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Deterministic Optimisation

Deterministic optimisation model:
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subjectto  g(x,€) <0,

where
e X are decision variables
e ¢ are (precisely known) parameters

Real world is uncertain. Why not use £ = E[ ¢ |?



Deterministic Optimisation

Image Source: Sam L. Savage, Stanford University

aive(E [position]) = true, but [E [alive (position)] = false!



Deterministic Optimisation
Portfolio optimisation:
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Stochastic Programming

Two-stage stochastic program:

minimise  f(x) +Efa(y(¢):x, )]
subjectto  x € X,
y(§) € Y(x,§) P-as.
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Stochastic Programming

Multi-stage stochastic program: several recourse decisions
capacity expansion: several investment stages

production planning: annual production plan (seasonalities)
portfolio optimisation: rebalancing, asset & liability mgmt.
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Scenario-Based S.P.

Discretise distribution: into scenarios
minimise  f(x) + > psq(y%;x,£%)
seS
subjectto  x € X,
ys e Y(x,£%) VseS.
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Scenario-Based S.P.

Portfolio optimisation:
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Scenario-Based S.P.

Multi-stage stochastic program:
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Linear Decision Rules?

Step 1: linearise decision rule Y¢
miniYmise f(X)+E[a(YE+y:x,8)]
XY,y
subjectto x € X, S
Yé+y € Y(x, &) P-as.
i —>
XxedkX &
=
J o veryerxy J
f(x) a(YE+yix,6)

1Ben-Tal et al., Math. Programming, 2004.



Linear Decision Rules
Step 2: reformulate semi-infinite P-a.s. constraint

for Y(x, &) ={y (<) : y(£) € [0,5]}:

A

Yo > 10[-Y4]" +10[-Y2]"
Yo <5—10[Y4]" —10[Y,]"

If ¥ (conic) convex: can be achieved by duality theory!



Linear Decision Rules
Example problem:
three factories produce single good, one warehouse
limited per-period production and storage capacities
demand uniformly distributed among known nominal demand

nominal demand seasonal: d; = 1,000 x (1 + %sin [”(tl;l)})
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Bounding the Optimality Gap?

So far: obtained upper bound on optimal value via restriction from
general to linear decision rules

objective value

linear decision rules
P, >

| >

general decision rules

Idea: obtain lower bound on optimal value to bound suboptimality

2Kuhn et al., Math. Programming, 2010.



Bounding the Optimality Gap

Step 1: dualise stochastic program with general decision rules

dual problem: primal problem:
maximisation minimisation

>0 <

1

duality theory: under certain regularity conditions,
optimal values of primal and dual problems coincide!

objective
value

Result: dual stochastic program with general decision rules



Bounding the Optimality Gap

Step 2: restrict dual stochastic program to linear decision rules

bound on optimality gap

11
11 |
| €
| linear decision rules

< »

<€ >
general decision rules

dual gap primal gap

Result: dual stochastic program with linear decision rules allows us
to bound incurred suboptimality



Example Problem Revisited
Example problem:
three factories produce single good, one warehouse
limited per-period production and storage capacities
demand uniformly distributed among known nominal demand

nominal demand seasonal: d; = 1,000 x (1 + %sin [”(;EI)D
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Piecewise Linear Decision Rules?

Linear decision rules can fail:

mi niymise Ey(¢)]

subjectto  y(¢) > ¢, P-as.

where { ~ U [—1, 1]k.

Remedy: use piecewise linear decision rules instead

H &

3Goh & Sim, Oper. Research, 2010; Georghiou et al., Optimization Online, 2010.




Piecewise Linear Decision Rules
Piecewise linear decision rule = linear decision rule in lifted space:
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Piecewise Linear Decision Rules

Example problem: capacity expansion of a power grid
10 regions with uncertain demand
5 power plants with known capacity, uncertain operating costs
24 transmission lines with known capacity
goal: meet demand at lowest expected costs, via

e capacity expansion plan (here-and-now)

e plant operating policies (wait-and-see)
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Capacity Expansion in Power Systems

Multiple time scales:

Decades Time to delivery
A -
»
construct
power plants & Days -
transmission lines Hours Milliseconds
AR schedule
i 5 . ; schedule
nftexible plants —ge.iple plants power flows

o

Nonrenewable energy sources: Natural gas, coal-fired
Renewable energy sources: Solar and wind power



Capacity Expansion in Power Systems

Four-stage stochastic program:

Objective: minimise investment costs + expected operating costs
over next 30 years

Decades Time to delivery

Days H

ours Milliseconds
_ operating operating
.Zvegt;nent . decisions » decisions » power flows
lecisions (long-lead) (short-lead)

* * *

forecasts of: realisations of:
fuel prices fuel prices Jine fail
demand, wind, demand, wind, AT P

irradiation irradiation



Optimisation Model

minimise ~ >" caun+ > dmVm + E ( > "/ngn>

neNe meM¢ neN
subject to

gn JFj-measurable vn € N

gn Fs-measurable vn € Ns

fm F-measurable vYmeM

up € {0,1}, vm € {0,1} vneN, VmeM

un =1 vn € Ne

Vm =1 vm € Me P-as.

0 < gn <Gpun vneN

On < ¢n vn € Ny

[fm] < omfmvm vm e M
on— > fm+ X fm>d VkeK

neN(k) meM_ (k) meM; (k)




Existing Infrastructure

Power system: 265 buses, 429 transmission lines

2

Node #199: Samos

Coordinates: 37.716 N, 26.77 E
Average demand: 3917.1 MWh
Existing generators:

# Oil Generators: 2, Capacity: 51.65MW
Candidate generators:

# Wind Generators: 2, Capacity: 65MW
# Solar Generators: 2, Capacity: SMW
View graphs



Extension Options

Possible additions: 217 power plants, 81 transmission lines

Existing Power Plants
@ Candidate Power Plants



Results

DA
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