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Dynamic Portfolio Optimization

Initial capital x0 > 0

Horizon [0,T ]

Aim maximize expected utility of terminal wealth

Problem find an optimal investment strategy

How many shares

of which asset

have to be held at which time by the portfolio manager ?

Market model continuously tradable assets

drift depends on unobservable finite-state Markov chain

investor only observes stock prices and

expert opinions
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Classical Black-Scholes Model of Financial Market

(Ω,G = (Gt )t∈[0,T ],P) filtered probability space

Bond S0
t = ert , r risk-free interest rate

Stocks prices St = (S1
t , . . . ,S

n
t )>, returns dR i

t =
dSi

t

Si
t

dRt = µdt + σ dWt

µ ∈ Rn average stock return, drift

σ ∈ Rn×n volatility

Wt n-dimensional Brownian motion

parameters µ and σ are constant and known

Generalization time-dependent (non-random) parameters µ, σ, r
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Portfolio

Initial capital X0 = x0 > 0

Wealth at time t Xt = Xt ( h0
t︸ ︷︷ ︸

bond

+ h1
t︸ ︷︷ ︸

stock 1

+ . . . + hn
t︸ ︷︷ ︸

stock n

)

invested in

hk
t fractions of wealth invested in asset k

Strategy ht = (h1
t , . . . , h

n
t )
>

Self financing condition (assume r = 0 for simplicity) ⇒

Wealth equation
Xt satisfies linear SDE with initial value x0

dX (h)
t = X (h)

t h>t (µdt + σdWt )

X (h)
0 = x0
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Utility Function

U : [0,∞)→ R ∪ {−∞} strictly increasing and concave

Inada conditions lim
x↓0

U ′(x) =∞ and lim
x↑∞

U ′(x) = 0

U(x) =

{
xθ

θ for θ ∈ (−∞,1) \ {0} power utility

log x for θ = 0 log-utility

xθ−1
θ
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Optimization Problem

Wealth dX (h)
t = X (h)

t h>t (µdt + σdWt ), X (h)
0 = x0

Admissible Strategies H = {(ht )t∈[0,T ] | ht ∈ Rn,

E
[

exp
{ ∫ T

0 ||ht ||2dt
}]
<∞ }

Reward function v(t , x ,h) = Et ,x [ U(X (h)
T ) ] for h ∈ H

Value function V (t , x) = sup
h∈H

v(t , x ,h)

Find optimal strategy h∗ ∈ H such that V (0, x0) = v(0, x0,h∗)

Solution optimal fractions of wealth h∗t =
1

1− θ
(σσ>)−1µ = const

Merton (1969,1973)

using methods from dynamic programming
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Drawbacks of the Merton Strategy

Sensitive dependence of investment strategies on the drift µ of assets

Drift is hard to estimate empirically

need data over long time horizons

(other than volatility estimation)

is not constant

depends on the state of the economy

Non-intuitive strategies

for constant fraction of wealth ∈ (0,1) =⇒

sell stocks when prices increase

buy stocks when prices decrease

=⇒ Model drift as stochastic process, not directly observable
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Models With Partial Information on the Drift

Drift depends on an additional ”source of randomness”

µ = µt = µ(Yt ) with factor process Yt

Investor is not informed about factor process Yt , he only observes

Stock prices St or equivalently stock returns Rt

Expert opinions news, company reports

recommendations of analysts or rating agencies

own view about future performance

=⇒ Model with partial information

Problem Investor needs to ”learn” the drift from observable quantities

Find an estimate or filter for µ(Yt )
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Models With Partial Information on the Drift (cont.)

Linear Gaussian Model
Lakner (1998), Nagai, Peng (2002), Brendle (2006)

Drift µ(Yt ) = Yt is a mean-reversion process

dYt = α(µ− Yt )dt + βdW 1
t

where W 1
t is a Brownian motion (in)dependent of Wt
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Models With Partial Information on the Drift (cont.)

Hidden Markov Model (HMM)
Sass, Haussmann (2004), Rieder, Bäuerle (2005), Nagai, Rungaldier (2008)

Factor process Yt finite-state Markov chain, independent of Wt

state space {e1, . . . ,ed}, unit vectors in Rd

states of drift µ(Yt ) = MYt where M = (µ1, . . . , µd )

generator or rate matrix Q ∈ Rd×d

diagonal: Qkk = −λk exponential rate of leaving state k

conditional transition prob. P(Yt = el | Yt− = k ,Yt 6= Yt−) = Qkl/λk

initial distribution (π1, . . . , πd )>
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HMM Filtering

Returns dRt = dSt
St

= µ(Yt ) dt + σ dWt observations

Drift µ(Yt ) = M Yt non-observable (hidden) state

Investor Filtration F = (Ft )t∈[0,T ] with Ft = σ(Su : u ≤ t) ⊂ Gt

Filter pk
t := P(Yt = ek |Ft )

µ̂(Yt ) := E [µ(Yt )|Ft ] = µ(pt ) =
d∑

j=1
pj

t µj

Innovations process Bt := σ−1( Rt −
∫ t

0 µ̂(Ys)ds ) is an F-BM

HMM filter Liptser, Shiryaev (1974), Wonham (1965), Elliot (1993)

pk
0 = πk

dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dBt

where βk (p) = pkσ−1
(
µk −

d∑
j=1

pjµj

)
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HMM Filtering: Example
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HMM Filtering: Example
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Expert Opinions

Academic literature: drift is driven by unobservable factors
Models with partial information, apply filtering techniques

I Linear Gaussian models
I Hidden Markov models

Practitioners use static Black-Litterman model
Apply Bayesian updating to combine

subjective views (such as “asset 1 will grow by 5%”)
with empirical or implied drift estimates

Present paper combines the two approaches
consider dynamic models with partial observation
including expert opinions
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Expert Opinions

Modelled by marked point process I = (Tn,Zn) ∼ I(dt ,dz)

At random points in time Tn ∼ Poi(λ) investor observes r.v. Zn ∈ Z
Zn depends on current state YTn , density f (YTn , z)

(Zn) cond. independent given FY
T = σ(Ys : s ∈ [0,T ])

Examples
Absolute view: Zn = µ(YTn ) + σεεn, (εn) i.i.d. N(0,1)

The view “S will grow by 5%” is modelled by Zn = 0.05
σε models confidence of investor

Relative view (2 assets): Zn = µ1(YTn )− µ2(YTn ) + σ̃εεn

Investor filtration F = (Ft ) with Ft = σ(Su : u ≤ t ; (Tn,Zn) : Tn ≤ t)
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HMM Filtering - Including Expert Opinions

Extra information has no impact on filter pt between ‘information dates’ Tn

Bayesian updating at t = Tn:

pk
Tn
∝ pk

Tn− f (ek ,Zn) recall: f (YTn , z) is density of Zn given YTn

with normalizer
d∑

j=1
pj

Tn−f (ej ,Zn) =: f (pTn−,Zn)

HMM filter

pk
0 = πk

dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dBt + pk
t−

∫
Z

(
f (ek ,z)

f (pt−,z)
− 1

)
Ĩ(dt × dz)

Compensated measure Ĩ(dt×dz) := I(dt×dz)− λdt
d∑

k=1

pk
t−f (ek , z) dz︸ ︷︷ ︸

compensator
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Filter: Example
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Filter: Example
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Optimization Problem Under Partial Information

Wealth dX (h)
t = X (h)

t h>t (µ(Yt)dt + σdWt ), X (h)
0 = x0

Admissible Strategies H = {(ht )t∈[0,T ] | ht ∈ K ⊂ Rn with K compact

h is F-adapted }

Reward function v(t , x ,h) = Et ,x [ U(X (h)
T ) ] for h ∈ H

Value function V (t , x) = sup
h∈H

v(t , x ,h)

Find optimal strategy h∗ ∈ H such that V (0, x0) = v(0, x0,h∗)
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Reduction to an OP Under Full Information

Consider augmented state process (Xt ,pt )

Wealth dX (h)
t = X (h)

t h>t ( µ̂(Yt)︸ ︷︷ ︸
=M pt

dt + σdBt ), X (h)
0 = x0

Filter dpk
t =

d∑
j=1

Qjkpj
tdt + βk (pt )

>dBt

+pk
t−

∫
Z

(
f (ek ,z)
f (pt−,z)

− 1
)

Ĩ(dt × dz), pk
0 = πk

Reward function v(t , x ,p,h) = Et ,x ,p[ U(X (h)
T ) ] for h ∈ H

Value function V (t , x ,p) = sup
h∈H

v(t , x ,p,h)

Find h∗ ∈ H(0) such that V (0, x0, π) = v(0, x0, π,h∗)
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Logarithmic Utility

U(X (h)
T ) = log(X (h)

T ) = log x0 +

∫ T

0

(
h>s µ̂(Ys)− 1

2
h>sσσ

>hs

)
ds +

∫ T

0
h>sσdBs

E [U(X (h)
T )] = log x0 + E

[ ∫ T

0

(
h>s µ̂(Ys)− 1

2
h>sσσ

>hs

)
ds
]

+ 0

Optimal Strategy

h∗t = (σσ>)−1µ̂(Yt ).

Certainty equivalence principle

h∗ is obtained by replacing in the optimal strategy under full information

hfull
t = (σσ>)−1µ(Yt )

the unknown drift µ(Yt ) by its filter µ̂(Yt )
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Solution for Power Utility

Risk-sensitive control problem
Nagai & Runggaldier (2008), Davis & Lleo (2011)

Let Z h := exp
{
θ

∫ T

0
h>sσdBs −

θ2

2

∫ T

0
h>sσσ

>hsds
}

Change of measure: P(h)(A) = E [Z (h)1A] for A ∈ FT

Reward function

Et ,x ,p[U(X (h)
T )] =

xθ

θ
E (h)

t ,p

[
exp

{
−
∫ T

t
b(ps,hs)ds

}]
︸ ︷︷ ︸

=: v(t ,p,h) independent of x

where b(p,h) := −θ
(

h>Mp − 1− θ
2

h>σσ>h
)

Value function V (t ,p) = sup
h∈H

v(t ,p,h) for 0 < θ < 1

Find h∗ ∈ H such that V (0, π) = v(0, π,h∗)
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HJB-Equation

State dpt = α(pt ,ht )dt + β>(pt )dBt +
∫
Z γ(pt , z )̃I(dt × dz)

Generator Lhg(p) = 1
2 tr
[
β>(p)β(p)D2g

]
+ α>(p,h)∇g

+λ
∫
Z{g(p + γ(p, z))− g(p)}f (p, z)dz

Vt (t ,p) + sup
h∈Rn

{
LhV (t ,p)− b(p,h)V (t ,p)

}
= 0

terminal condition V (T ,p) = 1

Candidate for the Optimal Strategy

h∗ = h∗(t ,p) =
1

(1− θ)
(σσ>)−1

{
Mp +

1
V (t ,p)

σβ(p)∇pV (t ,p)
}

︸ ︷︷ ︸
myopic strategy + correction

Certainty equivalence principle does not hold
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Justification of HJB-Equation

Standard verification arguments fail, since we cannot guarantee

uniform ellipticity of the diffusion part: tr
[
β>(p)β(p)D2V

]
ξ>β>(p)β(p)ξ ≥ c|ξ|2 for some c > 0 and all ξ ∈ Rd

satisfiable only if number of assets n ≥ number of drift states d

Applying results and techniques from Pham (1998)

=⇒ V is a unique continuous viscosity solution of the HJB-equation
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Regularization of HJB-Equation

Add a ’small’ Gaussian perturbation 1√
m dB̃t to the SDE for the

first d − 1 components of the filter

Consider control problem for the modified dynamics of the filter

Modified HJB-equation has an additional diffusion term 1
2m ∆V m(t ,p)

=⇒ uniform ellipticity

Applying results from Davis & Lleo (2011)

=⇒ classical solution V m(t ,p) to the modified HJB-equation

Standard verification results can be applied

Convergence results for m→∞:

optimal strategy to the modified control problem is an
ε-optimal strategy to the original control problem
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Approximation of the optimal strategy

→ Policy Improvement

→ Numerical solution of HJB equation

Feynman-Kac formula for linearized HJB equation
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Policy Improvement

Starting approximation is the myopic strategy h(0)
t = 1

1−θ (σσ>)−1Mpt

The corresponding reward function is

V (0)(t ,p) := v(t ,p,h(0)) = Et ,p

[
exp

(
−
∫ T

t
b(p(h(0))

s ,h(0)
s )ds

)]
Consider the following optimization problem

max
h

{
LhV (0)(t ,p)− b(p,h)V (0)(t ,p)

}
with the maximizer

h(1)(t ,p) = h(0)(t ,p) +
1

(1− θ)V (0)(t ,p)
(σ>)−1β(p)∇pV (0)(t ,p)

For the corresponding reward function V (1)(t ,p) := v(t ,p,h(1)) it holds

Lemma ( h(1) is an improvement of h(0) )

V (1)(t ,p) ≥ V (0)(t ,p)
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Policy Improvement (cont.)

Policy improvement requires Monte-Carlo approximation
of reward function

V (0)(t ,p) = Et ,p

[
exp

(
−
∫ T

t
b(p(h(0))

s ,h(0)
s )ds

)]
].

Generate N paths of ph(0)

s starting at time t with p = pt

Estimate expectation Et ,p[·]

Approximate partial derivatives V (0)
pk (t ,p) by finite differences

Compute first iterate h(1)
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Numerical Results
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Numerical Results

For t = Tn : nearly full information =⇒ correction ≈ 0
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Numerical solution of HJB equation

HJB Equation

Vt (t ,p) + sup
h∈Rn

{
LhV (t ,p)− b(p,h)V (t ,p)

}
= 0

terminal condition V (T ,p) = 1

Generator Lhg(p) = 1
2 tr
[
β>(p)β(p)D2g

]
+ α>(p,h)∇g

+λ
∫
Z{g(p + γ(p, z))− g(p)}f (p, z)dz

Plugging in the optimal strategy

h∗ = h∗(t ,p) =
1

(1− θ)
(σσ>)−1

{
Mp +

1
V (t ,p)

σβ(p)∇pV (t ,p)
}

︸ ︷︷ ︸
myopic strategy + correction

yields a nonlinear partial integro-differential equation

Normalization of p =⇒ reduction to d − 1 ”spatial” variables

d = 2: only one ”spatial” variable, ellipticity condition is satisfied
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Numerical solution of HJB equation (cont.)
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Conclusion

Portfolio optimization under partial information on the drift

Investor observes stock prices and expert opinions

Non-linear HJB-equation with a jump part

Computation of the optimal strategy
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