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Deterministic Optimisation

Deterministic optimisation model:

minimise
x

f (x , ξ)

subject to g(x , ξ) ≤ 0,

where

• x are decision variables

• ξ are (precisely known) parameters

Real world is uncertain. Why not use ξ = E
[
ξ̃
]
?



Deterministic Optimisation

Image Source: Sam L. Savage, Stanford University

alive (E [position]) = true, but E [alive (position)] = false!



Deterministic Optimisation
Portfolio optimisation:

wealth (E [stock returns]) vs. E [wealth (stock returns)]
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Stochastic Programming

Two-stage stochastic program:

minimise
x,y

f (x) + E [q(y(ξ); x , ξ)]

subject to x ∈ X ,

y(ξ) ∈ Y(x , ξ) P-a.s.

x ∈ X

ξy(ξ) ∈ Y(x , ξ)

f (x) q(y(ξ); x , ξ)



Stochastic Programming

Multi-stage stochastic program: several recourse decisions

• capacity expansion: several investment stages

• production planning: annual production plan (seasonalities)

• portfolio optimisation: rebalancing, asset & liability mgmt.

• . . .

...
x

ξ1 ξ2

y1(ξ1)

f (x) q1(y1(ξ1); x , ξ1)

y2(ξ1, ξ2)

q2(y2(ξ1, ξ2); x , ξ1, ξ2)
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Scenario-Based S.P.

Discretise distribution: into scenarios

minimise
x,y

f (x) +
∑

s∈S

ps q(ys; x , ξs)

subject to x ∈ X ,

ys ∈ Y(x , ξs) ∀s ∈ S.

x ∈ X

ξ

y(ξ1)

y(ξ2) y(ξ2)

y(ξ3)

f (x)

q(y(ξ2); x , ξ2)



Scenario-Based S.P.
Portfolio optimisation:

today tomorrow



Scenario-Based S.P.
Multi-stage stochastic program:

Solution time:
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Linear Decision Rules1

Step 1: linearise decision rule

minimise
x,Y , y

f (x) + E [q(Y ξ + y ; x , ξ)]

subject to x ∈ X ,

Y ξ + y ∈ Y(x , ξ) P-a.s.

Y ξ

Y2

Y1

ξ2

ξ1

x ∈ X

ξY ξ + y ∈ Y(x , ξ)

f (x) q(Y ξ + y ; x , ξ)

1Ben-Tal et al., Math. Programming, 2004.



Linear Decision Rules

Step 2: reformulate semi-infinite P-a.s. constraint

for Y(x , ξ) = {y(ξ) : y(ξ) ∈ [0, 5]}:

}
Ξ

0

5

10

10

y0 ≥ 10 [−Y1]
+ + 10 [−Y2]

+

y0 ≤ 5 − 10 [Y1]
+ − 10 [Y2]

+

If Y (conic) convex: can be achieved by duality theory!



Linear Decision Rules
Example problem:

• three factories produce single good, one warehouse

• limited per-period production and storage capacities

• demand uniformly distributed among known nominal demand

• nominal demand seasonal: dt = 1,000 ×
(

1 + 1
2 sin

[
π(t−1)

12

])
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Bounding the Optimality Gap2

So far: obtained upper bound on optimal value via restriction from
general to linear decision rules

Idea: obtain lower bound on optimal value to bound suboptimality

2Kuhn et al., Math. Programming, 2010.



Bounding the Optimality Gap

Step 1: dualise stochastic program with general decision rules

Result: dual stochastic program with general decision rules



Bounding the Optimality Gap

Step 2: restrict dual stochastic program to linear decision rules

Result: dual stochastic program with linear decision rules allows us
to bound incurred suboptimality



Example Problem Revisited
Example problem:

• three factories produce single good, one warehouse

• limited per-period production and storage capacities

• demand uniformly distributed among known nominal demand

• nominal demand seasonal: dt = 1,000 ×
(

1 + 1
2 sin

[
π(t−1)

12

])
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Piecewise Linear Decision Rules3

Linear decision rules can fail:

minimise
y

E [y(ξ)]

subject to y(ξ) ≥ ‖ξ‖1 P-a.s.

where ξ ∼ U [−1, 1]k .

Remedy: use piecewise linear decision rules instead

3Goh & Sim, Oper. Research, 2010; Georghiou et al., Optimization Online, 2010.



Piecewise Linear Decision Rules
Piecewise linear decision rule ≡ linear decision rule in lifted space:

}
ξξ ξ̂ξ̂ ξ

y1

y1
y2

y2

ΞΞ

y0y0

y(ξ) y(ξ̃)

ξ − ξ̂

y(ξ) = y0 + y1

(
min

{
ξ, ξ̂

}
− ξ

)

+ y2

(
max

{
ξ, ξ̂

}
− ξ̂

)
y(ξ̃) = y0 + y1ξ̃1 + y2ξ̃2

where ξ̃ =


min

{
ξ, ξ̂

}
− ξ

max
{
ξ, ξ̂

}
− ξ̂






Piecewise Linear Decision Rules
Example problem: capacity expansion of a power grid

• 10 regions with uncertain demand
• 5 power plants with known capacity, uncertain operating costs
• 24 transmission lines with known capacity
• goal: meet demand at lowest expected costs, via

• capacity expansion plan (here-and-now)
• plant operating policies (wait-and-see)
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Capacity Expansion in Power Systems

Multiple time scales:

Decades Years

Hours Milliseconds

construct

power plants &

transmission lines

schedule

inflexible plants
schedule

flexible plants

Time to delivery

Days

power flows

Nonrenewable energy sources: Natural gas, coal-fired
Renewable energy sources: Solar and wind power



Capacity Expansion in Power Systems

Four-stage stochastic program:

Objective: minimise investment costs + expected operating costs
over next 30 years

Decades Years

Hours Milliseconds

investment
decisions

operating
decisions

(long−lead)

operating
decisions

(short−lead)

Time to delivery

Days

power flows

line failures

forecasts of:
fuel prices

demand, wind,
irradiation 

realisations of:
fuel prices

demand, wind,
irradiation 



Optimisation Model

minimise
∑

n∈Nc

cnun +
∑

m∈Mc

dmvm + E

(

∑

n∈N
γngn

)

subject to
gn Fl -measurable ∀n ∈ Nl
gn Fs-measurable ∀n ∈ Ns
fm F-measurable ∀m ∈ M
un ∈ {0, 1}, vm ∈ {0, 1} ∀n ∈ N, ∀m ∈ M
un = 1 ∀n ∈ Ne
vm = 1 ∀m ∈ Me
0 ≤ gn ≤ gnun ∀n ∈ N
gn ≤ ζn ∀n ∈ Nr

|fm| ≤ ϕmf mvm ∀m ∈ M
∑

n∈N(k)
gn −

∑

m∈M
−

(k)
fm +

∑

m∈M+(k)
fm ≥ δk ∀k ∈ K



































































P-a.s.



Existing Infrastructure

Power system: 265 buses, 429 transmission lines



Extension Options
Possible additions: 217 power plants, 81 transmission lines

Existing Power Plants
Candidate Power Plants



Results

Solution time: 2.5 hours
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