Optimal portfolio strategies under partial information with expert opinions

Ralf Wunderlich

Brandenburg University of Technology Cottbus, Germany

Joint work with Rüdiger Frey

Research Seminar WU Wien, December 7, 2012

Agenda

[Dynamic Portfolio Optimization](#page-2-0)

[Partial Information and Expert Opinions](#page-8-0)

[Approximation of the Optimal Strategy](#page-27-0)

Dynamic Portfolio Optimization

Classical Black-Scholes Model of Financial Market

 $(\Omega, \mathbb{G} = (\mathcal{G}_t)_{t \in [0, T]}, P)$ filtered probability space **Bond** *S* $\mathbf{e}_t^0 = \boldsymbol{e}^{rt}, \quad r$ risk-free interest rate **Stocks** prices $S_t = (S_t^1, \ldots, S_t^n)^\top$, returns $dR_t^i =$ *dSⁱ t S i t* $dR_t = \mu dt + \sigma dW_t$ $\mu \in \mathbb{R}^n$ average stock return, drift $\sigma \in \mathbb{R}^{n \times n}$ volatility *W^t n*-dimensional Brownian motion parameters μ and σ are constant and known Generalization time-dependent (non-random) parameters μ , σ , r

Portfolio

Initial capital $X_0 = x_0 > 0$ Wealth at time t $X_t = X_t(\begin{bmatrix} h^0_t & + & h^1_t & + \dots + & h^n_t \end{bmatrix})$ \overline{b} bond \overline{s} stock 1 stock n invested in *h k t* fractions of wealth invested in asset *k* **Strategy** $\overline{}$ $h_t^1, \ldots, h_t^n)^\top$

Self financing condition (assume $r = 0$ for simplicity) \Rightarrow

Wealth equation

 X_t satisfies **linear SDE** with initial value X_0

$$
dX_t^{(h)} = X_t^{(h)} h_t^{\top} (\mu dt + \sigma dW_t)
$$

$$
X_0^{(h)} = x_0
$$

Utility Function

 U : $[0,\infty) \to \mathbb{R} \cup \{-\infty\}$ strictly increasing and concave Inada conditions $\lim_{x \downarrow 0} U'(x) = \infty$ and $\lim_{x \uparrow \infty} U'(x) = 0$ $U(x) = \begin{cases} \frac{x^{\theta}}{\theta} \end{cases}$ $\frac{\partial^{\alpha}}{\partial \theta}$ for $\theta \in (-\infty, 1) \setminus \{0\}$ power utility $\log x$ for $\theta = 0$ log-utility

Optimization Problem

Wealth $dX_t^{(h)} = X_t^{(h)}$ $X_t^{(h)} h_t^{\top}$ (μ dt + σ dW_t), $X_0^{(h)} = x_0$ $\mathsf{Admissible\ Strategies}\quad \mathcal{H}=\{(\mathit{h}_t)_{t\in[0,T]}\,\mid\, \mathit{h}_t\in\mathbb{R}^n,$ $E[exp { \int_0^T ||h_t||^2} dt }] < \infty$ } **Reward function** $v(t, x, h) = E_{t,x}[U(X_T^{(h)})]$ $T(T^{(1)}_T)$] for $h \in \mathcal{H}$ **Value function** $V(t,x) = \sup v(t,x,h)$ *h*∈H

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = V(0, x_0, h^*)$

Solution optimal fractions of wealth $h_t^* = \frac{1}{1}$ $\frac{1}{1-\theta}(\sigma\sigma^{\top})^{-1}\mu = \text{const}$ Merton (1969,1973) using methods from dynamic programming

Drawbacks of the Merton Strategy

Sensitive dependence of investment strategies on the **drift** μ of assets

Drift is hard to estimate empirically

need data over long time horizons

(other than volatility estimation)

is not constant

depends on the state of the economy

Non-intuitive strategies

for constant fraction of wealth $\in (0,1) \implies$

- sell stocks when prices increase
- buy stocks when prices decrease

=⇒ **Model drift as stochastic process, not directly observable**

Models With Partial Information on the Drift

Drift depends on an additional "source of randomness" $\mu = \mu_t = \mu(\mathbf{Y_t})$ with factor process Y_t

Investor is not informed about factor process *Y^t* , he only observes **Stock prices** *S^t* or equivalently stock returns *R^t* **Expert opinions** news, company reports recommendations of analysts or rating agencies own view about future performance

- =⇒ Model with **partial information**
- **Problem** Investor needs to "learn" the drift from observable quantities Find an estimate or **filter** for $\mu(Y_t)$

Models With Partial Information on the Drift (cont.)

Linear Gaussian Model

Lakner (1998), Nagai, Peng (2002), Brendle (2006)

Drift $\mu(Y_t) = Y_t$ is a mean-reversion process

$$
dY_t = \alpha(\overline{\mu} - Y_t)dt + \beta dW_t^1
$$

where W_t^1 is a Brownian motion (in)dependent of W_t

Models With Partial Information on the Drift (cont.)

Hidden Markov Model (HMM)

Sass, Haussmann (2004), Rieder, Bäuerle (2005), Nagai, Rungaldier (2008)

Factor process *Y^t* finite-state Markov chain, independent of *W^t*

state space $\{e_1,\ldots,e_d\},\;$ unit vectors in \mathbb{R}^d states of drift $\mu(Y_t) = MY_t$ where $M = (\mu_1, \ldots, \mu_d)$ generator or rate matrix *Q* ∈ R *d*×*d*

diagonal: $Q_{kk} = -\lambda_k$ exponential rate of leaving state *k* $\mathsf{conditional}$ transition prob. $P(Y_t = e_l \mid Y_{t-} = k, Y_t \neq Y_{t-}) = Q_{kl}/\lambda_k$ initial distribution $(\pi^1,\ldots,\pi^d)^\top$

HMM Filtering

Returns $dR_t = \frac{dS_t}{S_t} = \mu(Y_t) dt + \sigma dW_t$ observations Drift $\mu(Y_t) = M Y_t$ non-observable (hidden) state **Investor Filtration** $\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}$ with $\mathcal{F}_t = \sigma(S_u : u \le t) \subset \mathcal{G}_t$ **Filter** *p* P_t^k := $P(Y_t = e_k | \mathcal{F}_t)$ $\widehat{\mu(Y_t)} := E[\mu(Y_t)|\mathcal{F}_t] = \mu(p_t) = \sum_{i=1}^d p_i$ $\sum_{j=1}^{\infty} p_t^j \mu_j$ **Innovations process** $(R_t - \int_0^t \widehat{\mu(Y_s)} ds)$ is an F-BM **HMM filter** Liptser, Shiryaev (1974), Wonham (1965), Elliot (1993) $p_0^k = \pi^k$ $dp_t^k = \sum^d$ *j*=1 $Q^{jk}p_t^j dt + \beta_k (p_t)^T dB_t$ where $\beta_k(p) = p^k \sigma^{-1} \Big(\mu_k - \sum_{k=1}^d p^k \sigma_k \Big)$ *j*=1 $p^j\mu_j$

HMM Filtering: Example

HMM Filtering: Example

Expert Opinions

- **Academic literature:** drift is driven by unobservable factors Models with partial information, apply filtering techniques
	- \blacktriangleright Linear Gaussian models
	- \blacktriangleright Hidden Markov models
- **Practitioners** use static **Black-Litterman model**

Apply Bayesian updating to combine

subjective views (such as "asset 1 will grow by 5%") with empirical or implied drift estimates

• Present paper combines the two approaches consider **dynamic** models with partial observation including **expert opinions**

Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- At random points in time *Tⁿ* ∼ Poi(λ) investor observes r.v. *Zⁿ* ∈ Z
- Z_n depends on current state $Y_{\mathcal{T}_n}$, density $f(Y_{\mathcal{T}_n},z)$

 (Z_n) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Examples

Absolute view: $Z_n = \mu(Y_{\mathcal{T}_n}) + \sigma_{\varepsilon} \varepsilon_n$, (ε_n) i.i.d. $N(0, 1)$ The view "*S* will grow by 5%" is modelled by $Z_n = 0.05$ σ_{ε} models confidence of investor

 $\mathsf{Relative\ view\ (2\ assets):} \quad Z_n = \mu_1(\mathsf{Y}_{\mathsf{T}_n}) - \mu_2(\mathsf{Y}_{\mathsf{T}_n}) + \widetilde{\sigma}_{\varepsilon} \varepsilon_n$

Investor filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t = \sigma(S_u : u \le t$; $(T_n, Z_n) : T_n \le t$)

HMM Filtering - Including Expert Opinions

j=1

Extra information has no impact on filter *p^t* between 'information dates' *Tⁿ* **Bayesian updating** at $t = T_n$:

> $\rho^k_{\mathcal{T}_n} \, \propto \, \rho^k_{\mathcal{T}_n-} \, f(e_k, Z_n)$ recall: $f(\,Y_{\mathcal{T}_n}, z)$ is density of Z_n given $\,Y_{\mathcal{T}_n}$ with normalizer $\sum_{i=1}^{d}$ *p j* f_{T_n-} *f***(***e*_{*j*}, *Z*_{*n*}) =: *f*(*p*_{*T*_{*n*}−, *Z*_{*n*})}

HMM filter

$$
p_0^k = \pi^k
$$
\n
$$
dp_t^k = \sum_{j=1}^d Q^{jk} p_t^j dt + \beta_k (p_t)^{\top} dB_t + p_{t-}^k \int_{\mathcal{Z}} \left(\frac{f(e_k, z)}{f(p_{t-}, z)} - 1 \right) \widetilde{I}(\mathbf{d}t \times d\mathbf{z})
$$
\nCompensated measure

\n
$$
\widetilde{I}(\mathbf{d}t \times d\mathbf{z}) := I(\mathbf{d}t \times d\mathbf{z}) - \lambda dt \sum_{k=1}^d p_{t-}^k f(e_k, z) dz
$$
\ncompensated measure

\n
$$
\underbrace{\sum_{k=1}^d p_{t-}^k f(e_k, z)}_{\text{compensator}}
$$

Filter: Example

Filter: Example

Optimization Problem Under Partial Information

Wealth $dX_t^{(h)} = X_t^{(h)}$ $X_t^{(h)} h_t^{\top} (\mu(Y_t) dt + \sigma dW_t), X_0^{(h)} = x_0$ **Admissible Strategies** $\mathcal{H} = \{ (h_t)_{t \in [0,T]} \mid h_t \in K \subset \mathbb{R}^n \text{ with } K \text{ compact } \}$ *h* is $\mathbb{F}\text{-}adapted$ } **Reward function** $v(t, x, h) = E_{t,x}[U(X_T^{(h)})]$ $T(T^{(1)}_{\overline{I}})$] for $h \in \mathcal{H}$ **Value function** $V(t, x) = \sup v(t, x, h)$ *h*∈H

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = V(0, x_0, h^*)$

Reduction to an OP Under Full Information

Consider augmented state process (*X^t* , *pt*) **Wealth** $dX_t^{(h)} = X_t^{(h)}$ $X_t^{(h)}$ h_t^{\top} ($\widehat{\mu(Y_t)}$ dt + σdB_t), $X_0^{(h)} = x_0$ $=M p_t$ **Filter** $dp_t^k = \sum_{i=1}^d$ *j*=1 $Q^{jk}p_j^j$ $\frac{d}{dt}$ dt + $\beta_k(p_t)^\top$ d B_t $+p_{t-}^k$ \int \int $f(e_k, z)$ Z $\int \frac{f(e_k, z)}{\overline{f}(p_{t-}, z)} - 1 \right) \widetilde{I}(dt \times dz), \qquad p_0^k = \pi^k$ **Reward function** $v(t, x, p, h) = E_{t, x, p}[U(X_T^{(h)})]$ *T* for $h \in \mathcal{H}$ **Value function** $V(t, x, p) = \sup$ *h*∈H *v*(*t*, *x*, *p*, *h*) Find $h^* \in H(0)$ such that $V(0, x_0, \pi) = v(0, x_0, \pi, h^*)$

Logarithmic Utility

$$
U(X_T^{(h)}) = \log(X_T^{(h)}) = \log x_0 + \int_0^T \left(h_s^{\top} \widehat{\mu(Y_s)} - \frac{1}{2} h_s^{\top} \sigma \sigma^{\top} h_s \right) ds + \int_0^T h_s^{\top} \sigma dB_s
$$

$$
E[U(X_T^{(h)})] = \log x_0 + E\Big[\int_0^T \left(h_s^{\top} \widehat{\mu(Y_s)} - \frac{1}{2} h_s^{\top} \sigma \sigma^{\top} h_s \right) ds \Big] + 0
$$

Optimal Strategy

$$
h_t^* = (\sigma \sigma^\top)^{-1} \widehat{\mu(Y_t)}.
$$

Certainty equivalence principle

h^{*} is obtained by replacing in the optimal strategy under full information

$$
h_t^{\text{full}} = (\sigma \sigma^\top)^{-1} \mu(Y_t)
$$

the unknown drift $\mu(Y_t)$ by its filter $\mu(Y_t)$

Solution for Power Utility

Risk-sensitive control problem

Nagai & Runggaldier (2008), Davis & Lleo (2011)

Let
$$
Z^h := \exp \left\{ \theta \int_0^T h_s^T \sigma dB_s - \frac{\theta^2}{2} \int_0^T h_s^T \sigma \sigma^T h_s ds \right\}
$$

Change of measure: $P^{(h)}(A) = E[Z^{(h)}1_A]$ for $A \in \mathcal{F}_T$ **Reward function**

$$
E_{t,x,p}[U(X_T^{(h)})] = \frac{x^{\theta}}{\theta} \underbrace{E_{t,p}^{(h)} \left[\exp \left\{-\int_t^T b(p_s, h_s) ds\right\} \right]}_{\text{max}}
$$

 $=$: $v(t, p, h)$ independent of *x*

where
$$
b(p, h) := -\theta \Big(h^{\top}Mp - \frac{1-\theta}{2}h^{\top}\sigma\sigma^{\top}h\Big)
$$

Value function $V(t,p) = \sup_{h \in \mathcal{H}} v(t,p,h)$ for $0 < \theta < 1$

Find $h^* \in \mathcal{H}$ such that $V(0, \pi) = v(0, \pi, h^*)$

HJB-Equation

State $dp_t = \alpha(p_t, h_t)dt + \beta^\top(p_t)dB_t + \int_{\mathcal{Z}} \gamma(p_t, z)I(dt \times dz)$

$$
\begin{array}{rcl}\text{Generator} & \mathcal{L}^h g(p) & = & \frac{1}{2} tr \big[\beta^\top (p) \beta (p) D^2 g \big] + \alpha^\top (p,h) \nabla g \\
& & \quad \quad + \lambda \int_{\mathcal{Z}} \{ g(p+\gamma (p,z)) - g(p) \} \overline{f}(p,z) \, dz\n \end{array}
$$

$$
V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b(p,h) V(t,p) \right\} = 0
$$

terminal condition $V(T,p) = 1$

Candidate for the Optimal Strategy

$$
h^* = h^*(t, \rho) = \frac{1}{(1-\theta)} (\sigma \sigma^{\top})^{-1} \Big\{ M \rho + \frac{1}{V(t, \rho)} \sigma \beta(\rho) \nabla_{\rho} V(t, \rho) \Big\}
$$

 $\overline{}$

myopic strategy $+$ correction

Certainty equivalence principle does not hold

Justification of HJB-Equation

Standard verification arguments fail, since we cannot guarantee ${\sf uniform \; ellipticity}$ of the diffusion part: $\; \; tr \bigl[\beta^\top (\boldsymbol{\rho}) \beta (\boldsymbol{\rho}) D^2 \, V \bigr]$

 $\vert \xi^\top \beta^\top (\bm{\rho}) \beta (\bm{\rho}) \xi \geq \bm{c} \vert \xi \vert^2 \quad \text{for some $\bm{c} > \bm{0}$ \; and all \; $\xi \in \mathbb{R}^d$}$

satisfiable only if number of assets *n* ≥ number of drift states *d*

Applying results and techniques from Pham (1998)

 \implies *V* is a unique continuous viscosity solution of the HJB-equation

Regularization of HJB-Equation

- Add a 'small' Gaussian perturbation $\frac{1}{\sqrt{2}}$ $\frac{1}{m}$ *dB*_t to the SDE for the first *d* − 1 components of the filter
- Consider control problem for the modified dynamics of the filter
- Modified HJB-equation has an additional diffusion term $\frac{1}{2m} \Delta V^m(t, p)$ \implies uniform ellipticity
- Applying results from Davis & Lleo (2011)

 \implies classical solution $V^m(t,p)$ to the modified HJB-equation

Standard verification results can be applied

Convergence results for *m* → ∞:

optimal strategy to the modified control problem is an ε -optimal strategy to the original control problem

Approximation of the optimal strategy

- \rightarrow Policy Improvement
- \rightarrow Numerical solution of HJB equation
	- Feynman-Kac formula for linearized HJB equation

Policy Improvement

Starting approximation is the myopic strategy *h* $\frac{1}{t}^{(0)}=\frac{1}{1-\theta}(\sigma\sigma^{\top})^{-1}\textit{Mp}_t$ The corresponding reward function is

$$
V^{(0)}(t,p) := V(t,p,h^{(0)}) = E_{t,p}\Big[\exp\Big(-\int_t^T b(p_s^{(h^{(0)})},h_s^{(0)})ds\Big)\Big]
$$

Consider the following optimization problem

$$
\max_{h} \{ \mathcal{L}^{h} V^{(0)}(t,p) - b(p,h) V^{(0)}(t,p) \}
$$

with the maximizer

$$
h^{(1)}(t,p) = h^{(0)}(t,p) + \frac{1}{(1-\theta)V^{(0)}(t,p)} (\sigma^{\top})^{-1} \beta(p) \nabla_p V^{(0)}(t,p)
$$

For the corresponding reward function $V^{(1)}(t,p) := V(t,p,h^{(1)})$ it holds

Lemma (*h* (1) is an improvement of $h^{(0)}$) $V^{(1)}(t, p) \geq V^{(0)}(t, p)$

Policy Improvement (cont.)

Policy improvement requires Monte-Carlo approximation of reward function

- Generate *N* paths of $p_{\mathcal{S}}^{h^{(0)}}$ starting at time *t* with $p = p_{\mathcal{S}}$
- **•** Estimate expectation $E_{t,p}[\cdot]$
- Approximate partial derivatives $V_{nk}^{(0)}$ $p_\mu^{(0)}(t,p)$ by finite differences
- Compute first iterate $h^{(1)}$

Numerical Results

Numerical Results

For $t = T_n$: nearly full information \implies correction ≈ 0

Numerical solution of HJB equation

HJB Equation

$$
V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b(p,h) V(t,p) \right\} = 0
$$

terminal condition $V(T,p) = 1$
Generator $\mathcal{L}^h g(p) = \frac{1}{2} tr \left[\beta^T(p) \beta(p) D^2 g \right] + \alpha^T(p,h) \nabla g$
 $+ \lambda \int_{\mathcal{Z}} \{ g(p + \gamma(p,z)) - g(p) \} \overline{f}(p,z) dz$

Plugging in the optimal strategy

$$
h^* = h^*(t, \rho) = \underbrace{\frac{1}{(1-\theta)}(\sigma\sigma^{\top})^{-1}\Big\{Mp + \frac{1}{V(t, \rho)}\sigma\beta(\rho)\nabla_{\rho}V(t, \rho)\Big\}}_{\text{myopic strategy}} + \text{correction}
$$

yields a nonlinear partial integro-differential equation Normalization of $p \implies$ reduction to $d-1$ "spatial" variables $d = 2$: only one "spatial" variable, ellipticity condition is satisfied

Numerical solution of HJB equation (cont.)

Conclusion

- Portfolio optimization under partial information on the drift
- **•** Investor observes stock prices and expert opinions
- Non-linear HJB-equation with a jump part
- Computation of the optimal strategy

References

- F Davis, M. and Lleo, S. (2011). Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model, arXiv:1102.5126v1.
- Frey, R., Gabih, A. and Wunderlich, R. (2012): Portfolio optimization under partial information with expert opinions. *International Journal of Theoretical and Applied Finance*,Vol. 15, No. 1.
- Nagai, H. and Runggaldier, W.J. (2008): PDE approach to utility maximization for market models with hidden Markov factors. In: *Seminar on Stochastic Analysis, Random Fields and Applications V* (R.C.Dalang, M.Dozzi, F.Russo, eds.). Progress in Probability, Vol.59, Birkhäuser Verlag, 493–506.
- Pham, H. (1998): Optimal Stopping of Controlled Jump Diffusion Processes: A R viscosity Solution Approach. *Journal of Mathematical Systems, estimations, and Control* Vol.8, No.1, 1-27.
- F Rieder, U. and Bäuerle, N. (2005): Portfolio optimization with unobservable Markov-modulated drift process. *Journal of Applied Probability* 43, 362–378
- **F** Sass, J. and Haussmann, U.G (2004): Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain. *Finance and Stochastics* 8, 553–577.