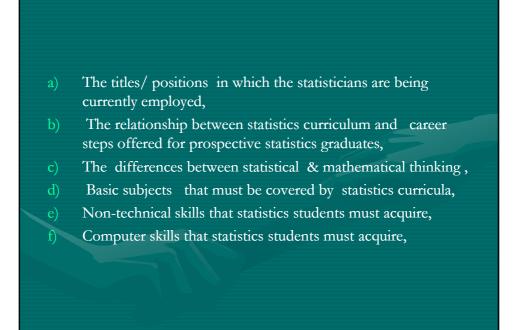

Introduction

The discussions on statistics education were intensified especially at the end of nineties in United States of America. In this respect, some means were taken into consideration to develop statistics education both in undergraduate and graduate levels. Some debates were realized to evaluate the quality of statistics courses both offered in statistics departments and in other departments demanding statistics as service courses. In these debates, the skills that graduates of statistics should acquire were also under investigation

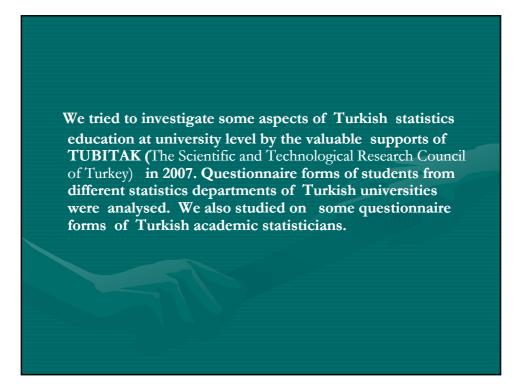
Besides,


- the relative weights of theoretical courses and applied courses in programs,
- the content and the quality of mathematics courses offered in statistics curriculum,
- feasibilities of collaboration with some departments including mathematics,
- the affects of technology on statistics education were the other items on the agenda.


Minton (1983), in his article "The Visibility of Statistics as a Discipline" emphasizes that any systematic way of research is called as a "discipline" if it satisfies the following requirements:

It is sure that statistics satisfied these requirements totally at the beginning of 20th century. Nevertheless Minton emphasizes that statistics was not then called as a discipline since there were not enough number of statistics departments providing career opportunities for the young candidates of universities. For more than 20 years, ASA (American Statisticians Association) has been organising meetings and symposiums to evaluate the quality of statistics education throughout the world.

In 1999, a meeting held in United States produced a very important document called as "Undergraduate Statistics Education Initiative". It will be useful to list some of the issues considered during this organization:

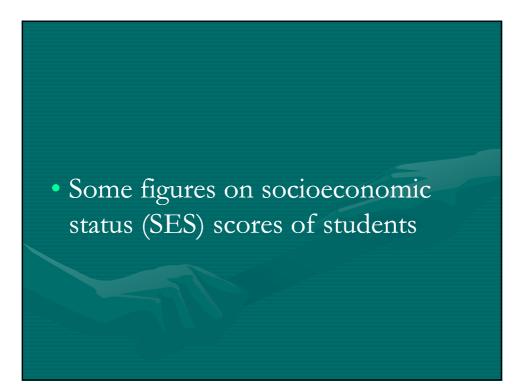


Statistics is a young discipline in Turkey as far as the establishment years of statistics departments are taken into account. In Turkey, the oldest statistics departments were established in 1960's. Using the figures of 2006, there were 25 statistics departments in which about 4300 students were being educated.

In addition, an increasing demand for statistical studies from business life is a fact. Of course this high demand motivates academicians to go into further researches. On the other hand; as a by-product of this rapid growth process ; there are some problems that cannot be vanished easily.

General Conclusions about Students' Appreciations on Turkish University Education in Statistics

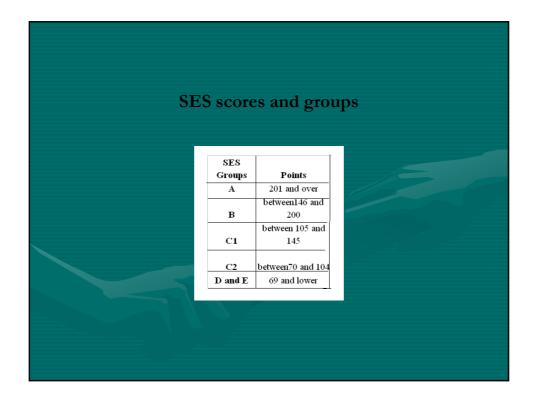
- The number of participating students in this survey was 1794.
- On the average, there were 94 participating students coming from each university.
- One third of the students in the sample were seniors, whereas one fourth were juniors.
- 52 percent of the students in the sample were female.
- There are two types of education modules or programs offered in Turkey. The first module is carried on days, and the second module is on the evenings. 15.9 % of the students in our sample is from the second module.

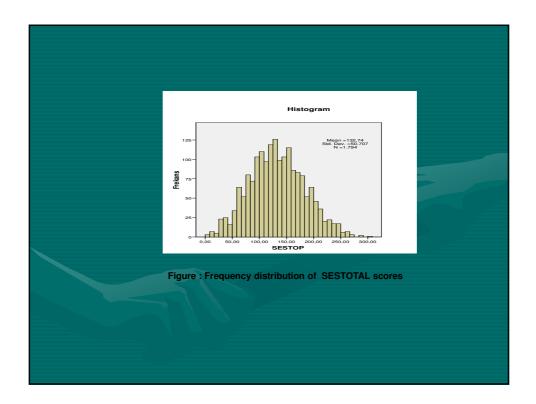

Some cro	oss tabulations
Metropolitan Female 68,65% Male 41,35% Total 100,00% Other - Female 44,64% Male 55,36% Total 100,00%	Chi-Square Tests Value 4symp. SigExact Sig.Exact Sig. Pearson Chi-Squ 35,226 1 .000 Continuity Corres 34,666 1 .000 Likelihood Ratio 35,332 1 .000 Likelihood Ratio 35,332 1 .000 Likelihood Ratio 35,326 1 .000 Not Valid Cases 1 .000 .000

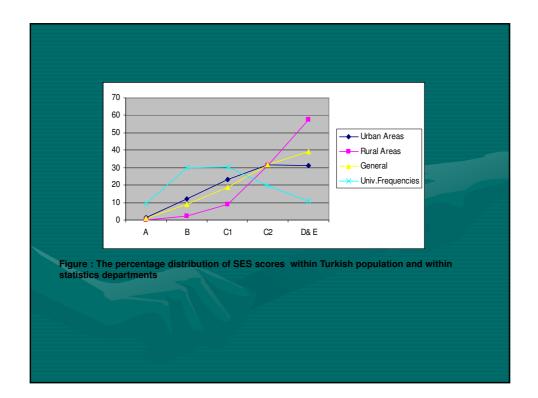
graduated						
Regular H.S. Special H.S. Super H. S. H.S.S. Vocational Private Other Total	Metropolitan 19,10% 46,67% 2,79% 0,86% 4,29% 0,21% 100,00%	Other 43,04% 28,18% 24,41% 0,59% 1,77% 1,42% 0,59% 100,00%				

Some statistics based on the preference lists of students while applying university entering examination

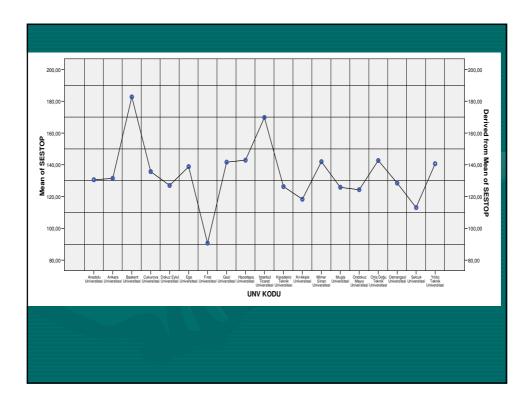
Ranks of Programs in Preference List	Metropolitan Universities	Others
1-5	40,89%	24,47%
6-10	35,99%	28,98%
11-15	16,90%	24,70%
16-20	4,47%	14,13%
21+	1,74%	7,72%
Total	100,00%	100,00%

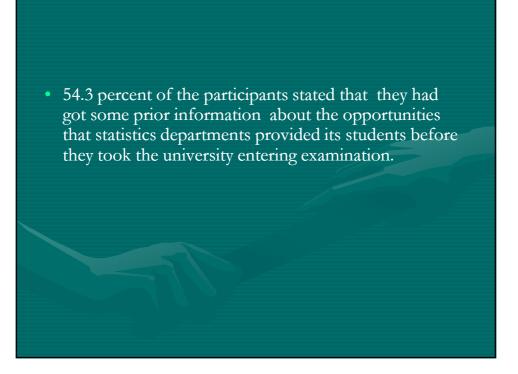

Ch	i-Square 1	ests	=
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Squar	134,495	4	,000
Continuity Correction			
Likelihood Ratio	138,855	4	,000
Linear-by-Linear Association	129,892	1	,000
N of Valid Cases	1759		




• The socioeconomic status (SES) scores of the students were calculated and it was observed that 9% of the students came from the group with the highest income and wealth, 30 % of the students came from the second highest group, and 50 % came from the two middling groups. Of course, these are average figures and SES scores change considerably from one unversity to the other. Nevertheless, it can be concluded that university education is still a problem for poorer classes!

Socio economic Status Groups


- **Group A**: Big capitalists or investors, top managers of private sector, and famous and leading professionals (doctors, lawyers, etc.) are the representatives of this group.
- **Group B**: The new riches of the society, top managers of public sector, big or at least middle-sized entrepreneurs are typical members of this category.
- Group C1: This group consists of professionals, managers, etc.
- **Group C2**: White collars and small entrepreneurs are the typical members of this group.
- **Group D**: Blue collars, semi-qualified or qualified workers are the natural members of this group.
- **Group E:** This group consists of least qualified portion of society. The members are generally manual workers, agricultural workers etc.



12

The distribution of SES scores
Metropolitan Others Total Group A 61,31% 38,69% 100,00% Group B 61,34% 38,66% 100,00% Group C1 52,67% 47,33% 100,00% Group C2 41,38% 58,64% 100,00% Group D&E 36,98% 63,02% 100,00%
Group A Group B Group C1 Group C2 Group D&E Total Metropolitan 11 00% 35 26% 30 56% 15 60% 7 59% 100 00% Others 7 58% 24 24% 29 95% 24 13% 14 10% 100 00%

Attitude Changes Towards Statistics Departments

				registration								
	Metropolitan	Other					Asymp.					
Extremely negative Moderately negative Undecided Moderately positive	3,23% 10,17% 19,74% 54,07%	1,48% 8,37% 23,15% 55,17%			Value	df	(2 sic					
Extremely positive Total	12,80% 100,00%	11,82% 100,00%		Pearson Chi- Square	9,423	4	,05					
				Continuity Correction								
				Likelihood Ratio	9,578	4	,04					
				Linear-by-Linear Association	1,018	1	,31					
				N of Valid Cases	1648							
Metropolitan 65 Other 30	ely negative Moderately negativ ,23% 55,56% ,77% 44,44%),00% 100,00%	re Undecided Moderately po: 46,74% 50,22% 53,26% 49,78% 100,00% 100,00%	tive Extremely positive 52,71% 47,29% 100,00%									

									ture	
p	erspe	ctives	aft	er	gra	adua	tion	1		
	-				0					
	Female	Male				I want to take a	I want to register a	want to no abroad	l want to go abroad	
l plan to work		51,59%				statistics graduate	v		to take a graduate	
I want to take a statistics graduate program	15,42%	9,99%								
I want to register a graduate program other than statistics		18,80%			l plan to work	1.2	other than statistics	foreign language	program	Other
I want to go abroad to improve my foreign language abilities	8,70%	7,99%		Female	47,74%	62,22%	55,68%	53,74%	56,49%	23,64%
l want to go abroad to take a graduate program		6,70%		Male	52,26%	37,78%	44.32%	46,26%	43,51%	76,36%
Other	1,43%	4,94%		Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Total	100,00%	100,00%		TULA	100,00%	100,00%	100,00%	100,00%	100,00%	100,00%
		Chi-Squa	re Tests							
					Asymp. S	Sig.				
		Value		if	(2-sided	<u>.</u>				
	Pearson Chi-S Continuity Co	Square 36,3			(2-sided	i) 100				
		Square 36,3 rrection	331	if	(2-sidec	<u>.</u>				
	Continuity Co	Square 36,3 rrection tio 37,2	331	if 5	(2-sideo ,0 ,0	00				
	Continuity Con Likelihood Ra Linear-by-Line	Square 36,5 rrection tio 37,2 ear ,1	331 249	if 5 5	(2-sideo ,0 ,0	000				

The class identifications and the degree of satisfaction with statistics department

									Freshman	Sophomore	Junior	Senior
1								No	Trestitian	Sobiloulois	JUNIO	Cellin
			Inferior	Mediocre	Superior	Perfect		satisfactio	n 2,91%	5,60%	8,84%	7,71%
		No satisfaction				satisfaction		Inferior	-			
	Freshman	7.56%	11,11%	14,68%	20,83%	24,80%		satisfactio		11,19%	15,30%	15,24%
					20,03 %			Mediocre				24.0004
	Sophomore	19,33%	19,66%	25,69%		19,29%		satsifactio		34,06%	29,31%	31,66%
	Junior	34,45%	30,34%	24,95%	22,89%	28,35%		Superior satisfactio		37.23%	31.03%	33,67%
	Senior	38,66%	38,89%	34,68%	31,96%	27,56%		Perfect	42,00%	01,20,10	51,0576	33,0170
	Total	100,00%	100,00%	100,00%	100,00%	100,00%		satisfactio	n 20,39%	11,92%	15,52%	11,73%
								Total	100,00%	100,00%	100,00%	100,00%
								1			1	
									-			
					Chi-S	quare Test	S					
					v	alue	df	Asymp. Sig. (2-sided)				
			Pears	son Chi-Sq	uare	46,467	12	,000				

12

1

47,794

27,883

1781

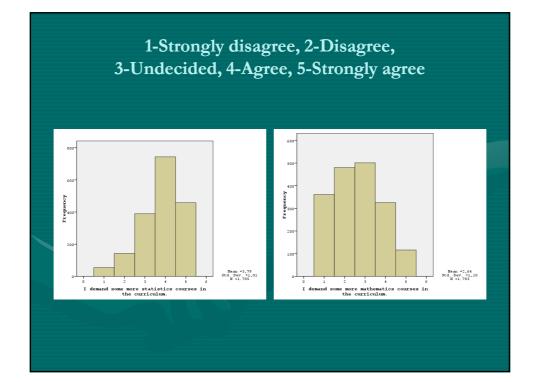
Continuity Correction Likelihood Ratio

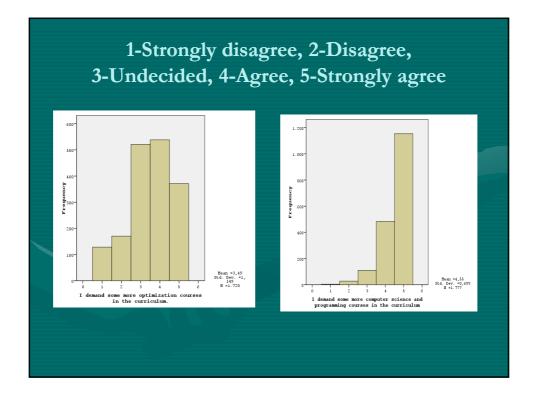
Linear-by-Linear Association

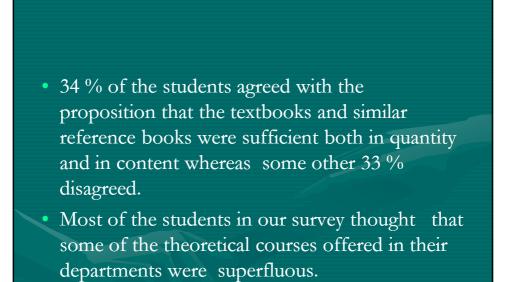
N of Valid Cases

,000

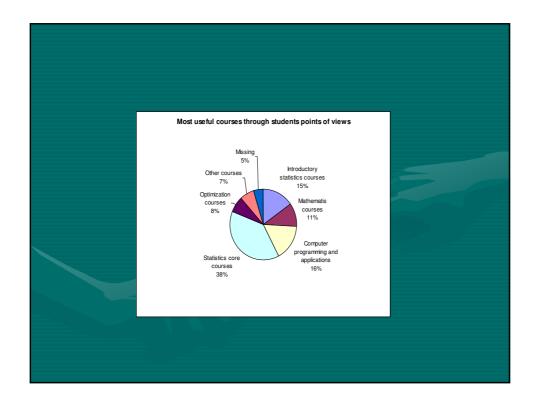
,000

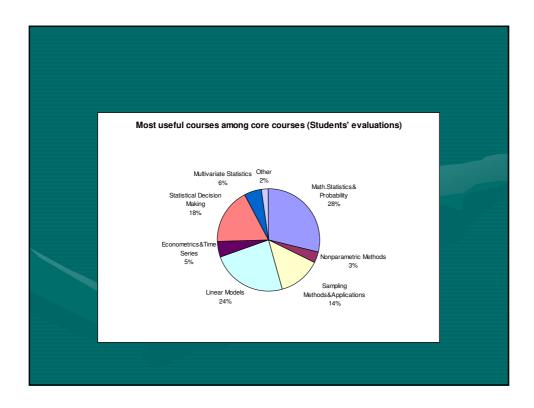

Distrib	utions of o	degre	es c	of satis	facti	onv	vith	the	
		depa	rtn	nent					
		aspe							
	Metropolitan Other								
Extremely dissatisfied	2,78% 8,28%				Extremely			Extremely	
Dissatisfied	6,94% 22,26%	,			dissatisfied	Dissatisfied		Satisfied satisfied	
Undecided	30,02% 36,83%			Metropolitan	26,80%	25,39%	47,07%	66,76% 67,11%	
Satisfied	49,57% 26,92%		_	Other Total	73,20% 100,00%	74,61%	52,93% 100,00%	33,24% 32,89% 100,00% 100,00%	
Extremely satisfied	10,68% 5,71%			Tutai	100,00%	100,00%	100,00%	100,00% 100,00%	
Total	100,00% 100,00%								
Total	100,007	<u></u>							
	C	hi-Square Tes	sts		_				
		Value	df	Asymp. Sig. (2-sided)					
	Pearson Chi-Square	177,458		4 ,000					
	Continuity Correction								
	Likelihood Ratio	182,619		4 ,000					
	Linear-by-Linear Association	157,294		1 ,000					

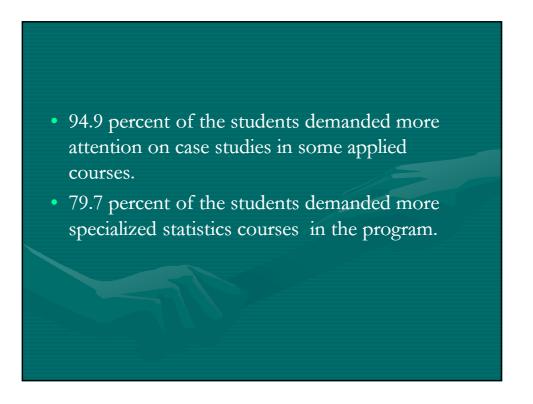

Students' Evaluations on the Performances of Statistics

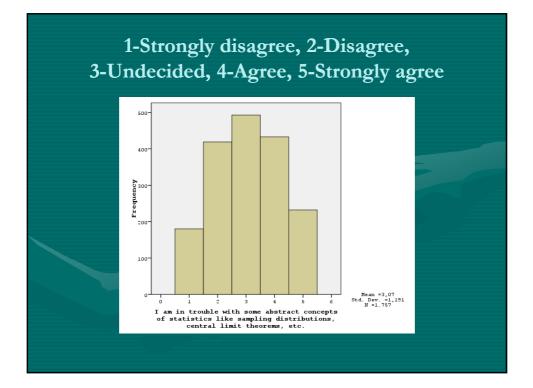

Departments

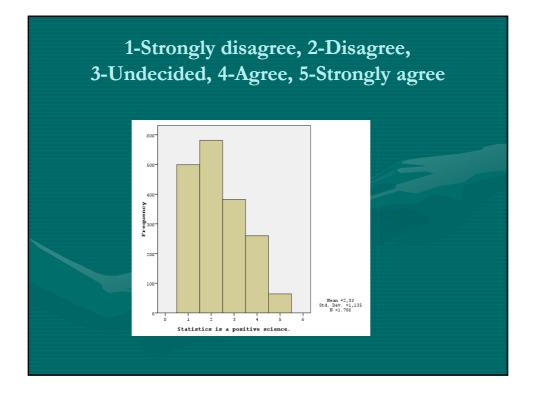
- The majority of the students (65.3 %) of statistics departments thought that the education program was very difficult indeed.
- 71.5 % of the students needed more rigorous mathematics background to keep up with the courses they were taking. In contradiction with this fact, most of the students did not demand more mathematics courses in their statistics curriculum.

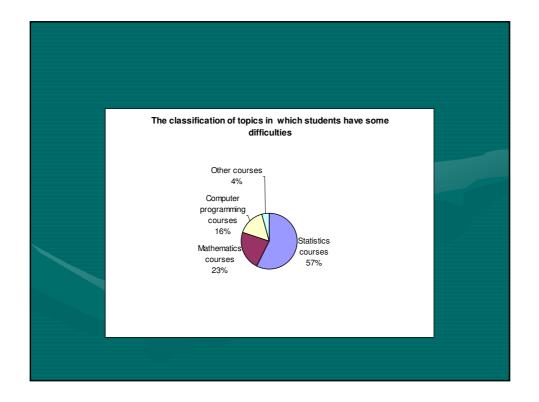


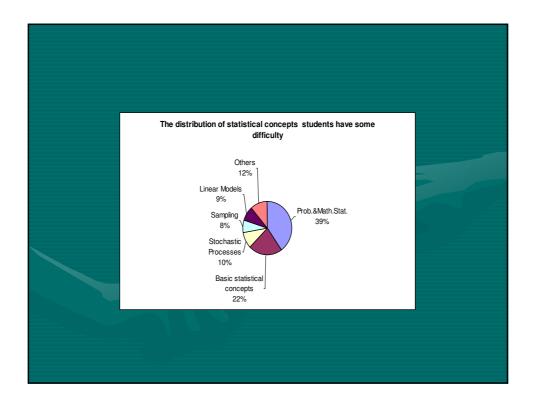


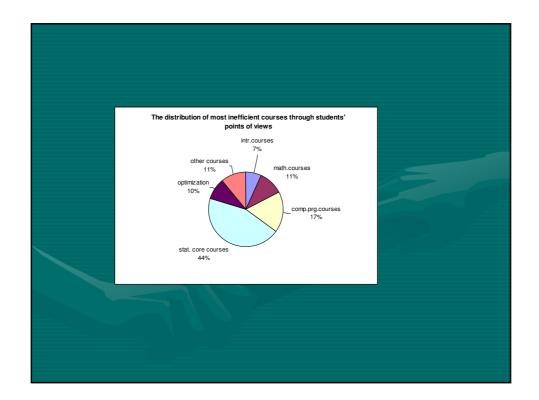


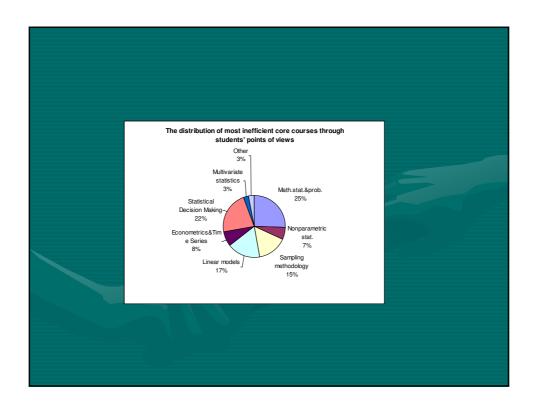


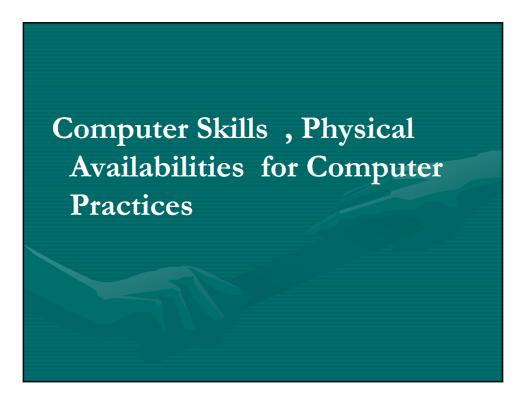


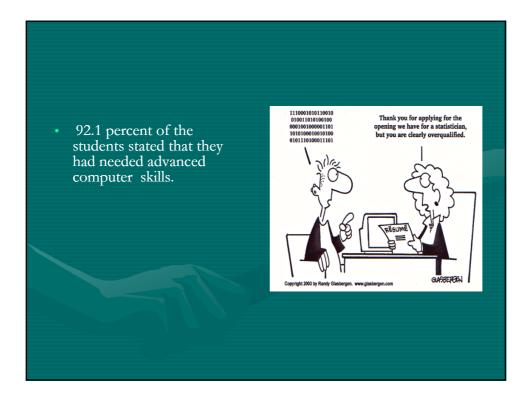


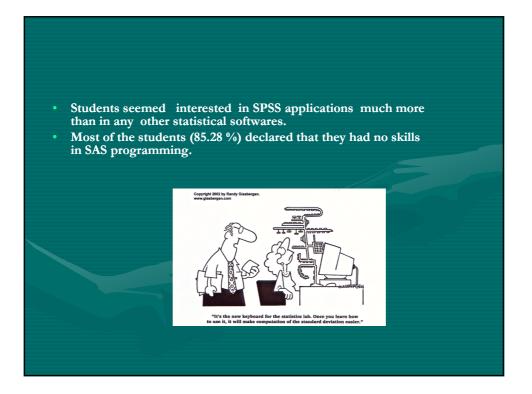

Some of the concepts the students stated that they had experienced difficulty in perception


- Some introductory concepts : Variance, covariance, standard deviation, correlation, type-I and type-II errors, degree of freedom, hypothesis tests, point and interval estimation
- Some probabilistic concepts and theorems : The Central Limit Theorems, moment generating functions, sigma algebra, some distributions including Chi-Square and Snedecor's F distribution
- Some concepts on sampling: Sampling distributions, standard deviation and standard errors.

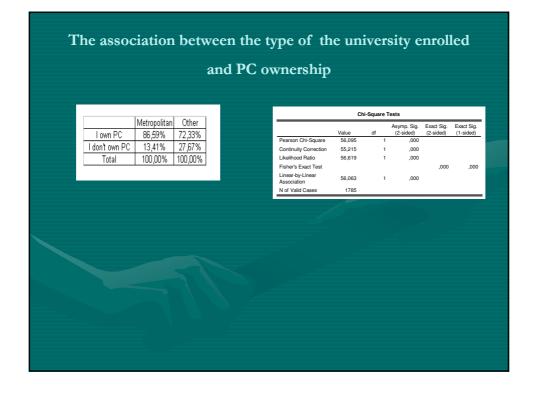




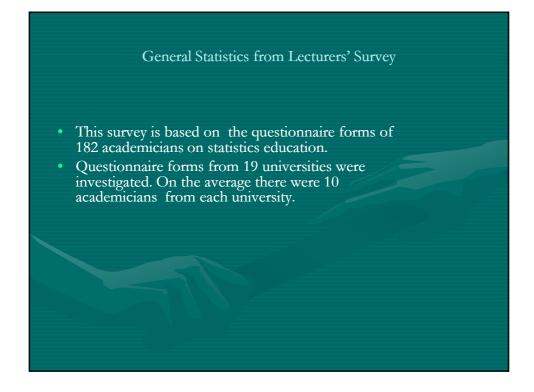


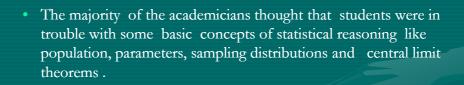


23

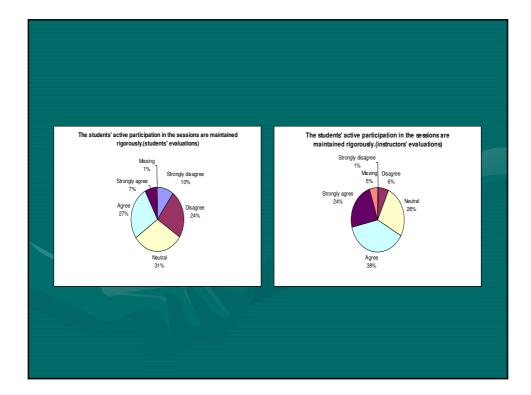


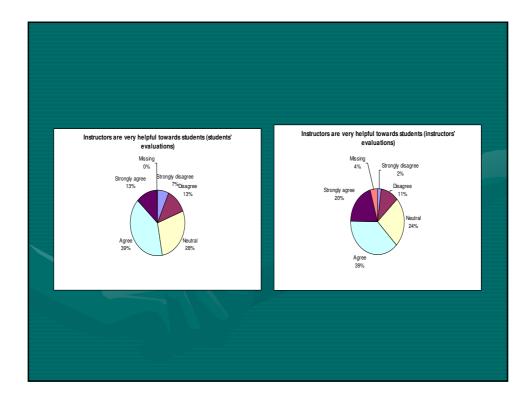
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	l have no ability	284	15 _, 8	15,8	15 ß
	l have little ability	551	30,7	30,7	46 🖉
	I have mediocre ability	430	24 D	24,0	70 🖯
	I have superior ability	291	16,2	16,2	86,7
	l have perfect ability	238	13,3	13,3	100,0
	Total	1794	100,0	100,0	

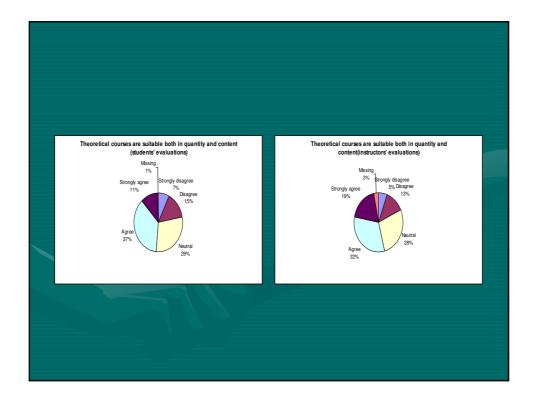

The association between the type of the university and computer skills in general

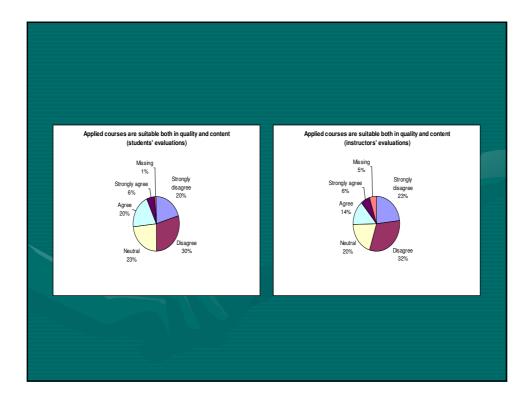

	Metropolitan	Other
No ability	10,79%	21,33%
Inferior ability	78%, 27	33,92%
Mediocre ability	25,85%	21,91%
Superior ability	20,30%	11,77%
Perfect ability	15,28%	11,07%
Total	100,00%	100,00%

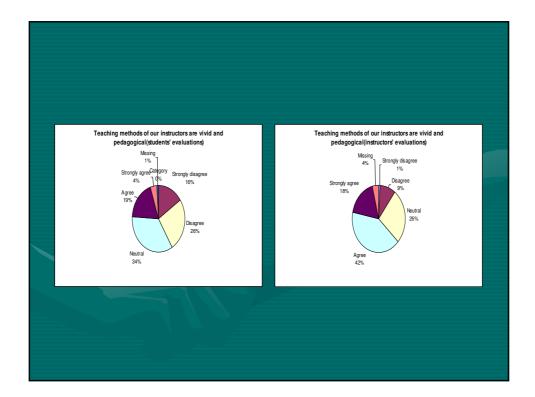
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	65,835	4	,000
Continuity Correction			
Likelihood Ratio	66,577	4	,000
Linear-by-Linear Association	54,693	1	,000,
N of Valid Cases	1794		


 Some Points to be Highlighted in Some Judgements of Academicians

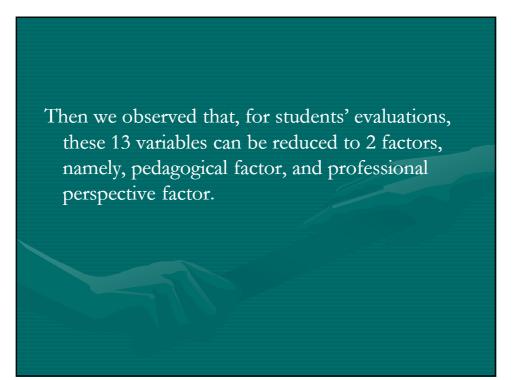


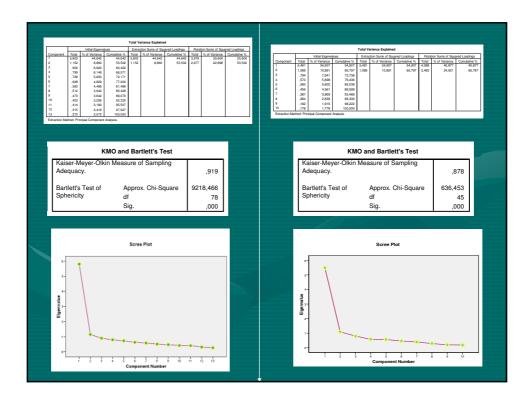


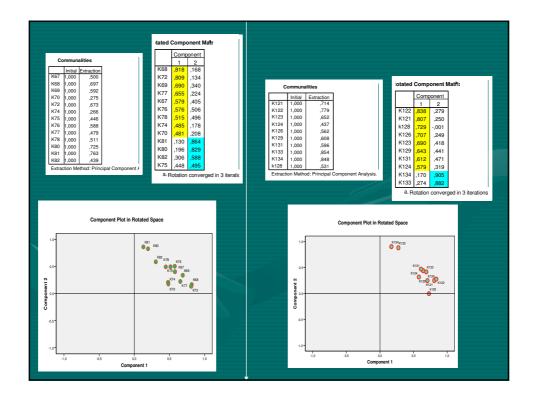

The majority of the academicians strongly emphasized that there should have been more mathematics courses in the curriculum.

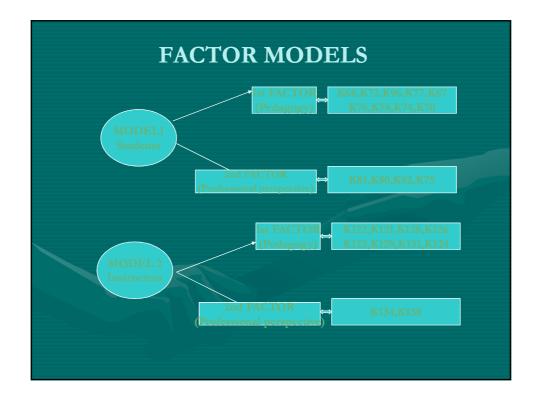

Some comparisons between the comments of students and those of instructors on some selected issues








In this part, we intended to form a statistical model on the satisfaction scores of both the students and instructors with the departments by some factor-regression models. First of all among 30 questions, we picked 13 questions (variables) related to students' satisfaction levels, and 10 questions related to instructors' satisfaction levels.



	de actors)	Question code (Students)	Variables (Propositions on Questionnaire forms)
КI	21	K67	There are sufficiently large number of consultative services for students within the department.
KI	22	K68	The personal communications betwen the students and instructors, in general, are satisfactory
K1	23	K69	The active participations of students in the sessions are maintained strongly
K1	24	K70	The personal communications among the students themselves are satisfactory in general
K1	26	K72	Behaviours of instructors towards students are friendly and helpful.
K1	27	K74	There are plenty number of theoretical courses in curriculum.
K1	28	K75	There are plenty number of applied courses in curriculum
K1	29	K76	The teaching methods of our instructors are both vivid and pedagogic.
K1	30	K77	The instructors are objective and fair enough in assessing our performance and our responsibilities.
КІ	31	K78	The students are motivated to carry further scientific studies by the instructors.
KI	.33	K80	There are a lot of meetings organized in the department to interact with statistics specialists.
K1	.34	K81	In the department a lot of meetings or discussions are organized frequently on some other social and cultural issues.
		K82	The textbooks and other materials offered in the lectures are quite useful.

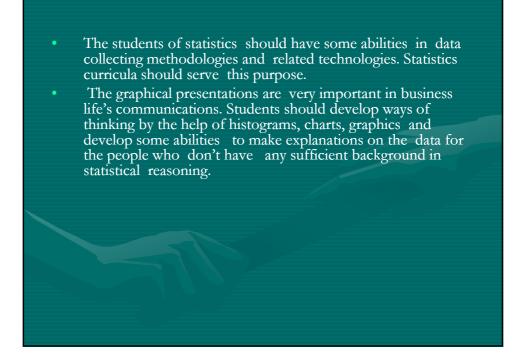
						Correlat	ion Ma	trix						
		K67	K68	K69	K70	K72	K74	K75	K76	K77	K78	K80	K81	K82
	K67 1 K68	1,000 ,578	,578 1,000	,523 ,598	,327 ,358	,438 ,682	,258 ,296	,411 ,393	,486 ,493	,366 ,461	,441 ,438	,444 ,360	,404 ,313	
	K69	,523	,598	1,000	,405	,504	,289	,426		,430	,525	,402	,387	
	K70 K72	,327	,358	,405	1,000	,313	,202	,269 ,372		,266	,306	,245	,264	
	K74	,438 ,258	,682 ,296	,504 ,289	,313 ,202	1,000 ,351	,351 1,000	,372		,537 ,295	,417 ,308	,346 ,214	,298 ,220	
	K75	,411	,393	,426	,269	,372	,399	1,000		,347	,451	,434	,394	
	K76 K77	,486 ,366	,493 ,461	,532 ,430	,292 ,266	,502 ,537	,333 ,295	,503 ,347		,486 1,000	,537 ,428	,478 ,340	,444 ,303	
	K78	,441	,438	,525	,306	,417	,308	,451	,537	,428	1,000	,449	,414	,384
	K80 K81	,444 ,404	,360 ,313	,402 ,387	,245 ,264	,346 ,298	,214 ,220	,434 ,394		,340 ,303	,449 ,414	1,000 ,671	,671, 1,000	
	K82	,345	,342	,373	,294	,344	,270	,317		,348	,384	,399	,462	
											2			
					Cr	orrelat	ion Ma	atrix						
		K	121	K122	K123	K12	4 1	(125	K126	K129	K13	1 K1	33	K134
Correlation			,000	,796	,625			,413	,528	,548			451	,423
	K12 K12			1,000	,672			,403	,613	,571			495	,436
	K12		625 404	,672 ,500	1,000			,406 ,452	,485 ,412	,652 ,416			496 392	,489 ,278
	K12			,000	,451			,432	,403	,410			322	,277
	K12 K12			403	406	4	52 1							,357
		5,	413	,403 ,613	,406 ,485			,403	1,000	,552	,53	3 ,4	464	,337
	K12 K12 K12	5, 6, 9,	413			,4	2				,64	7 ,	464 490	,357
	K12 K12 K12 K13	5, 6, 9, 1,	413 528 548 542	,613 ,571 ,585	,485 ,652 ,587	,4 ,4 ,4	2 6 78	,403 ,339 ,321	1,000 ,552 ,533	,552 1,000 ,647	,64 1,00	7 ,4 0 ,1	490 511	,452 ,451
	K12 K12 K12	5, 6, 9, 1, 3,	413 528 548	,613 ,571	,485 ,652	,4 ,4 ,4	12 16 78 92	,403 ,339	1,000 ,552	,552 1,000	,64 1,00 ,51	7 ,4 0 ,4 1 1,0	490 511 000	,452

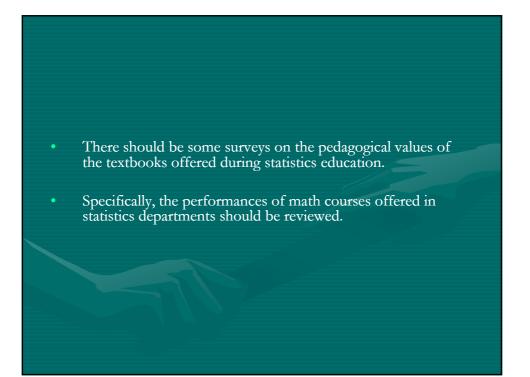
Here Y1 and Ys represent the satisfaction levels of instructors and students observed in ten different possibilities. X1 and X2 represent pedagogical and professional perspective factors respectively. $y_{l} = 7,252+0,678x_{1}+0,375x_{2}$

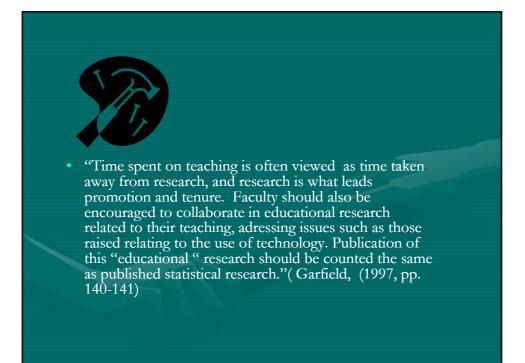
 $y_s = 6,245 + 1,004x_1 + 0,420x_2$

							_						_			
	,						ANOVA ^b									
	Sum of	-					Mod		Sum of Squares	df	Mean Square	F	Sig.			
Model 1 Regression	Squares 2023.026	df 2	Mean Square 1011.513	F 274.860	Sig. .000 ^a		1	Regression Residual	68,049 379,375	2 108	34,024 3,513	9,686	,000ª			
Residual	6278,264	1706	3,680	214,000	,000			Total	447,423	110	3,513					
Total	8301,290	1708					a	Predictors: (Consl		I, FAC1	1					
a. Predictors: (Cons	stant), FAC2_2,	FAC1_2	2				b	b. Dependent Variable: K160								
 b. Dependent Varia 	ble: K109															
	Coef	ficients	a					Coefficients ^a								
	Unstandardize	ad 5	Standardized						Unstandar Coefficie		Standardized Coefficients					
	Coefficients		Coefficients				Mod	lel .		d. Error	Beta	1	Sig.			
Model	B Std. E		Beta	t	Sig.		1	(Constant)	7,252	,178		40,76	2 ,000			
	., . ,	046		134,579	,000,			FAC1_1	,678	,176	,340					
FAC1_2 FAC2_2		046 046	,455 ,191	21,624 9,058	,000, ,000,			FAC2_1	,375	,176	,188	2,12	5 ,036			
a. Dependent Variab	/ . /	,40	,101	3,030	,000		a	 Dependent Varia 	ble: K160							
$y_s = 6, 2$	45+1,0	+0,420		$y_t = 7,252 + 0,678x_1 + 0,375x_2$												
				Histogram	•											
Depen	dent Variable: B	NUNIYET		Dependent Variable: BOL.MEMNUNIYETI												
Here sino Sundardized Residual							Hard Held 1 Hard 1 Har									

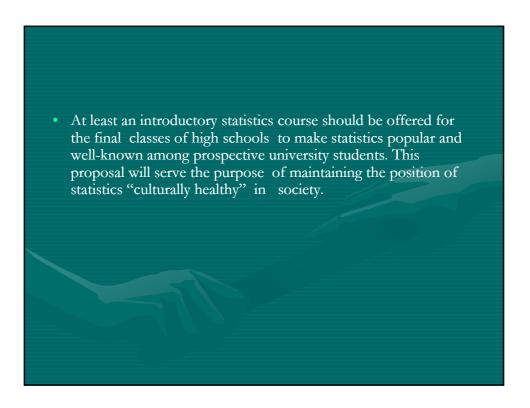
PROPOSALS

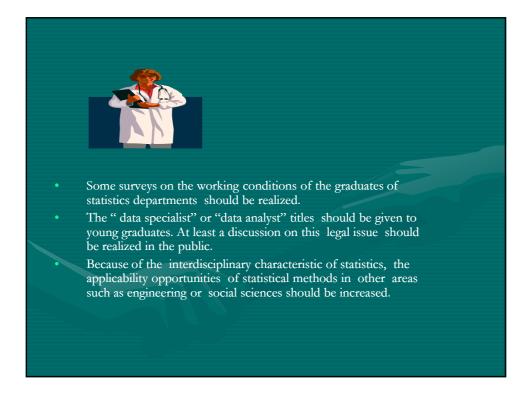

- There should be more statistics courses in the curricula in order to increase the level of specialization in statistics undergraduate education.
- It will be wiser to support curricula with more qualified computer science lectures.


• Mathematics and statistics need each other . Collaborative studies with mathematics departments should be on the agenda. As a starting point of this collaboration; some meetings must be organized to discuss the common problems of both mathematics and statistics education.


Statistics is an applied science although it has a very abstract and theoretical base. Free time practices, regular industry or business practices are the natural allies of this education process. These practices are especially vital for the students to "recognize data", and to encounter with some aspects of statistical studies and some basic problems of the processes of collecting, summarizing, analyzing statistical data as well.

- The statistical studies depend totally on collaborative team work since the levels of specialization are very high. Thus the collective abilities of students in team works should be increased.
- Statistical data analyses and their conclusions should be open for everybody from the other fields of scientific study. This point is especially important to develop some common research activities with different branches. A sophisticated communication ability with other scientific areas is crucial.


"Teachers should consider computing as a tool for learning statistics, not simply for doing statistics. Because graphics and manipulations aid learning, we should encourage students to use software to explore, visualize, and interact with data and simulations, not simply to automate calculations." (Moore, 1997, p. 131)



There is currently little tangible incentive, and in fact significant disincentive, for statisticians in academia to spend time on improving introductory courses. Could we honestly encourage young professors, seeking tenure, to spend the time required to fundamentally improve their introductory courses at the expense of publications? This is a problem with the system, and cannot be resolved easily by individuals working in isolation.(Hoerl, et al., 1997, p. 152)

Before observing the maturity of currently existing statistics programs it will be useless to open some more departments. The extensive growth of statistics departments will inevitably result in an inflationary process of having departments lacking quality. Both the students and the graduates are very sensitive on this issue.

REFERENCES

- 1) Aliaga, M. (1998), "Re-thinking Stat 101." Paper presented at the Fifth International Conference on Teaching Statistics, Singapore.
- 2) Bryce, G.R., Gould, R., Notz, W.I., Peck, R.I., "Curriculum Guidelines for Bachelor of Science degrees in Statistical Science"
- 3) Bureau of Labor Statistics (2000), Occupational Outlook Handbook, 2000-01. Bulletin 2520.
- 4) Butler, R.S. (1998), "On the failure of the widespread use of statistics", Amstat News, March, 84.
- 5) Cobb, G. (1992), "Teaching Statistics, in Heeding the Call for Change", MAA Notes,

3-43.

6) Ewing, J., ed. (1999), "Towards Excellence: Leading a Mathematics Department in the 21st Century", Providence, RI: American Mathematical Society

7) Garfield, J.(1995), "How students learn statistics" International Statistical Review, 63,

25-34.

- 8) Garfield, J.,Hogg, B., Schau, C.,Whittinghill, D.(2000), "Best Practices in Introductory Statistics", Draft 2000.06.19
- 9) Garfield, J. (2000), "An Evaluation of the Impact of Statistics Reform". Final Report for NSF Project REC-9732404.
- 10) Hahn, G., and Hoerl, R. (1998), "Key Challenges for statisticians in business and industry", Technometrics, 40, 195-200.
- **11)** Higgins, J.J. (1999), "Nonmathematical Statistics: A New Direction for the Undergraduate Discipline", The American Statistician, 53, 1-6.
- 12) Hoaglin, D.C., Moore, D.S., (Eds) (1992) "Perspectives on Contemporary Statistics", Mathematical Association of America, MAA Notes, Number 21.

- 14) Hogg ,R.V., Ritter, M.A.; Starbuck, R.(2000), "Advice from Prospective Employers on Training BS Statisticians", A paper prepared as part of the Undergraduate Statistics Education Initiative of the American Statistical Association, June 30 2000.
- **15)** Loftsgaarden, D.O., Watkins, A.E. (1998), "Statistics teaching in colleges and universities: Courses, instructors, and degrees in fall 1995.", The American Statistician, 4,308-314.
- **16)** Marquardt, D.W. (1987), "The Importance of Statisticians", The Journal of American Statistical Association, 82, 1-7.
- 17) Minton, P.D.(1983), "The Visibility of Statistics as a Discipline", The American Statistician, 37, 284-289.
- **18)** Moore, D.S. (1997a), "New Pedagogy and new content: the case of statistics", International Statistical Review, 65, 123-137

- 20) Moore, D.S. (2000), "Undergraduate Programs and the Future of Academic Statistics", An Adaptation of the keynote talk at a Symposium on Undergraduate Education held prior to the 2000 Joint Statistical Meetings in Indianapolis.
- 21) Moore, D.S., and Cobb, G.W. (2000), "Statistics and mathematics tension and cooperation", American Mathematical Monthly, 107, 615-630.
- 22) Niss, M. (1999), "Aspects of the nature and state of research in mathematics education", Educational studies in Mathematics, 40,1-24.
- 23) Schau, C. (2000), Personal communication.
- 24) Snee, R. (1999), "Discussion:development and use of statistical thinking : a new era. (Response to Wild and Pfannkuch. International Statistical Review, 67,255-258.
- 25) Wild, C.J., Pfannkuch, M. (1999), "Statistical thinking in empirical enquiry. International Statistical Review, 67, 221-248.
- 26) Yildiz D. et all (2007). Türkiye'deki İstatistik Bölümleri Bazında İstatistik Eğitiminin Öğrenci ve Öğretim Üyesi Gözüyle Değerlendirilmesi. TUBİTAK proje no:
- 105K171.
- 27) Zahn, D.A., Davis, N.A. (1996), "Toward creating a learning community in
- large-sections, introductory statistics courses." Session 186 (poster) at the Joint Statistical Meetings, Chicago

