j(u), or in both. Firstly, noting that ci,i(u) = σ2

i (u), we can see from the diagonal
elements of Table 1 that the squared returns X2

i,t,T indeed exhibit a high degree of per-

sistence of their global sample acf, which, in our model, provides evidence for σ2
i (u) (and

hence σi(u)) varying over time for each i (by Proposition 2.1).

To investigate the constancy (or otherwise) of ρi,j(u), we firstly note that ρi,j(t/T ) =
E(εi,tεj,t). As the εi,t’s are not directly observable, it is sensible to construct their empirical
counterparts ε̂i,t and then test for the constancy of the mean of the vector {ε̂i,tε̂j,t}T

t=1. We
construct ε̂i,t as

ε̂i,t =
Xi,t,T

σ̂i(t/T )
,

where σ̂2
i (t/T ) is our estimator of σ2

i (t/T ) described in Section 3.2 and denoted as c̃i,i(t/T )
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therein. We use a simple CUSUM-type test based on the following well-known fact (see e.g.
Corollary 29.7 of Davidson (1994)): if {Zt}T

t=1 is a sequence of iid variables with E|Zt|r < ∞
for some r > 2, then, for u ∈ [0, 1],

WT (u) = Var−1/2(Zt)T
−1/2

⌈Tu⌉
∑

t=1

Zt − E(Zt)
d→ Bu

UT (u) = WT (u) − ⌈Tu⌉
T

WT (1)
d→ Bo

u,

where Bu and Bo
u are, respectively, standard Brownian motion and Brownian bridge on [0, 1].

With Zt := ε̂i,tε̂j,t as input, we construct the empirical counterpart of UT (u) by replacing
the expectation and variance in WT (u) with their sample counterparts. We compare the
range of the resulting sample path with the theoretical range of Brownian bridge, whose
cumulative distribution is well known (Kennedy (1976)) and given by

FBo(x) = 1 + 2

∞
∑

k=1

(1 − 4k2x2) exp(−2k2x2).

P-values of this test (multiplied by 100 and rounded), for each pair of assets individually,
are given in Table 2. While the multiple hypothesis setting obviously obscures the picture,
the low p-values of some of the tests of constancy constitute strong evidence that some of
the functions ρi,j(u) are indeed time-varying, or in other words that some of the cross-asset
correlations evolve over time. On the other hand, the high p-values of some of the tests
provide evidence that it may not always be the case and that some cross-asset correlations
can safely be modelled as constant. One advantage of our adaptive estimation method
for ρi,j(u), proposed in Section 3.1, is that it will automatically and naturally “test” for
the constancy of ρi,j(u) as part of the estimation process (while properly accounting for
multiple hypotheses) and estimate ρi,j(u) as constant with a high probability, if and only
if the underlying true function ρi,j(u) is constant. This is in contrast to, say, kernel-based
methods, which always produce estimators which oscillate (however slightly) even if the
target function is constant.

As an illustration, the right-hand plot of Figure 2 shows the absolute value of the sample
path of UT (u), constructed for the following pair of markets: DAX and S&P 500 (for which
the above p-value is close to zero). The vertical line indicates its maximum, which is also the
most likely, according to our CUSUM test, location of a breakpoint in the mean of ε̂4,tε̂10,t,
if there is any. The left-hand plot shows the corresponding sequence ε̂4,tε̂10,t, with the
same potential breakpoint. Interestingly, the breakpoint corresponds to a date in August
2008, i.e. just before the recent financial crisis entered its most severe phase. This appears
to confirm the common wisdom that markets tend to be more highly correlated to each
other during times of crises: note that the sample mean of ε̂4,tε̂10,t before the breakpoint is
approximately 0.51, whereas after the breakpoint, it reaches 0.72. It is important for any
statistical estimation procedure to react adequately to such changes, and we will later argue
that our estimation methodology meets this requirement.
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Figure 2: Left: ε̂4,tε̂10,t (corresponding to DAX (4) and S&P 500 (10)); right: the corre-
sponding sample path of |UT (u)|. Vertical line in both plots indicates the location of the
maximum of |UT (u)|.

3 Haar-Fisz estimation of the volatility matrix Σ(u)

3.1 Case D(u) = identity

We start our exposition of the Haar-Fisz estimation methodology for the volatility matrix
Σ(u) by considering the idealised case where the marginal volatilities σi(u) are known to be
constant and equal to one, i.e. where the matrix D(u) is the identity matrix. This is done
firstly for clarity, so that the basic mechanics of the Haar-Fisz estimation procedure for the
covariances ci,l(u), i 6= l, can be highlighted without the time variation in σi(u) obscuring
the picture. Secondly, from the point of view of interpretation, considerations of (piecewise)
constancy of ci,l(u) are more informative when it is correlation rather than covariance: note
that the fact that ci,l(u) = σi(u)σl(u)ρi,l(u) is constant, does not imply that any of the
functions: σi(u), σl(u), ρi,l(u) are constant, unless we assume the constancy of σi(u), σl(u),
which is our assumption in this section. Estimation in the general case where D(u) is not
necessarily the identity matrix is detailed in Section 3.2.

Although this is an idealistic situation, it can also serve as a model in the case where the
marginal volatilities have already been previously removed. This would have proceeded
by estimating each marginal volatility using the analyst’s preferred technique (e.g. our
method, as described in Section 3.2, or a univariate GARCH fit) and computing the em-
pirical residuals from this fit. The empirical residuals could then be modelled as having
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marginal volatilities constant and equal to 1.

We first consider the estimation of a single (time-varying) component of the matrix Σ(u),
i.e. the function ci,l(u), from a single stretch of observations {Xi,t,T Xl,t,T }T

t=1, recalling
that σi(u) ≡ σl(u) ≡ 1. We note, however, that our theoretical results later in this section
concern the quality of the estimation of the entire matrix Σ(u) in the operator norm, rather
than each component ci,l(u) separately.

The starting point to our estimation procedure is the formulation

Xi,t,T Xl,t,T = ci,l(t/T ) + Xi,t,T Xl,t,T − ci,l(t/T ) =: ci,l(t/T ) + ξi,l,t,T ,

where the “noise” ξi,l,t,T is such that E(ξi,l,t,T ) = 0. Thus the problem of estimating ci,l(u)
can be viewed as the problem of “denoising” the sequence Xi,t,T Xl,t,T . As the target func-
tion ci,l(u) is piecewise constant, Haar wavelets are a natural estimation tool here, being
themselves piecewise constant (the reader is referred to Vidakovic (1999) for a readable
introduction to wavelets in statistics, although we summarise the basics of Haar wavelets
below).

To apply Haar wavelet thresholding to estimate ci,l(u), we need to know or easily be able
to estimate the standard deviation of the noise ξi,l,t,T . If the innovations εi,t were Gaussian,
then we would be able to use Isserlis’ theorem to write

{Var(ξi,l,t,T )}1/2 = {1 + c2
i,l(t/T )}1/2. (3)

On the right-hand side, ci,l(u) is obviously unknown (since this is what we are trying to
estimate). One of the key points of our Haar-Fisz estimation methodology is the fact that
we can pre-estimate it by taking a certain local average of the sequence Xi,t,T Xl,t,T (more
details below). Unfortunately, if εi,t is not Gaussian, then similarly simple expressions for
the variance of ξi,l,t,T cannot be guaranteed to exist, which is why we assume Gaussianity
of εi,t in the remainder of this paper.

The input to our Haar-Fisz estimation algorithm is the vector {Xi,t,T Xl,t,T }T
t=1: here, we

assume that T is an integer power to two; techniques for adapting wavelet transforms to
non-dyadic sample sizes are described e.g. in Wickerhauser (1994). The algorithm is valid
for all pairs i, l except i = l since we assume, in this section, that E(X2

i,t,T ) is known and
equal to 1. Denote J = log2 T . The estimation algorithm proceeds as follows:

1. Compute the Haar decomposition of {Xi,t,T Xl,t,T }T
t=1 using the following algorithm:

(a) Let s
(i,l)
J,k := Xi,t,T Xl,t,T , k = 1, 2, . . . , 2J .

(b) For each j = J − 1, J − 2, . . . , 0, recursively form vectors s
(i,l)
j , d

(i,l)
j , s̃

(i,l)
j , and

f
(i,l)
j with elements:

s
(i,l)
j,k = 2−1/2(s

(i,l)
j+1,2k−1 + s

(i,l)
j+1,2k)

d
(i,l)
j,k = 2−1/2(s

(i,l)
j+1,2k−1 − s

(i,l)
j+1,2k)

s̃
(i,l)
j,k = 2(j−J)/2s

(i,l)
j,k

f
(i,l)
j,k = d

(i,l)
j,k

{

1 +
(

s̃
(i,l)
j,k

)2
}−1/2

,

where k = 1, . . . , 2j .
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2. For each j and k, denote µ
(i,l)
j,k := E(d

(i,l)
j,k ). For most levels j (in a sense to be made

precise later), estimate µ
(i,l)
j,k by

µ̂
(i,l)
j,k = d

(i,l)
j,k I(|f (i,l)

j,k | > λ),

where I(·) is the indicator function. In other words, we “kill” each d
(i,l)
j,k if and only

if the corresponding Haar-Fisz coefficient f
(i,l)
j,k does not exceed in absolute value a

certain threshold λ (to be specified later). Note that this is different from classi-

cal wavelet thresholding in that the thresholded quantity d
(i,l)
j,k and the thresholding

statistic f
(i,l)
j,k are different.

3. Take the inverse Haar transform of µ̂
(i,l)
j,k to obtain an initial estimate ĉi,l(t/T ) of the

covariance function ci,l(t/T ).

4. The initial estimate ĉi,l(t/T ) is a piecewise-constant function of t. Correct the estimate
by replacing its value on each interval of constancy by the local average of the sequence
{Xi,t,T Xl,t,T }T

t=1 over the same interval. With some abuse of terminology, we refer to
this step as “bias correction” and denote the bias-corrected estimate by c̃i,l(t/T ).

5. Apply additional thresholding in the time domain, i.e. construct the final estimate by
either of the two operations

c̄
(h)
i,l (t/T ) = c̃i,l(t/T )I(|c̃i,l(t/T )| > λ1) (hard thresholding),

c̄
(s)
i,l (t/T ) = sign(c̃i,l(t/T ))max(|c̃i,l(t/T )| − λ1, 0) (soft thresholding),

denoting Σ̄(h)(t/T ) = (c̄
(h)
i,l (t/T ))pi,l=1 and Σ̄(s)(t/T ) = (c̄

(s)
i,l (t/T ))pi,l=1.

Some remarks are in order. Note first that the quantity s̃
(i,l)
j,k is simply the local sample

mean of the sequence {Xi,t,T Xl,t,T }T
t=1, computed over the interval t ∈ [(k − 1)2J−j +

1, . . . , k 2J−j]. Thus, if ci,l(u) is constant over the interval u ∈
(

k−1
2j , k

2j

]

, then the quantity
{

1 +
(

s̃
(i,l)
j,k

)2
}1/2

is, by Isserlis’ theorem, the maximum likelihood estimator of the standard

deviation of d
(i,l)
j,k . Therefore, f

(i,l)
j,k can be viewed as a variance-stabilised, or studentised,

version of the Haar coefficient d
(i,l)
j,k . It is this variance-stabilisation step which permits us

to use a threshold λ independent of scale j or location k, which facilitates its choice (recall
that in classical wavelet thresholding, the value of the threshold is usually a multiple of the
standard deviation of the thresholding statistic).

A similar trick (stabilising the Haar wavelet coefficient by the MLE estimate of its own
standard deviation) was proposed in Fryzlewicz et al. (2006) for the estimation of univariate
volatilities. However, the application to volatility matrix estimation is new. We term
this methodology “Haar-Fisz” in recognition of Marek Fisz who studied, in the 1950s, the
asymptotic behaviour of some random variables of the form (X − Y )/h(X,Y ), where h is

a nonnegative-valued function (which f
(i,l)
j,k is an instance of), albeit obviously outside of a

wavelet context, see e.g. Fisz (1955).
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As well as the above variance stabilisation, we also note that it is possible, and straightfor-

ward, to show the asymptotic normality of the term f
(i,l)
j,k , as we move away from the finest

scales of the Haar decomposition in the sense that J − j → ∞. However, in contrast to

the univariate volatility case, it is not easy to identify the exact distribution of f
(i,l)
j,k , unless

i = l. We return to this theme in Section 3.3 which describes the “polarised” version of our
estimator.

Besides the fact that the Haar-Fisz methodology has not been previously applied in a setting
of covariance estimation, other methodological novelties of this work, which set it apart from
both classical wavelet thresholding and the previously proposed Haar-Fisz techniques, are
in steps 4 and 5 of the above algorithm.

In step 4, each piecewise constant section of the estimate is replaced by the local sample
mean of the data computed over the same sub-interval. This “bias correction” is essential in
establishing interval-wise consistency results (in the operator matrix norm; more details in
Theorems 3.1 – 3.4) of our estimator. The reason why such a bias correction is not normally
performed in traditional Haar wavelet thresholding estimators is that the usual error norm
of choice when analysing wavelet estimators is the mean integrated square error, in which
case no bias correction is needed. However, we are more interested in the interval-wise
convergence rates, a choice which we motivate in more detail below. Finally, note that the
thresholding performed in step 2 of the algorithm is of the “hard” type. Applying the bias
correction in step 4 means that we could equally have used “soft” thresholding in step 2
but that would have led to exactly the same values of the bias-corrected estimate c̃i,l(t/T )
as both hard and soft thresholding estimates based on Haar wavelets lead to exactly the
same set of breakpoints.

In step 5, extra thresholding is applied in the time domain. This is done to ensure that
zero covariances are estimated as exactly zero with high probability. Heuristically speaking,
because our true volatility matrix will be assumed to be sparse, estimating zero covariances
as exactly zero will help to significantly reduce the overall estimation error, in the operator
norm. Here, it is essential to consider both hard and soft thresholding: while hard thresh-
olding produces consistent estimators under slighly less strict assumptions (see Theorems
3.1 – 3.4), soft thresholding tends to produce better practical performance. Roughly speak-
ing, the reason for the latter is that Σ̄(s)(t/T ) is a continuous function of the threshold λ1,
which means that it is guaranteed to be positive-definite for a certain range of thresholds
λ1. For completeness, we mention that shrinkage- (as opposed to hard-thresholding-) type
estimators for stationary covariance matrices were considered e.g. in Haff (1980), Dey and
Srinivasan (1985) and Ledoit and Wolf (2003).

Finally, it is worth making a general note that in some nonparametric models, one route
of obtaining nonparametric function estimators which are exactly zero on parts of their
domain is through the fused lasso approach of Tibshirani et al. (2005), and our time domain
thresholding could in some cases serve as an alternative to this technique.

We first analyse the behaviour of our estimator in the “null” case where the true volatility
matrix Σ(u) is constant with respect to u, i.e. Σ(u) = Σ. In order to do this, we first
introduce some notation. For any p × p matrix M = (mi,l)

p
i,l=1, we denote its ordered

eigenvalues by λmax(M) = λ1(M) ≥ . . . ≥ λp(M) = λmin(M). With ‖v‖2 denoting the l2
norm of a vector v, the operator norm of M is defined as

‖M‖ = sup{‖Mv‖2 : ‖v‖2 = 1},
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and for symmetric matrices (e.g. covariance matrices) is given by ‖M‖ = max1≤i≤p |λi(M)|.
It is well known (see e.g. Golub and Van Loan (1989)) that for symmetric matrices, we
have

‖M‖ ≤ max
l

∑

i

|mi,l|.

Further, let Σ = (ci,l)
p
i,l=1 be any constant volatility matrix. We define a class of sparse

constant volatility matrices as

U(c0(p)) = {Σ : ci,i = 1, max
i

p
∑

l=1

I(ci,l 6= 0) ≤ c0(p)},

and a class of invertible sparse constant volatility matrices as

U(c0(p), ǫ0) = {Σ : Σ ∈ U(c0(p)), λmin(Σ) ≥ ǫ0 > 0}.

The results follow.

Theorem 3.1 (Hard thresholding.) Let our hard-thresholding estimator Σ̄(h)(u) of Σ(u) be

constructed as in the algorithm of Section 3.1, where µ̂
(i,l)
j,k = d

(i,l)
j,k I(|f (i,l)

j,k | > λ) for scales

j = 0, . . . J∗ with 2J∗

= T 1−δ for some δ ∈ (0, 1), and µ̂
(i,l)
j,k = 0 otherwise. Assume that

the true volatility matrix Σ(u) is constant and such that Σ(u) = Σ ∈ U(c0(p)), and that its
size p is at most of order O(T ζ) for some fixed ζ > 0. Further, let the thresholds λ and λ1

satisfy

λ ≥
√

2

(

2 log p + (1 − δ) log T + log
1

ap,T

)

,

min
ci,l 6=0

|ci,l| − 2

√

log p + log c0(p) + log 1
ap,T

T
≥ λ1 ≥

√

2T−1

(

2 log p + log
1

ap,T

)

,

for some C > 0, where ap,T is a certain sequence, tending to zero as T → ∞ but no faster
than O(T−ζ). The following holds with probability of at least 1 − C1 ap,T for some positive
C1:

(a) Our estimator Σ̄(h)(u) = Σ̄(h) is constant and such that c̄
(h)
i,l (t/T ) ≡ 0 if ci,l = 0 and

c̄
(h)
i,l (t/T ) ≡ 1

T

∑T
t=1 Xi,t,T Xl,t,T if ci,l 6= 0.

(b) We have ‖Σ̄(h) − Σ‖ ≤ 2c0(p)

√

log p+log c0(p)+log 1

ap,T

T .

(c) If, in addition, Σ ∈ U(c0(p), ǫ0), then ‖(Σ̄(h))−1−Σ−1‖ ≤ C2c0(p)

√

log p+log c0(p)+log 1

ap,T

T

for some positive C2.

Theorem 3.2 (Soft thresholding.) Assume the set-up of Theorem 3.1. The following holds
with probability of at least 1 − C1 ap,T for some positive C1:

(a) Our estimator Σ̄(s)(u) = Σ̄(s) is constant and such that c̄
(s)
i,l (t/T ) ≡ 0 if ci,l = 0 and

c̄
(s)
i,l (t/T ) ≡ sign(c̄

(h)
i,l (t/T ))(|c̄(h)

i,l (t/T )| − λ1) if ci,l 6= 0.
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(b) We have ‖Σ̄(s) − Σ‖ ≤ c0(p)

(

2

√

log p+log c0(p)+log 1

ap,T

T + λ1

)

.

(c) If, in addition, Σ ∈ U(c0(p), ǫ0), then

‖(Σ̄(s))−1 − Σ−1‖ ≤ C2c0(p)



2

√

log p + log c0(p) + log 1
ap,T

T
+ λ1





for some positive C2.

Finally, if λ1 = O
(

T−1/2(log p + log 1
ap,T

)1/2
)

, then the above convergence rates for Σ̄(s)

and (Σ̄(s))−1 are the same as those for Σ̄(h) and (Σ̄(h))−1.

We now quote the results in the case when Σ(u) is not necessarily constant. In the following
theorem, a dyadic interval is defined as any interval of the form ({k − 1}2−j , k2−j ] where
j = 0, . . . , J − 1 and k = 1, . . . , 2j .

Theorem 3.3 (Hard thresholding.) Let our hard-thresholding estimator Σ̄(h)(u) of Σ(u) be

constructed as in the algorithm of Section 3.1, where µ̂
(i,l)
j,k = d

(i,l)
j,k I(|f (i,l)

j,k | > λ) for scales

j = 0, . . . J∗ with 2J∗

= T 1−δ for some δ ∈ (0, 1), and µ̂
(i,l)
j,k = 0 otherwise. Assume that the

true volatility matrix Σ(u) satisfies the following:

(i) There exists a dyadic interval I of length at least 2−J∗

, such that for for each i, l, the
function ci,l(u) is constant for all u ∈ I.

(ii) For each i, l, if there are breakpoints in ci,l(u) to the left (right) of I, then the nearest
one is covered by a dyadic interval J 1

i,l (J 2
i,l) of length at least 2−J∗

, containing no
other breakpoint, not intersecting with I and such that

min
i,l,m

∫

Jm
i,l

{

ci,l(u) − |J m
i,l |
∫

Jm
i,l

ci,l(z)dz

}2

du ≥ C3T
−β (4)

for β ∈ [0, 1 − δ). Further, assume that Σ(I) ∈ U(c0(p)), and that its size p is at most of
order O(T ζ) for some fixed ζ > 0. Let the thresholds λ and λ1 satisfy

C
√

log T ≥ λ ≥
√

2

(

2 log p + (1 − δ) log T + log
1

ap,T

)

,

min
ci,l(I)6=0

|ci,l(I)| − 2

√

log p + log c0(p) + log 1
ap,T

T |I| ≥ λ1 ≥
√

2T−1|I|−1(2 log p + log
1

ap,T
),

for some C > 0, where ap,T is a certain sequence, tending to zero as T → ∞ but no faster
than O(T−ζ). The following holds with probability of at least 1 − C1 ap,T for some positive
C1:
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(a) Our estimator Σ̄(h)(u) is constant for u ∈ I and such that c̄
(h)
i,l (I) = 0 if ci,l(I) = 0

and c̄
(h)
i,l (I) is a local sample mean of the sequence {Xi,t,T Xl,t,T }t over a subinterval

t/T ∈ Ki,l where I ⊆ Ki,l and ci,l(I) = ci,l(Ki,l), if ci,l(I) 6= 0.

(b) We have ‖Σ̄(h)(I) − Σ(I)‖ ≤ 2c0(p)

√

log p+log c0(p)+log 1

ap,T

T |I| .

(c) If, in addition, Σ(I) ∈ U(c0(p), ǫ0), then

‖(Σ̄(h)(I))−1 − Σ(I)−1‖ ≤ C2c0(p)

√

log p + log c0(p) + log 1
ap,T

T |I|

for some positive C2.

Theorem 3.4 (Soft thresholding.) Assume the set-up of Theorem 3.3. The following holds
with probability of at least 1 − C1 ap,T for some positive C1:

(a) Our estimator Σ̄(s)(u) is constant for u ∈ I and such that c̄
(s)
i,l (I) = 0 if ci,l(I) = 0

and c̄
(s)
i,l (I) ≡ sign(c̄

(h)
i,l (I))(|c̄(h)

i,l (I)| − λ1) if ci,l(I) 6= 0.

(b) We have ‖Σ̄(s)(I) − Σ(I)‖ ≤ c0(p)

(

2

√

log p+log c0(p)+log 1

ap,T

T |I| + λ1

)

.

(c) If, in addition, Σ(I) ∈ U(c0(p), ǫ0), then

‖(Σ̄(s)(I))−1 − Σ(I)−1‖ ≤ C2c0(p)



2

√

log p + log c0(p) + log 1
ap,T

T |I| + λ1





for some positive C2.

Finally, if λ1 = O
(

T−1/2|I|−1/2(log p + log 1
ap,T

)1/2
)

, then the above convergence rates for

Σ̄(s)(u) and (Σ̄(s)(u))−1 are the same as those for Σ̄(h)(u) and (Σ̄(h)(u))−1.

We first note that Theorems 3.1 and 3.2 are special cases of Theorems 3.3 and 3.4, respec-
tively, with I = (0, 1]. We chose to present them separately to emphasise the “modularity”
of their proof structure, in the sense that one essential part of the proofs of the latter two
theorems is a localised, interval-wise application of techniques from the proofs of the former
two theorems. This elegant localisation can be achieved thanks to the multiscale structure
of our Haar-wavelet-based estimator.

The most commonly used measure of quality of wavelet-based function estimators in liter-
ature is the mean integrated square error (MISE). The reason for this is partly technical:
wavelet provide an orthonormal series expansion, so measuring MISE in the time domain
is equivalent to measuring MISE in the wavelet domain, the latter often being theoreti-
cally tractable. However, in the above Theorems 3.3 and 3.4, we show instead localised,
interval-wise convergence of our estimators (which is stronger than and implies pointwise
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convergence). The reason for this is that the practitioner is likely to be interested in the
local, pointwise quality of the volatility estimator at the “current” time u = 1 (t = T ).
Note that MISE convergence would not be able to guarantee pointwise convergence at any
particular point u.

We now comment on the various quantities appearing in the theorems. The parameter δ is
required to be less than 1 for various important technical reasons, including guaranteeing

uniform strong asymptotic normality of quantities such as d
(i,l)
j,k and s

(i,l)
j,k , which is a core

part of the proof. The lower its value, the less strict the assumptions (i) and (ii) of Theorems
3.3 and 3.4 (i.e. the larger the class of volatilities Σ(u) for which our method is applicable),
but the (potentially) worse the error bounds in statements (b) and (c); thus δ is a parameter
describing balance between applicability and performance. Note that the reason why p is
not allowed to grow exponentially with T is that log(p)/(T |I|) needs to tend to zero to
achieve consistency of the estimators of the volatility matrix and its inverse; however, the
only assumption about I is that |I| ≥ T δ−1 with δ being possibly arbitrarily close to zero.

We have already argued before that it is the application of the variance-stabilising “Fisz

transform” (i.e. the division of d
(i,l)
j,k by an estimate of its own standard deviation to obtain

f
(i,l)
j,k ) that allows the threshold λ to be independent of ci,l(u). Heuristically speaking, the

reason why λ1 is also independent of ci,l(u) is that it is calibrated under the hypothesis
that, locally, ci,l(u) = 0. Theorems 3.3 and 3.4 suggest a permitted range of the parameter
λ, and a valid practical choice could be made e.g. by setting λ to be the lower bound of its
permitted range. As for the selection of λ1, the parameter |I| is obviously unknown, but

again recalling that |I| ≥ T δ−1, we could set λ1 =
√

2T−δ(2 log p + log 1
ap,T

) under certain

additional assumptions on minci,l(I)6=0 |ci,l(I)|. In Section 4, we describe ways of selecting
λ, λ1 and δ in practice. Although there is no theoretical advantage in choosing λ1 to be
large from the point of view of the error bounds of our soft thresholding estimator, we will
demonstrate in that section that it might be advantageous to do so from the point of view
of their practical performance.

The variance-type condition (4) specifies how large, or how isolated, the nearest breakpoint
needs to be before our estimator reacts to it. Parameter ap,T determines the probability
with which the results of the theorem hold: the higher the desired probability, the worse
the error bounds. As in the stationary set-up of Bickel and Levina (2008), the magnitude of
the error bounds specifies how fast the sparsity parameter c0(p) is permitted to grow before
consistency breaks down.

Finally, we note that the convergence rates in Theorems 3.3 and 3.4 are adaptive to the
length of the interval I. Since the results hold for any interval of constancy satisfying
the assumptions, they also hold for the largest such interval. Thus the estimators exhibit
interval-wise adaptation to the features of the target matrix. In particular, if the break-
points are fixed in rescaled time, then the convergence rates are near-parametric, subject of
course to c0(p) being small. However, our results demonstrate that consistent interval-wise
estimation is still possible in set-ups where breakpoints approach each other in rescaled
time.
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3.2 The general case

In this section, we describe our estimation algorithm for the volatility matrix Σ(u) in the
general case where we have no knowledge of the marginal volatilities σ2

i (u) = ci,i(u) and
where they also need to be estimated. As before, we decompose

Xi,t,T Xl,t,T = ci,l(t/T ) + Xi,t,T Xl,t,T − ci,l(t/T ) =: ci,l(t/T ) + ξi,l,t,T ,

where, by Isserlis’ theorem,

{Var(ξi,l,t,T )}1/2 = {ci,i(t/T )cl,l(t/T ) + c2
i,l(t/T )}1/2. (5)

The difference in comparison to the case ci,i(u) = σ2
i (u) ≡ 1 is that ci,i(u) and cl,l(u) appear

non-trivially in the standard deviation formula (5). The form of the standard deviation leads
to the following algorithm.

1. For all of the following combinations of indices: (η, υ) = (i, i), (l, l), (i, l), compute the

Haar decompositions of {Xη,t,T Xυ,t,T }T
t=1, obtaining the quantities s

(η,υ)
j,k , d

(η,υ)
j,k and

s̃
(η,υ)
j,k .

2. Obtain the variance-stabilised coefficients

f
(i,l)
j,k = d

(i,l)
j,k

{

s̃
(i,i)
j,k s̃

(l,l)
j,k +

(

s̃
(i,l)
j,k

)2
}−1/2

.

3. Estimate µ
(i,l)
j,k by µ̂

(i,l)
j,k = d

(i,l)
j,k I(|f (i,l)

j,k | > λ) for scales j = 0, . . . J∗ with 2J∗

= T 1−δ

for some δ ∈ (0, 1), and µ̂
(i,l)
j,k = 0 otherwise.

4. Take the inverse Haar transform of µ̂
(i,l)
j,k to obtain an initial estimate ĉi,l(t/T ) of the

covariance function ci,l(t/T ).

5. Correct the estimate by replacing its value on each interval of constancy by the local
average of the sequence {Xi,t,T Xl,t,T}T

t=1 over the same interval. Denote this bias-
corrected estimate by c̃i,l(t/T ).

6. If i 6= l, apply additional thresholding in the time domain, i.e. construct the final
estimate by either of the two operations

c̄
(h)
i,l (t/T ) = c̃i,l(t/T )I(|c̃i,l(t/T )| > λ1c̃

1/2
i,i (t/T )c̃

1/2
l,l (t/T )) (hard thresholding),

c̄
(s)
i,l (t/T ) = sign(c̃i,l(t/T ))max(|c̃i,l(t/T )| − λ1c̃

1/2
i,i (t/T )c̃

1/2
l,l (t/T ), 0) (soft thresholding),

denoting Σ̄(h)(t/T ) = (c̄
(h)
i,l (t/T ))pi,l=1 and Σ̄(s)(t/T ) = (c̄

(s)
i,l (t/T ))pi,l=1.

Interval-wise consistency results for Σ̄(h)(t/T ) and Σ̄(s)(t/T ), similar to those in Theorems
3.1 – 3.4, are also possible to obtain in this case, using a similar set of tools and techniques;

we skip them for brevity. Apart from the different form of f
(i,l)
j,k to reflect the standard

deviation formula (5), another difference between the above algorithm and the algorithm
of Section 3.1 is the form of the time-domain threshold in step 6. Here, the threshold takes
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the form λ1c̃
1/2
i,i (t/T )c̃

1/2
l,l (t/T ), rather than simply λ1. This is again done to correct for

the different scale of variability of the estimator c̃i,l(t/T ), arising from the fact that the
marginal volatilities ci,i(t/T ) and cl,l(t/T ) are not necessarily equal to one.

In the special case when i = l, the above algorithm enables the estimation of each marginal
volatility σ2

i (t/T ) = ci,i(t/T ), or in other words the local variance of each Xi,t,T . Note that
our initial estimator of this quantity before the bias correction, denoted by ĉi,i(t/T ) in the
above algorithm, is a special case of the estimator proposed in Fryzlewicz et al. (2006) (the
latter work did not deal at all with the multivariate case).

3.3 Alternative approach via polarisation identity

In this section, we propose an alternative to the initial estimator ĉi,l(t/T ), based on the
polarisation identity

Xi,t,T Xl,t,T =
1

4

{

(Xi,t,T + Xl,t,T )2 − (Xi,t,T − Xl,t,T )2
}

.

To start with, define an operator F by ĉi,l(t/T ) = F({Xi,t,T Xl,t,T }T
t=1). Note that F is a

nonlinear smoothing operator, since it involves the nonlinear operation of thresholding by
λ. Thus, in general, by the polarisation identity, the following inequality will hold

ĉi,l(t/T ) 6= 1

4

{

F({(Xi,t,T + Xl,t,T )2}T
t=1) −F({(Xi,t,T − Xl,t,T )2}T

t=1)
}

.

In this section, we propose and motivate the following alternative to ĉi,l(t/T ):

ĉP
i,l(t/T ) :=

1

4

{

F({(Xi,t,T + Xl,t,T )2}T
t=1) −F({(Xi,t,T − Xl,t,T )2}T

t=1)
}

=:
1

4

{

σ̂+2
i,l (t/T ) − σ̂− 2

i,l (t/T )
}

.

Our motivation for this proposal is as follows. Firstly note that both Xi,t,T + Xl,t,T and
Xi,t,T − Xl,t,T follow the multiplicative models

Xi,t,T + Xl,t,T = σ+
i,l(t/T )ε+

i,l,t

Xi,t,T − Xl,t,T = σ−
i,l(t/T )ε−i,l,t,

where the functions σ±
i,l(t/T ) are piecewise constant, ε±i,l,t are i.i.d. Gaussian, and σ± 2

i,l (t/T ) =

σ2
i (t/T )+σ2

l (t/T )±2ci,l(t/T ). Thus, to estimate σ± 2
i,l (t/T ) (and therefore compute ĉP

i,l(t/T )),

we can use the algorithm of Section 3.2 with {(Xi,t,T ±Xl,t,T )2}T
t=1 as input. The advantage

of proceeding in this way is that in this case, it is possible to derive the exact distribution of

the corresponding Haar-Fisz coefficients of (Xi,t,T ±Xl,t,T )2 (denoted f
(i,l,±)
j,k here to differ-

entiate them from f
(i,l)
j,k ) under the null hypothesis of the local constancy of σ± 2

i,l (t/T ) over
the corresponding sub-interval, which leads to a more accurate, non-asymptotic selection of

the threshold λ. To see this, first note that f
(i,l,±)
j,k simplify to

f
(i,l,±)
j,k =

d
(i,l,±)
j,k

2
1+j−J

2 s
(i,l,±)
j,k

= 2
J−j−1

2

∑(k−1/2)2J−j

t=(k−1)2J−j+1
σ± 2

i,l (t/T )ε± 2
i,l,t −

∑k 2J−j

t=(k−1/2)2J−j+1 σ± 2
i,l (t/T )ε± 2

i,l,t
∑(k−1/2)2J−j

t=(k−1)2J−j+1
σ± 2

i,l (t/T )ε± 2
i,l,t +

∑k 2J−j

t=(k−1/2)2J−j+1 σ± 2
i,l (t/T )ε± 2

i,l,t

,
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which, under the local hypothesis of constancy of σ± 2
i,l (t/T ), with σ± 2

i,l (t/T ) 6= 0, leads to

2
j+1−J

2 f
(i,l,±)
j,k =

∑(k−1/2)2J−j

t=(k−1)2J−j+1
ε± 2
i,l,t −

∑k 2J−j

t=(k−1/2)2J−j+1 ε± 2
i,l,t

∑(k−1/2)2J−j

t=(k−1)2J−j+1
ε± 2
i,l,t +

∑k 2J−j

t=(k−1/2)2J−j+1 ε± 2
i,l,t

.

However, note that by Lemma 1 of Fryzlewicz et al. (2006), 2
j+1−J

2 f
(i,l,±)
j,k in the above

is distributed as 2Y − 1, where Y ∼ β(2J−j−2, 2J−j−2). Knowledge of this distribution
can lead to the choice of λ based on the exact quantiles of the beta distribution; this is
in contrast to the results of Theorems 3.1 – 3.4 where the choice of λ is based on strong
asymptotic normality arguments. We emphasise that the distribution of the Haar-Fisz
coefficients is only readily available in the case of the polarised estimator ĉP

i,l(t/T ); indeed,

it is not clear how to obtain the exact distribution of f
(i,l)
j,k (i.e. the Haar-Fisz coefficients

in the computation of the non-polarised estimator ĉi,l(t/T )) in the case i 6= l.

As an example of how the knowledge of the distribution of f
(i,l,±)
j,k can help in selecting the

threshold λ (which can possibly depend on the scale j and will therefore be denoted by λ̃j),
consider again the case where the true volatility is constant, i.e. Σ(u) = Σ. To ensure that
our initial polarised estimator Σ̂P (u) = {ĉP

i,l(t/T )}p
i,l=1 is also constant with probability no

less than 1 − ap,T , it is sufficient to require that

P





⋃

i,l

⋃

j,k

⋃

s∈{+,−}

|f (i,l,s)
j,k | ≥ λ̃j



 ≤ ap,T .

Setting P(|f (i,l,s)
j,k | ≥ λ̃j) to be independent of j and using the Bonferroni inequality, the

above is implied by

2p2T 1−δ
P(|2 j+1−J

2 f
(i,l,s)
j,k | ≥ 2

j+1−J
2 λ̃j) = ap,T ,

which can easily be solved numerically for each j separately using the quantiles of the
relevant beta distribution. The final estimators, using the thus-constructed initial estimator
Σ̂P (u), are denoted by Σ̄P,(h)(u) and Σ̄P,(s)(u).

4 Practical parameter choice using the example of a stock

index portfolio

In this section, we discuss the practical choice of the parameters δ, ap,T , λ (for the non-
polarised estimators Σ̄(h)(u) and Σ̄(s)(u)), λ̃j (for the polarised estimators Σ̄P,(h)(u) and
Σ̄P,(s)(u)) and λ1, using the example of the volatility matrix of the 10 major stock indices
introduced earlier in the paper.

Parameter δ determines how many finest scales in the Haar wavelet decomposition of the
data are ignored in the estimation procedure, and thus determines the length lc of the
shortest permitted intervals of constancy of the volatility matrix estimator. From the point
of view of a large (and hence: slow) trader, it is probably impractical to set lc to be less than
8 days. We use δ leading to lc = 8 in the example below for yet another reason: with this
choice of of lc, the smallest “effective sample size” of our volatility matrix estimators is 8,
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but the size of the matrix is p = 10 > 8. This means, in particular, that we certainly cannot
use the non-time-thresholded estimator Σ̃(t/T ) = {c̃i,l(t/T )}p

i,l=1 as our final estimator
of the volatility matrix, as it will not be invertible when the effective sample size is 8.
This emphasises the importance of the extra time-domain thresholding, which leads to
invertible estimators. In other words, in this setting, p = 10 already counts as “large” as
it can become larger than the effective sample size, and special techniques (in our case:
time-domain thresholding) are required to estimate the volatility matrix effectively in this
set-up.

The parameter ap,T determines the rate of the probability with which our results hold con-
verging to one. In the classical univariate wavelet thresholding in the function + Gaussian
i.i.d. noise set-up with the universal threshold, an analogue of ap,T is of order O(log−1/2 T ),

and we also set ap,T = log−1/2 T for simplicity.

In our numerical study, we were reassured to find that the lower end of the permitted
theoretical range for λ, that is the choice

λ =

√

2

(

2 log p + (1 − δ) log T + log
1

ap,T

)

led to estimators which were visually convincing, and, in particular, tended to produce,
in estimating the marginal volatilities ci,i(u), empirical residuals with no significant serial
dependence in the squares. As for the polarised estimators, our thresholds λ̃j were computed
exactly as specified in Section 3.3 and were also satisfactory in terms of their fit to the data,
while leading to more “wiggly” estimates than the non-polarised ones due to the fact that
λ̃j ’s were computed based on the exact beta quantiles and were therefore less conservative
than the threshold λ, the latter stemming from approximate normality arguments.

As an example, Figure 3 shows our estimators of the covariance between X1,t,T (All Ordi-
naries) and X3,t,T (CAC 40), on 512 trading days (approximately 2 years) ending 10 March
2010, with an arbitrarily chosen value of λ1 = 0.2 (more on the choice of λ1 below). It is
interesting to observe that the time-thresholding leads to the value of the estimators being
zero towards the end of the time interval for the non-polarised estimators, but not for the
polarised ones. The polarised estimators are more wiggly than the non-polarised ones, and
their shortest intervals of constancy are of length lc = 8. Of course, the practitioner will be
the most interested in the value of the estimator at the right-hand end of the data, that is
at the current time t = T , where our estimators admit one of two values: (a) the local mean
of the last portion of the data computed over an interval whose length is chosen adaptively
from the data (shrunk towards zero if soft thresholding is used), or (b) zero; whether (a) or
(b) applies depends on the result of the time-domain thresholding.

Selection of λ1 is a less straightforward issue and must be done with care. The theoretical re-
sult of Theorem 3.3 would be able to provide a recipe for the choice of λ1 if we knew the value
of |I|, which is obviously unknown. However, it could in principle be pre-estimated from

the intermediate estimator Σ̃(u). Another option, setting λ1 =
√

2T−δ(2 log p + log 1
ap,T

),

was already discussed in Section 3.1, but would lead to non-adaptive consistency rates in
Theorem 3.4. In this numerical study, we demonstrate an alternative “practical” way of
selecting λ1, which will be of interest to portfolio construction practitioners. The algorithm
proceeds as follows:

1. Given a realisation of the process Xt,T , t = 1, . . . , T , select the length n of a moving
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Figure 3: Top row: {X1,t,T X3,t,T }t; middle left: c̃1,3(t/T ) (black), ĉ1,3(t/T ) (red); middle

right: c̃P
1,3(t/T ) (black), ĉP

1,3(t/T ) (red); bottom left: c̃1,3(t/T ) (black), c̄
(h)
1,3(t/T ) (green),

c̄
(s)
1,3(t/T ) (blue); bottom right: c̃P

1,3(t/T ) (black), c̄
P,(h)
1,3 (t/T ) (green), c̄

P,(s)
1,3 (t/T ) (blue).
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window. In our example below, T = 2048 and n = 1024.

2. For each sub-sequence {Xt,T }k+n−1
t=k , with k = 1, . . . , T − n + 1, compute its bias-

corrected volatility matrix estimate Σ̃k(t/n) (for clarity, we skip the superscript P for
the polarised version) and record its value at the “last” time point t = n, denoting it
by Σ̃k.

3. Normalise Σ̃k so that it becomes a correlation matrix, denoted by ˜̃Σk.

4. Threshold the off-diagonal elements of ˜̃Σk by λ1, denoting the result by ˜̃Σ
(s)
k (λ1)

( ˜̃Σ
(h)
k (λ1)) if soft (hard) thresholding is used. We shall use the soft thresholding

example from now on.

5. Denote by wi
k the proportion of funds, allocated to each of the assets i = 1, . . . , p at

time k = n, . . . , T . After removing the effect of the marginal volatilities ci,i(u) and
setting the expected return of each asset to zero, Markowitz portfolio theory states that
the optimal weights wi

k should be proportional to the inverse of the correlation matrix

at time k, acting on a column vector of ones. We estimate this by ŵi
k = (˜̃Σ

(s)
k (λ1))

−11,
where 1 is a column vector of ones.

6. For each k, inspect the estimated weights ŵi
k and investigate whether they satisfy the

desired practical constraints. For example, it may be desirable to the analyst to avoid
large relative positions on any particular market, in which case the analyst may wish
to monitor the quantity Wk = maxi |ŵi

k/
∑p

j=1 ŵj
k|. Note that due to the continuity of

the soft thresholding operation, Wk converges to 1/p as λ1 → 1, i.e. as the correlation
matrix becomes closer and closer to the diagonal, the allocation of assets becomed
closer and closer to uniform. It may be of interest to e.g. select the lowest value of
λ1 for which Wk does not exceed a fixed multiple of 1/p. This is a type of “exposure
constraint”, a different form of which was also discussed e.g. in Fan et al. (2008b).

In the following example, k runs over the 1025 trading days up to 10 March 2010. The top
row in Figure 4 shows the sequence Wk for the non-polarised estimator (left, λ1 = 0.5) and
for the polarised one (right, λ1 = 0.7). In either case, we chose the lowest value of λ1 (in
multiples of 0.1) such that Wk stays under 0.2 for all k. Note that since p = 10, if assets
were allocated uniformly, each weight would equal 0.1. Thus, in this case, we make sure
that the maxiumum funds allocation for each asset does not exceed twice the amount for
the uniformly allocated portfolio.

The middle row shows the minimum eigenvalue of ˜̃Σ
(s)
k (λ1) for the non-polarised estimator

(left) and the polarised one (right). Note that this quantity would equal one if all cross-asset
correlations were zero.

Finally, the bottom row shows the proportion of zeros in each matrix ˜̃Σ
(s)
k (λ1). Roughly

speaking, the period between k = 600 and k = 800 corresponds to the most severe phase of
the recent financial crisis. It is interesting to note the decline in the proportion of zeros over
that period (which is more evident for the non-polarised estimator than for the polarised
one). This again serves as evidence for the common wisdom that markets tend to become
more correlated to each other in times of crises.
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Figure 4: Top row: Wk for the non-polarised estimator (left) and polarised (right). Middle

row: minimum eigenvalues of ˜̃Σ
(s)
k (λ1) for the non-polarised estimator (left) and polarised

(right). Bottom row: proportions of zeros in matrix ˜̃Σ
(s)
k (λ1) for the non-polarised estimator

(left) and polarised (right).
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A Proofs

Proof of Theorem 3.1. Note that c̄
(h)
i,l (t/T ) will be constant if and only if all |f (i,l)

j,k | fall
under the threshold λ. Using the Bonferroni inequality, we have

P





J∗

⋃

j=0

2j
⋃

k=1

{|f (i,l)
j,k | > λ}



 ≤
J∗

∑

j=0

2j
P

(

|f (i,l)
j,k | > λ

)

≤ max
j

P

(

|f (i,l)
j,k | > λ

)

CT 1−δ, (6)

where C,C1, C2, . . . are generic fixed positive constants throughout the proof. We now find
a bound for the right-hand side term under the assumption that λ ≤ C

√
log T . Of course

the same bound will be also valid for higher values of λ. Assessing first the probability
term, we have

P

(

|f (i,l)
j,k | > λ

)

= P

(

|d(i,l)
j,k | > λ

√

1 + (s̃
(i,l)
j,k )2

∣

∣

∣ |s̃(i,l)
j,k − ci,l| < δ̃j

)

P(|s̃(i,l)
j,k − ci,l| < δ̃j)

+ P

(

|d(i,l)
j,k | > λ

√

1 + (s̃
(i,l)
j,k )2

∣

∣

∣
|s̃(i,l)

j,k − ci,l| ≥ δ̃j

)

P(|s̃(i,l)
j,k − ci,l| ≥ δ̃j).

By the convexity of u(x) = 1 + x2,

1 + (s̃
(i,l)
j,k )2 ≥ 1 + c2

i,l + 2ci,l(s̃
(i,l)
j,k − ci,l) ≥ 1 + c2

i,l − 2|ci,l||s̃(i,l)
j,k − ci,l|.

Using this, we bound the above by

P

(

|d(i,l)
j,k | > λ

√

1 + c2
i,l − 2|ci,l|δ̃j

)

+ P(|s̃(i,l)
j,k − ci,l| ≥ δ̃j) =: I + II.

Starting with I, we have

I = P





|d(i,l)
j,k |

√

1 + c2
i,l

> λ

√

√

√

√

1 + c2
i,l − 2|ci,l|δ̃j

1 + c2
i,l



 . (7)

Since εi,t are Gaussian, there exist K > 0, γ ≥ 0 such that

E





∣

∣

∣

∣

∣

∣

εi,tεl,t − ci,l
√

1 + c2
i,l

∣

∣

∣

∣

∣

∣

n

 ≤ Kn−2(n!)1+γ ∀n ≥ 3.

uniformly over ci,l ∈ [−1, 1]. Because of this, we are able to apply Theorem 1 and the
Corollary underneath it from Rudzkis et al. (1978). In the notation of that paper, computing

first the quantity ∆, we get ∆ = 2
J−j

2 /(2max{K, 1}). Since λ is logarithmic in T , δ̃j → 0

uniformly over j (details below) and 2
J−j

2 ≥ T
δ
2 , we have that

λ

√

√

√

√

1 + c2
i,l − 2|ci,l|δ̃j

1 + c2
i,l

= o

({

2
J−j

2

2max{K, 1}

}a)

, as T → ∞,

uniformly over j, for all a > 0. By Theorem 1 from Rudzkis et al. (1978), we uniformly
bound (7) from above by the Gaussian tail probability

C exp

{

−λ2

2

(

1 + c2
i,l − 2|ci,l|δ̃j

1 + c2
i,l

)}

.
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Turning now to II, we have

II = P





2(J−j)/2|s̃(i,l)
j,k − ci,l|

√

1 + c2
i,l

≥ 2(J−j)/2δ̃j
√

1 + c2
i,l



 (8)

The random variable on the LHS of the argument of the probability function in (8) is
almost the same as that in (7), except some different signs in the sum, which have no
impact on our bounds. So, it is boundable by the corresponding Gaussian tail probability
under exactly the same conditions as I. In fact, we can choose δ̃j to be such that the
thresholds in (7) and (8) are exactly the same, so that there is an exact match between the
convergence rates. Equating the thresholds, we get λ2(1 + c2

i,l − 2|ci,l|δ̃j) = 2J−j δ̃2
j , which

gives δ̃j = 2j−Jλ
(√

λ2c2
i,l + 2J−j(1 + c2

i,l) − λ|ci,l|
)

. Since λ is logarithmic in T , δ̃j is of

order O(T−α) for α > 0 uniformly over j. Thus, we bound I + II from above by

I + II = 2 I ≤ 2C exp

{

−λ2

2

(

1 + c2
i,l − 2|ci,l|δ̃j

1 + c2
i,l

)}

= 2C exp

{

−λ2

2

}

exp

{

λ2|ci,l|δ̃j

1 + c2
i,l

}

≤ C1 exp

{

−λ2

2

}

.

Substituting this in (6), we bound it by C2T
1−δ exp(−λ2/2). Thus, using the Bonferroni

inequality again, the probability of f
(i,l)
j,k not exceeding λ uniformly over all j, k, i, l can be

bounded from above by C3p
2T 1−δ exp(−λ2/2). Bounding this by the sequence C3ap,T , we

have

λ ≥
√

2

(

2 log p + (1 − δ) log T + log
1

ap,T

)

,

which proves the constancy of our estimator Σ̄(h) with the required probability, for the range
of λ’s as in the statement of the Theorem.

We now show that c̄
(h)
i,l is zero if the true covariance ci,l is zero, uniformly over i, l, with the

required probability. Under the scenario that all |f (i,l)
j,k | ≤ λ, this is equivalent to showing

that s̃
(i,l)
0,1 > λ1 for any i, l with probability not exceeding a multiple of ap,T . Using the same

technique as above, for a fixed (i, l) we bound P(|s̃(i,l)
0,1 | > λ1) ≤ C4 exp(−λ2

1T/2). Thus,
using the Bonferroni inequality again, we have

P(∃ i, l |s̃(i,l)
0,1 | > λ1) ≤ C5p

2 exp(−λ2
1T/2).

Bounding this by C5ap,T , we obtain

λ1 ≥
√

2T−1

(

2 log p + log
1

ap,T

)

. (9)

Finally, we show that applying such a threshold λ1 does not ruin the estimation of ci,l in

the case ci,l 6= 0. Under the scenario that all |f (i,l)
j,k | ≤ λ, this is equivalent to showing that
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s̃
(i,l)
0,1 < λ1 for any i, l with probability not exceeding a multiple of ap,T . For a fixed (i, l),

we have

P(|s̃(i,l)
0,1 | < λ1) = P(|s̃(i,l)

0,1 − ci,l| > |ci,l| − λ1)

≤ P





√
T |s̃(i,l)

0,1 − ci,l|
√

1 + c2
i,l

>

√
T (|ci,l| − λ1)
√

1 + c2
i,l



 .

Assuming that the threshold on the RHS is so low that the normal approximation still works
(it is sufficient to consider this as this is the worst-case scenario), we bound the above by

C6 exp

{

−T (|ci,l| − λ1)
2

2(1 + c2
i,l)

}

≤ C6 exp

{

−T (|ci,l| − λ1)
2

4

}

. (10)

To obtain a uniform bound across the entire matrix, we first find the number of non-zero
ci,l’s. Recalling that Σ ∈ U(c0(p)), we have

∑

i

∑

l

I(ci,l 6= 0) ≤
∑

i

max
i

∑

l

I(ci,l 6= 0) ≤ pc0(p).

Thus, by the Bonferroni inequality, we have

P(∃ i, l |s̃(i,l)
0,1 | < λ1) ≤ C6pc0(p) exp

{

−
T minci,l 6=0(|ci,l| − λ1)

2

4

}

.

Bounding the above by C6ap,T , we get

2

√

log p + log c0(p) + log 1
ap,T

T
+ λ1 ≤ min

ci,l 6=0
|ci,l|,

which is satisfied as the LHS has a lower order of magnitude than the RHS by the assump-
tions of the Theorem. This completes the proof of statement (a) of the Theorem.

For the proof of statement (b), we first calculate the error in estimating the non-zero entries.
Proceeding like above, we have

P( max
i,l:ci,l 6=0

|c̄(h)
i,l − ci,l| > λ3) ≤ pc0(p)max

i,l
P(|s̃(i,l)

0,1 − ci,l| > λ3)

= pc0(p)max
i,l

P





√
T |s̃(i,l)

0,1 − ci,l|
√

1 + c2
i,l

>

√
Tλ3

√

1 + c2
i,l





≤ C7pc0(p)max
i,l

exp

(

− Tλ2
3

2(1 + c2
i,l)

)

≤ C7pc0(p) exp

(

−Tλ2
3

4

)

.

Equating this to C7ap,T , we get

λ3 = 2

√

log p + log c0(p) + log 1
ap,T

T
,
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which shows that the maximum error is λ3 with the required large probability. On the other
hand, we have shown above that our estimator has a zero error for ci,l = 0, uniformly over
the entire matrix with probability at least 1−C1ap,T . Putting together these two facts, we
bound

‖Σ̄(h) − Σ‖ ≤ max
l

∑

i

|c̄(h)
i,l − ci,l| = max

l

∑

i

|c̄(h)
i,l − ci,l|I(ci,l 6= 0) ≤ λ3c0(p)

= 2c0(p)

√

log p + log c0(p) + log 1
ap,T

T
,

which completes the proof of statement (b) of the Theorem.

Finally, statement (c) follows since ‖(Σ̄(h))−1 − Σ−1‖ is of the same order as ‖Σ̄(h) − Σ‖
uniformly over the class U(c0(p), ǫ0), as in the proof of Theorem 1 in Bickel and Levina
(2008). �

Proof of Theorem 3.2. Note that by definition, c̄
(s)
i,l (t/T ) = sign(c̄

(h)
i,l (t/T ))max(|c̄(h)

i,l (t/T )|−
λ1, 0). However, by the proof of Theorem 3.1, if ci,l 6= 0, then P(∃i,l |c̄(h)

i,l | < λ1) ≤ C6ap,T .
This proves statement (a). For the proof of statement (b), assume without loss of generality

that c̄
(h)
i,l > 0, we then have c̄

(s)
i,l = c̄

(h)
i,l − λ1. As in the proof of Theorem 3.1, we compute

P( max
i,l:ci,l 6=0

|c̄(s)
i,l − ci,l| > λ4) ≤ P( max

i,l:ci,l 6=0
|c̄(h)

i,l − ci,l| > λ4 − λ1),

which leads to

λ4 = 2

√

log p + log c0(p) + log 1
ap,T

T
+ λ1,

and thus to

‖Σ̄(s) − Σ‖ ≤ c0(p)



2

√

log p + log c0(p) + log 1
ap,T

T
+ λ1



 ,

which completes the proof of statement (b). The proof of statement (c) is identical to that
in the proof of Theorem 3.1. �

Proof of Theorem 3.3. If there is a breakpoint in ci,l(u) to the left of u1, then, denoting
2−j0 = |J 1

i,l| and decomposing the sampled version of ci,l(u) via a discrete Haar wavelet

decomposition over the interval T J 1
i,l at scales j ≥ j0, we obtain the following:

• Only up to one coefficient at each scale j is non-zero.

• By (4) and due to the orthonormality of the discrete Haar transform, the sum of the
squared Haar coefficients from this decomposition is at least C3 T 1−β.

• At each scale j, the only possibly non-zero squared Haar coefficient is at most of
order 2J−j , where the constants of proportionality are uniform over the entire matrix
since |ci,l(u)| ≤ 1. Thus the sum of squared coefficients over the “ignored” scales
J∗ + 1, . . . , J − 1 is of order O(2J−J∗

) = O(T δ) ≤ C4 T δ.
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• Thus, the sum of squared Haar coefficients over the non-ignored scales j0, . . . , J
∗ must

be at least C3 T 1−β − C4 T δ ≥ C5 T 1−β .

• Therefore, the largest non-squared Haar coefficient must be of magnitude of at least
C6T

1/2−β/2 log−1/2 T , since there are at most log2 T decomposition scales. Denote by
j1(i, l) the scale at which the largest coefficient occurs, and note that j0 ≤ j1(i, l) ≤ J∗.
Similarly denote its location by k1(i, l).

We wish to investigate if the coefficient f
(i,l)
j1(i,l),k1(i,l)

survives thresholding. If it does, then

with probability one, there will be a breakpoint in c̃i,l(u) at u = u0 where u0 is the right
endpoint of J 1

i,l; thus, there will be a breakpoint in c̃i,l(u) located between the interval I
and its nearest breakpoint to the left. But, using exactly the same technique as in the proof
of Theorem 3.1, we can show

P(∃ i, l |f (i,l)
j1(i,l),k1(i,l)

| < λ) ≤ C7ap,T .

Moreover, since all coefficients f
(i,l)
j,k computed over the interval of constancy TI fall under

the threshold λ with probability at least 1 − C8ap,T (by Theorem 3.1), we have that

∀i,l c̃i,l(I) =
1

|TKi,l|
∑

t∈TKi,l

Xi,t,T Xl,t,T ,

for a certain Ki,l ⊇ I where ci,l(I) = ci,l(Ki,l), holds with probability at least 1 − C8ap,T .

Therefore, we have a similar situation to the framework of Theorem 3.1, where all c̃i,l(u)
were, with probability at least 1 − C8ap,T constant with u and equal to the sample means
of {Xi,t,T Xl,t,T }T

t=1. Here, the same kind of constancy holds but locally: all c̃i,l(u) are
constant for u ∈ I and each equals a sample mean of {Xi,t,T Xl,t,T }t∈Ki,l

where Ki,l ⊇ I.
Thus, reproducing the argument of Theorem 3.1, we can show that with probability at least

1 − C9ap,T , we have that c̄
(h)
i,l (I) = 0 for all those i, l for which ci,l(I) = 0 if

λ1 ≥
√

2T−1|I|−1(2 log p + log
1

ap,T
).

Similarly, with probability at least 1 − C10ap,T , we have that c̄
(h)
i,l (I) = c̃i,l(I) for all those

i, l for which ci,l(I) 6= 0 if

λ1 ≤ min
ci,l(I)6=0

|ci,l(I)| − 2

√

log p + log c0(p) + log 1
ap,T

T |I| .

This completes the proof of statement (a). The proofs of statements (b) and (c) proceed
analogously to those of the corresponding statements in Theorem 3.1 by recalling that
|Ki,l| ≥ |I| and replacing T with T |I| where appropriate. �

Proof of Theorem 3.4. The proof proceeds along similar lines to the proof of Theorem
3.2 and hence we omit the details. �
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