Some Results from the Survey on Turkish

 Statistics Education

Yildiz Technical University, The Faculty of Sciences and Literature, The Department of Statistics
Davutpaşa-Esenler, 34210 ISTANBUL TURKEY
dyildiz@yildiz.edu.tr aevren@yildiz.edu.tr

Introduction

The discussions on statistics education were intensified especially at the end of nineties in United States of America. In this respect, some means were taken into consideration to develop statistics education both in undergraduate and graduate levels. Some debates were realized to evaluate the quality of statistics courses both offered in statistics departments and in other departments demanding statistics as service courses. In these debates, the skills that graduates of statistics should acquire were also under investigation

Besides,

- the relative weights of theoretical courses and applied courses in programs ,
- the content and the quality of mathematics courses offered in statistics curriculum,
- feasibilities of collaboration with some departments including mathematics,
- the affects of technology on statistics education were the other items on the agenda.

Minton (1983) , in his article "The Visibility of Statistics as a Discipline" emphasizes that any systematic way of research is called as a " discipline" if it satisfies the following requirements:
i. the existence of a structure and a literature on its theory,
ii. the existence of a large number of professional people studying for this area,
iii. the existence of a large number of periodicals publishing the contemporary discussions and innovations in this area,
iv. the existence of an external demand from the other disciplines towards the outputs of this field.

It is sure that statistics satisfied these requirements totally at the beginning of 20th century. Nevertheless Minton emphasizes that statistics was not then called as a discipline since there were not enough number of statistics departments providing career opportunities for the young candidates of universities. For more than 20 years, ASA (American Statisticians Association) has been organising meetings and symposiums to evaluate the quality of statistics education throughout the world .

In 1999, a meeting held in United States produced a very important document called as "Undergraduate Statistics Education Initiative". It will be useful to list some of the issues considered during this organization:
a) The titles/ positions in which the statisticians are being currently employed,
b) The relationship between statistics curriculum and career steps offered for prospective statistics graduates,
c) The differences between statistical \& mathematical thinking,
d) Basic subjects that must be covered by statistics curricula,
e) Non-technical skills that statistics students must acquire,
f) Computer skills that statistics students must acquire,
g) Mathematical skills the statistics students must acquire,
h) A basic classification on elective courses,
i) A classification of course offerings for the students with graduate education perspectives,
j) A classification of course offerings for the students without graduate education perspectives,
k) The crucial role of data analysis in statistics education,

1) The importance of mathematical statistics courses in statistics education,
m) Evaluation of introductory statistics / or service courses offered in other departments

2. Some Descriptive Statistics from the Survey on Turkish Statistics Education

Statistics is a young discipline in Turkey as far as the establishment years of statistics departments are taken into account. In Turkey, the oldest statistics departments were established in 1960's . Using the figures of 2006, there were 25 statistics departments in which about 4300 students were being educated.
In addition, an increasing demand for statistical studies from business life is a fact. Of course this high demand motivates academicians to go into further researches. On the other hand; as a by-product of this rapid growth process ; there are some problems that cannot be vanished easily.

Geographical distribution of statistics departments in Turkey

\longrightarrow

We tried to investigate some aspects of Turkish statistics education at university level by the valuable supports of TUBITAK (The Scientific and Technological Research Council of 'Turkey) in 2007. Questionnaire forms of students from different statistics departments of Turkish universities were analysed. We also studied on some questionnaire forms of Turkish academic statisticians.

General Conclusions about Students' Appreciations on Turkish University Education in Statistics

- The number of participating students in this survey was 1794.
- On the average, there were 94 participating students coming from each university .
- One third of the students in the sample were seniors, whereas one fourth were juniors.
- 52 percent of the students in the sample were female.
- There are two types of education modules or programs offered in Turkey. The first module is carried on days, and the second module is on the evenings. 15.9% of the students in our sample is from the second module.

Some cross tabulations

Chi-Square Tests						
	Value	df	Asymp. SigExact Sig.Exact Sig. (2-sided) (2-sided) (1 -sided)			
Pearson Chi-Squ	35,226			,000		
Continuity Correc	34,666			,000		
Likelihood Ratio	35,332			,000		
Fisher's Exact Te					,000	, 000
Linear-by-Linear Association	35,206			,000		
N of Valid Cases	1794					

The distribution of the high schools from which students graduated

	Metropolitan	Other
Regular H.S.	$19,10 \%$	$43,04 \%$
Special H.S.	$46,67 \%$	$28,18 \%$
Super H. S.	$26,07 \%$	$24,41 \%$
H.S.S.	$2,79 \%$	$0,59 \%$
Vocational	$0,86 \%$	$1,77 \%$
Private	$4,29 \%$	$1,42 \%$
Other	$0,21 \%$	$0,59 \%$
Total	$100,00 \%$	$100,00 \%$

Some statistics based on the preference lists of students while applying university entering examination

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Squar	134,495	4	, 000
Continuity Correctii	138,855	4	, 000
Likelihood Ratio	13,8		, 000
Linear-by-Linear	129,892	1	
Association	1759		
N of Valid Cases	1759		

- Some figures on socioeconomic status (SES) scores of students
- The socioeconomic status (SES) scores of the students were calculated and it was observed that 9% of the students came from the group with the highest income and wealth, 30% of the students came from the second highest group, and 50% came from the two middling groups. Of course, these are average figures and SES scores change considerably from one unversity to the other. Nevertheless, it can be concluded that university education is still a problem for poorer classes!

Socio economic Status Groups

- Group A: Big capitalists or investors, top managers of private sector, and famous and leading professionals (doctors, lawyers, etc.) are the representatives of this group.
- Group B: The new riches of the society, top managers of public sector, big or at least middle-sized entrepreneurs are typical members of this category.
- Group C1: This group consists of professionals, managers , etc.
- Group C2: White collars and small entrepreneurs are the typical members of this group.
- Group D: Blue collars, semi-qualified or qualified workers are the natural members of this group.
Group E: This group consists of least qualified portion of society. The members are generally manual workers, agricultural workers etc.

SES scores and groups

Figure : The percentage distribution of SES scores within Turkish population and within statistics departments

The distribution of SES scores

> | | Metropolitan | Others | Total |
| :---: | :---: | :---: | :---: |
| Group A | $61,31 \%$ | $38,69 \%$ | $1000,00 \%$ |
| Group B | $61,34 \%$ | $38,66 \%$ | $100,00 \%$ |
| Group C1 | $52,67 \%$ | $47,33 \%$ | $100,00 \%$ |
| Group C2 | $41,36 \%$ | $58,64 \%$ | $100,00 \%$ |
| Group D\&E | $36,98 \%$ | $63,02 \%$ | $100,00 \%$ |

Attitude Changes Towards Statistics Departments

- 54.3 percent of the participants stated that they had got some prior information about the opportunities that statistics departments provided its students before they took the university entering examination.

The attitude changes toward the department after registration

Mefropalital	692340	55,59\%	4674\%	512%	527\%
Oither	3077\%	444\%	53.26	4978%	47,29\%
Taial	100, 00%	1000\%	100, 00%	100.00\%	100, 03%

The association between gender and future perspectives after graduation

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	36,331	5	, 000
Continuity Correction		5,249	5
Likelihood Ratio	379	, 000	
Linear-by-Linear	, 131	1	, 718
Association	1759		
Nof Valid Cases			

The class identifications and the degree of satisfaction with statistics department

	Freshman	Sophomore	Junior	Senior
No satisfaction	$2,91 \%$	$5,00 \%$	$8,84 \%$	$7,71 \%$
Inferior satisfaction	$8,41 \%$	$11,19 \%$	$15,30 \%$	$15,24 \%$
Mediocre satsiaction	$25,89 \%$	$34,06 \%$	$29,31 \%$	$31,66 \%$
Superior satisfaction	$42,39 \%$	$37,23 \%$	$31,03 \%$	$33,67 \%$
Perfect satisfaction	$20,39 \%$	$11,92 \%$	$15,52 \%$	$11,73 \%$
Total	$100,00 \%$	$100,00 \%$	$100,00 \%$	$100,00 \%$

| Chi-Square Tests | | | |
| :--- | :---: | ---: | ---: | ---: |
| | Value | df | Asymp. Sig.
 $(2$-sided $)$ |
| Pearson Chi-Square | 46,467 | 12 | , 000 |
| Continuity Correction | | | |
| Likelihood Ratio | 47,794 | 12 | , 000 |
| Linear-by-Linear | 27,883 | 1 | , 000 |
| Association | 1781 | | |
| N of Valid Cases | | | |

Distributions of degrees of satisfaction with the department

	Metropolitan	Other
Extremely dissatisfied	$2,78 \%$	$8,28 \%$
Dissatisfied	$6,94 \%$	$22,26 \%$
Undecided	$30,02 \%$	$36,83 \%$
Satisfied	$49,57 \%$	$26,92 \%$
Extremely satisfied	$10,6 \% \%$	$5,71 \%$
Total	$100,00 \%$	$100,00 \%$

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	177,458	4	, 000
Continuity Correction			
Likelihood Ratio	182,619	4	, 000
Linear-by-Linear	157,294	1	, 000
Association	1794		
N of Valid Cases			

Students' Evaluations on the Performances of Statistics

Departments

- The majority of the students (65.3%) of statistics departments thought that the education program was very difficult indeed
- 71.5% of the students needed more rigorous mathematics background to keep up with the courses they were taking. In contradiction with this fact, most of the students did not demand more mathematics courses in their statistics curriculum.

MCFHUMOR.Com by T. McCracken

1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-Strongly agree

1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-Strongly agree

- 34% of the students agreed with the proposition that the textbooks and similar reference books were sufficient both in quantity and in content whereas some other 33% disagreed.
- Most of the students in our survey thought that some of the theoretical courses offered in their departments were superfluous.

Some evaluations on

- 94.9 percent of the students demanded more attention on case studies in some applied courses.
- 79.7 percent of the students demanded more specialized statistics courses in the program.

Some of the concepts the students stated that they

 had experienced difficulty in perception- Some introductory concepts : Variance, covariance, standard deviation, correlation, type-I and type-II errors, degree of freedom, hypothesis tests, point and interval estimation
- Some probabilistic concepts and theorems : The Central Limit Theorems, moment generating functions, sigma algebra, some distributions including Chi-Square and Snedecor's F distribution
- Some concepts on sampling: Sampling distributions, standard deviation and standard errors.

1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-Strongly agree

1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-Strongly agree

The classification of topics in which students have some difficulties

The distribution of statistical concepts students have some difficulty

The distribution of most inefficient courses through students' points of views

Computer Skills , Physical Availabilities for Computer Practices

- Students seemed interested in SPSS applications much more than in any other statistical softwares.
- Most of the students (85.28%) declared that they had no skills in SAS programming.

"ITs sthe new keyboard for the statisties lab. Once you learn how
to use it, it will make computation of the standard deviation easier."

The frequency distribution of students with respect to computer skills in general

				Cumblative Percent	
Valid	I have no ability	284	15,8	15,8	15,8
	Frequency	Percent	Vave litide Percentility	551	30,7
	30,7	46,5			
\| have mediocre ability	430	24,0	24,0	70,5	
I have superior ability	291	16,2	16,2	86,7	
\| have perfect ability	238	13,3	13,3	100,0	
	Total	1794	100,0	100,0	

The association between the type of the university and computer skills in general

	Metropolitan	Other	
No ability	$10,79 \%$	$21,33 \%$	
Inferior ability	$27,78 \%$	$33,92 \%$	
Mediocre ability	$25,85 \%$	$21,91 \%$	
Superior ability	$20,30 \%$	$11,77 \%$	
Perfect ability	$15,28 \%$	$11,07 \%$	
Total	$100,00 \%$	$100,70 \%$	

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	65,835	4	, 000
Continuity Correction			, 000
Likelihood Ratio	66,577	4	, 000
Linear-by-Linear	54,693	1	
Association	1794		
N of Valid Cases			

The association between the type of the university enrolled and PC ownership

- Some Points to be Highlighted in Some Judgements of Academicians

General Statistics from Lecturers' Survey

- This survey is based on the questionnaire forms of 182 academicians on statistics education.
- Questionnaire forms from 19 universities were investigated. On the average there were 10 academicians from each university.

The majority of the academicians thought that students were in trouble with some basic concepts of statistical reasoning like population, parameters, sampling distributions and central limit theorems .

- The majority of the academicians strongly emphasized that there should have been more mathematics courses in the curriculum.

Some comparisons between the comments of students and those of instructors on some selected issues

A Factor Analysis Model

In this part, we intended to form a statistical model on the satisfaction scores of both the students and instructors with the departments by some factor-regression models. First of all among 30 questions, we picked 13 questions (variables) related to students' satisfaction levels, and 10 questions related to instructors' satisfaction levels.

Then we observed that, for students' evaluations, these 13 variables can be reduced to 2 factors, namely, pedagogical factor, and professional perspective factor.

Question (oste (nstructors) Question code (Students) K121 K67 There are sufficiently large number of consultative services for students within the department. K122 K68 The personal communications betwen the students and instructors, in general, are satisfactory K123 K69 The active participations of students in the sessions are maintained strongly K124 K70 The personal communications among the students themselves are satisfactory in general K126 K72 Behaviours of instructors towards students are friendly and helpful. K127 K74 There are plenty number of theoretical courses in curriculum. K128 K75 There are plenty number of applied courses in curriculum K129 K76 The teaching methods of our instructors are both vivid and pedagogic. K130 K77 The instructors are objective and fair enough in assesing our performance and our responsibilites. K131 K78 The students are motivated to carry further scientific studies by the instructors. K133 K80 There are a lot of meetings organized in the department to interact with statistics specialists. K134 K81 In the department a lot of meetings or discussions are organized frequently on some other social and cultural issues. K82 The textbooks and other materials offered in the lectures are quite useful.								

FACTOR MODELS

Here Y1 and Ys represent the satisfaction levels of instructors and students observed in ten different possibilities. X1 and X2 represent pedagogical and professional perspective factors

$$
\begin{aligned}
& \text { respectively. } \\
& y_{l}=7,252+0,678 x_{1}+0,375 x_{2} \\
& y_{s}=6,245+1,004 x_{1}+0,420 x_{2}
\end{aligned}
$$

$y_{s}=6,245+1,004 x_{1}+0,420 x_{2}$

$$
y_{l}=7,252+0,678 x_{1}+0,375 x_{2}
$$

PROPOSALS

- There should be more statistics courses in the curricula in order to increase the level of specialization in statistics undergraduate education.
- It will be wiser to support curricula with more qualified computer science lectures.
- Mathematics and statistics need each other . Collaborative studies with mathematics departments should be on the agenda. As a starting point of this collaboration; some meetings must be organized to discuss the common problems of both mathematics and statistics education.

- Statistics is an applied science although it has a very abstract and theoretical base. Free time practices, regular industry or business practices are the natural allies of this education process. These practices are especially vital for the students to "recognize data", and to encounter with some aspects of statistical studies and some basic problems of the processes of collecting, summarizing, analyzing statistical data as well.
- The statistical studies depend totally on collaborative team work since the levels of specialization are very high. Thus the collective abilities of students in team works should be increased.
- Statistical data analyses and their conclusions should be open for everybody from the other fields of scientific study. This point is especially important to develop some common research activities with different branches. A sophisticated communication ability with other scientific areas is crucial.
- The students of statistics should have some abilities in data collecting methodologies and related technologies. Statistics curricula should serve this purpose.
- The graphical presentations are very important in business life's communications. Students should develop ways of thinking by the help of histograms, charts, graphics and develop some abilities to make explanations on the data for the people who don't have any sufficient background in statistical reasoning.

- "Teachers should consider computing as a tool for learning statistics, not simply for doing statistics. Because graphics and manipulations aid learning, we should encourage students to use software to explore, visualize, and interact with data and simulations, not simply to automate calculations." (Moore, 1997, p. 131)

- "Time spent on teaching is often viewed as time taken away from research, and research is what leads promotion and tenure. Faculty should also be encouraged to collaborate in educational research related to their teaching, adressing issues such as those raised relating to the use of technology. Publication of this "educational " research should be counted the same as published statistical research." (Garfield, (1997, pp. 140-141)
- There is currently little tangible incentive, and in fact significant disincentive, for statisticians in academia to spend time on improving introductory courses. Could we honestly encourage young professors, seeking tenure, to spend the time required to fundamentally improve their introductory courses at the expense of publications? This is a problem with the system, and cannot be resolved easily by individuals working in isolation.(Hoerl, et al., 1997, p. 152)

Before observing the maturity of currently existing statistics programs it will be useless to open some more departments. The extensive growth of statistics departments will inevitably result in an inflationary process of having departments lacking quality. Both the students and the graduates are
 very sensitive on this issue.

- At least an introductory statistics course should be offered for the final classes of high schools to make statistics popular and well-known among prospective university students. This proposal will serve the purpose of maintaining the position of statistics "culturally healthy" in society.

REFERENCES

1) Aliaga, M. (1998), "Re-thinking Stat 101." Paper presented at the Fifth International Conference on Teaching Statistics, Singapore.
2) Bryce, G.R.,Gould, R., Notz,W.I., Peck, R.I., "Curriculum Guidelines for Bachelor of Science degrees in Statistical Science"
3) Bureau of Labor Statistics (2000), Occupational Outlook Handbook, 2000-01. Bulletin 2520.
4) Butler, R.S. (1998), "On the failure of the widespread use of statistics", Amstat News, March, 84.
5) Cobb, G. (1992), "Teaching Statistics, in Heeding the Call for Change", MAA Notes,
3-43.
6) Ewing, J., ed. (1999), "Towards Excellence: Leading a Mathematics Department in the 21st Century", Providence,RI: American Mathematical Society
7) Garfield, J.(1995), "How students learn statistics" International Statistical Review, 63 ,
25-34.
8) Garfield, J.,Hogg, B., Schau, C.,Whittinghill, D.(2000), "Best Practices in Introductory Statistics", Draft 2000.06.19
9) Garfield, J. (2000), "An Evaluation of the Impact of Statistics Reform". Final Report for NSF Project REC-9732404.
10) Hahn, G., and Hoerl, R. (1998), "Key Challenges for statisticians in business and industry", Technometrics, 40, 195-200.
11) Higgins, J.J. (1999), "Nonmathematical Statistics: A New Direction for the Undergraduate Discipline", The American Statistician, 53, 1-6.
12) Hoaglin, D.C.,Moore, D.S.,(Eds) (1992) "Perspectives on Contemporary Statistics", Mathematical Association of America, MAA Notes, Number 21.
13) Hogg, R.(1992), Report on Workshop on Statistics Education, in Heeding the Call for Change, MAA Notes, 34-43.
14)Hogg ,R.V., Ritter, M.A.;Starbuck, R.(2000), "Advice from Prospective Employers on Training BS Statisticians", A paper prepared as part of the Undergraduate Statistics Education Initiative of the American Statistical Association, June 302000.
14) Loftsgaarden, D.O., Watkins,A.E. (1998), "Statistics teaching in colleges and universities:Courses,instructors,and degrees in fall 1995.", The American Statistician, 4,308-314.
15) Marquardt, D.W. (1987), "The Importance of Statisticians", The Journal of American Statistical Association, 82, 1-7.
16) Minton, P.D.(1983), "The Visibility of Statistics as a Discipline", The American Statistician, 37, 284-289.
17) Moore, D.S. (1997a), "New Pedagogy and new content: the case of statistics", International Statistical Review, 65, 123-137
19)Moore, D.S. (1997b), Response, International Statistical Review, $65,162-165$.
18) Moore, D.S.(2000), "Undergraduate Programs and the Future of Academic Statistics", An Adaptation of the keynote talk at a Symposium on Undergraduate Education held' prior to the 2000 Joint Statistical Meetings in Indianapolis.
19) Moore, D.S., and Cobb, G.W. (2000), "Statistics and mathematics tension and cooperation", American Mathematical Monthly, 107, 615-630.
20) Niss, M. (1999), "Aspects of the nature and state of research in mathematics education", Educational studies in Mathematics, 40,1-24.
23)Schau, C. (2000), Personal communication.
21) Snee, R. (1999), "Discussion:development and use of statistical thinking : a new era. (Response to Wild and Pfannkuch. International Statistical Review, 67,255-258.
22) Wild, C.J., Pfannkuch, M. (1999), "Statistical thinking in empirical enquiry. International Statistical Review, 67, 221-248.
23) Yildiz D. et all (2007). Türkiye'deki İstatistik Bölümleri Bazında İstatistik Eğitiminin Ögrrenci ve Öğretim Ûyesi Gözüyle Değerlendirilmesi. TUBITAK proje no: 105K171.
24) Zahn, D.A., Davis, N.A. (1996), "Toward creating a learning community in
large-sections, introductory statistics courses." Session 186 (poster) at the Joint Statistical
Meetings, Chicago

- Danke schön für alles!

