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Second-order Least Squares Method

The model Y = g(X ;β) + ε with E (ε|X ) = 0 and E (ε2|X ) = σ2.

To estimate γ = (β′, σ2)′ with i .i .d . random sample
(Yi ,Xi ), i = 1, 2, ..., n.

The OLSE minimizes the (sum of squared) ”first-order” distances

Sn(β) =
n∑

i=1

(Yi − E (Yi |Xi ))2 =
n∑

i=1

(Yi − g(Xi ;β))2

The OLSE for σ2 is defined as σ̂2
OLS = 1

nSn(β̂OLS).

The SLSE minimizes the distances Yi − E (Yi |Xi ) and Y 2
i − E (Y 2

i |Xi )
simultaneously.

The σ̂2
SLS is obtained through optimization.



Second-order Least Squares Method

The SLSE for γ is defined as γ̂SLS = argminγ Qn(γ), where

Qn(γ) =
n∑

i=1

ρ′i (γ)Aiρi (γ),

ρi (γ) = (Yi − g(Xi ;β),Y 2
i − g2(Xi ;β)− σ2)′

and Ai = A(Xi ) is a 2× 2 n.d. weighting matrix.

Under conditions 1-4, γ̂SLS
a.s.−→ γ, as n→∞.

Under conditions 1-6,
√

n(γ̂SLS − γ)
L→ N(0,B−1CB−1), where

B = E

[
∂ρ′(γ)

∂γ
A
∂ρ(γ)

∂γ′

]
, C = E

[
∂ρ′(γ)

∂γ
Aρ(γ)ρ′(γ)A

∂ρ(γ)

∂γ′

]
.



Regularity conditions for SLSE

1 g(x ;β) is a measurable in x and continuous in β a.e.

2 E ‖A(X )‖
(
supβ g4(X ;β) + 1

)
<∞.

3 The parameter space Γ ⊂ IRp+1 is compact.

4 E [ρ(γ)− ρ(γ0)]′A(X )[ρ(γ)− ρ(γ0)] = 0 if and only if γ = γ0.

5 g(x ;β) is twice continuously differentiable w.r.t. β and

E ‖A(X )‖ supβ

(∥∥∥∂g(X ;β)
∂β

∥∥∥4
+
∥∥∥∂2g(X ;β)

∂β∂β′

∥∥∥4
)
<∞.

6 The matrix B = E
[
∂ρ′(γ)
∂γ A(X )∂ρ(γ)∂γ′

]
is nonsingular.



Efficient Choice of Weighing Matrix

How to choose A to obtain the most efficient estimator γ̂n in the class
of all SLSE?

We can show that B−1CB−1 ≥ E−1
[
∂ρ′(γ)
∂γ A0

∂ρ(γ)
∂γ′

]
and the lower

bound is attained for A = A0 in B and C , where

A0 =
[
σ2(µ4 − σ4)− µ2

3

]−1 ×(
µ4 + 4µ3g(X ;β) + 4σ2g2(X ;β)− σ4 −µ3 − 2σ2g(X ;β)

−µ3 − 2σ2g(X ;β) σ2

)
,

µ3 = E (ε3|X ) and µ4 = E (ε4|X ).

Since A0 depends on γ, a two-stage procedure can be used:
(1) minimize Qn(γ) using identity weight A = I to obtain γ̃n and
µ̂3, µ̂4 using residuals ε̂i = Yi − g(Xi ; β̃);
(2) estimate A0 using γ̃, µ̂3, µ̂4 and minimize Qn(γ) again with
A = Â0.



The Most Efficient SLS Estimator

The most efficient SLSE has asymptotic covariance matrix

C0 =

(
V
(
β̂SLS

)
µ3

µ4−σ4 V
(
σ̂2

SLS

)
G−1

2 G1

µ3

µ4−σ4 V
(
σ̂2

SLS

)
G ′1G

−1
2 V

(
σ̂2

SLS

) )
,

where

V
(
β̂SLS

)
=

(
σ2 − µ2

3

µ4 − σ4

)(
G2 −

µ2
3

σ2(µ4 − σ4)
G1G

′
1

)−1

,

V
(
σ̂2

SLS

)
=

(µ4 − σ4)
(
σ2(µ4 − σ4)− µ2

3

)
σ2(µ4 − σ4)− µ2

3G
′
1G
−1
2 G1

G1 = E

[
∂g(X ;β)

∂β

]
, G2 = E

[
∂g(X ;β)

∂β

∂g(X ;β)

∂β′

]
.



SLS and OLS Estimators

Under similar conditions, the OLSE γ̂OLS = (β̂′OLS , σ̂
2
OLS)′ has

asymptotic covariance matrix

D =

(
σ2G−1

2 µ3G
−1
2 G1

µ3G
′
1G
−1
2 µ4 − σ4

)
.

If µ3 = E (ε3) 6= 0, then
(1) V (β̂OLS)−V (β̂SLS) is p.d. when G ′1G

−1
2 G1 6= 1, and is n.d. when

G ′1G
−1
2 G1 = 1;

(2) V (σ̂2
OLS) ≥ V (σ̂2

SLS) with equality holding iff G ′1G
−1
2 G1 = 1.

If µ3 = 0, then γ̂SLS and γ̂OLS have the same asymptotic covariance
matrices.



A Simulation Study

An exponential model Y = β1 exp(−β2X ) + ε, where
ε = (χ2(3)− 3)/

√
3.

Generate data using X ∼ Uniform(0, 20) and β1 = 10, β2 = 0.6,
σ2 = 2.

Sample size n = 30, 50, 100, 200.

Monte Carlo replications N = 1000



A Simulation Study

OLS VAR MSE SLS VAR MSE

n = 30
β1 = 10 10.0315 2.0245 2.0255 10.2306 1.6380 1.6895
β2 = 0.6 0.6139 0.0189 0.0190 0.6282 0.0141 0.0149
σ2 = 2 2.0027 0.7656 0.7648 1.7026 0.3093 0.3974

n = 50 10.0238 1.4738 1.4743 10.1880 1.1669 1.2011
0.6109 0.0141 0.0142 0.6241 0.0100 0.0105
1.9763 0.5194 0.5194 1.7733 0.2430 0.2941

n = 100 9.9802 0.9863 0.9867 10.1146 0.6428 0.6553
0.6032 0.0074 0.0074 0.6133 0.0046 0.0048
2.0061 0.2693 0.2694 1.8891 0.1573 0.1695

n = 200 10.0153 0.5467 0.5469 10.0522 0.3361 0.3384
0.6028 0.0038 0.0038 0.6054 0.0023 0.0024
2.0077 0.1129 0.1129 1.9504 0.0774 0.0798



SLS and Generalized Method of Moments Estimator

GMM using the first two conditional moments minimizes

Qn(γ) =

(
n∑

i=1

ρi (γ)

)′
An

(
n∑

i=1

ρi (γ)

)
,

where ρi (γ) = (Yi − g(Xi ;β),Y 2
i − g2(Xi ;β)− σ2)′ and An is n.d.

The most efficient GMM estimator has the asymptotic covariance[
E

(
∂ρ′i (γ)

∂γ

)
A0E

(
∂ρi (γ)

∂γ′

)]−1

,

where A0 = E−1[ρi (γ)ρ′i (γ)] is the optimal weighting matrix.

We have V (β̂GMM) ≥ V (β̂SLS) and V (σ̂2
GMM) ≥ V (σ̂2

SLS).



Simple Linear Regression

The relationship of interest: Y = β0 + βxX + ε, where
Y : response variable, X : explanatory variable,
ε: is uncorrelated with X and E (ε) = 0.

Given an i .i .d . random sample (Xi ,Yi ), i = 1, 2, ..., n

The ordinary least squares estimator (MLE under normality) is
unbiased and consistent: as n→∞,

β̂x =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2

P→ Cov(X ,Y )

Var(X )
= βx .

Implicit assumption: X is directly and precisely measured.



Example of Measurement Error

Coronary heart disease in relation to systolic blood pressure:

E (Y |X ) = g(β0 + βxX , ...),

Y : CHD indicator or severity, X : long-term average SBP,
and g is a known function, e.g., logistic.

The observed SBP variable is
Z : blood pressure measured during a clinic visit on a given day

Therefore Z = X + e, where e is a random ME



Example of Measurement Error

Individual lung cancer risk and exposure to certain air pollutants:

E (Y |X ) = g(β0 + β′xX , ...),

Y : lung cancer incidence, X : individual exposure to the pollutants,
and g is a known function, e.g. logistic.

The observed exposure variable is
Z : level of pollutants measured at certain monitoring stations, or
calculated group average

Therefore X = Z + e, where e is a random ME



Example of Measurement Error

A pharmacokinetic study of the efficacy of a drug:

E (Y |X ) = g(X , β, ...),

where Y : effect of the drug; X : actual absorption of the medical
substance in bloodstream

The observed predictor is Z : predetermined dosage of the drug

Therefore X = Z + e, where e is a random ME.

Yield of a crop and the amount of fertilizer used:

Y = g(X , β, ...),

where Y : yield; X : actual absorption of the fertilizer in the crop

The actual observed predictor is Z : predetermined dose of the
fertilizer

Therefore X = Z + e, where e is a random ME.



Examples of Measurement Error

Capital asset pricing model (CAPM): Ra = β0 + β1Rm + u, where
Ra,Rm are the excess returns of an asset and true market portfolio
respectively.

Rm is unobserved and estimated by regressing on market portfolio.

A more general factor model (Fama and French (1993); Carhart
(1997)):

Ra = β0 + β1Fm + β2Fsmb + β3Fhml + β4Fumd + u

where the unobserved true factors
Fm = Rm: market effect
Fsmb: portfolio size effect (small minus big)
Fhml : book-to-market effect (high minus low)
Fumd : momentum effect (up minus down)

The constructed factors: F̂ = F + e



Examples of Measurement Error

Index option price volatilities:

V r
t = β0 + β1V

i
t + β2V

h
t−1 + εt

where V r
t ,V

i
t ,V

h
t are the realized, implied, historical volatility

respectively.

The implied volatility V i
t is estimated using some option pricing

model: V i
t = V̄ i

t + e.

Income function in labor market:
Y : personal income (wage)
X : education, experience, job-related ability, etc.
Z : schooling, working history, etc.

Consumption function of Friedman (1957):
Y : permanent consumption
X : permanent income
Z : annual income or tax data



Examples of Measurement Error

Environmental variables:
X : biomass, greenness of vegetation, etc.
Z : satellite image or spatial average

Long-term nutrition (fat, energy) intake, alcohol (smoke)
consumption, etc.
X : actual intake or consumption
Z : report on food questionnaire or 24 hour recall interview

Some demographic variables
X : education, experience, family wealth, poverty, etc.
Z : schooling, working history, tax report income, etc.



Impact of Measurement Error: A simulation study

Generate independent Xi ∼ UNIF (−2, 2), i = 1, 2, ..., n = 20

Generate independent εi ∼ N(0, 0.1) and let
Yi = β0 + βxXi + εi , where β0 = 0, βx = 1

Fit the least squares line to (Yi ,Xi )

Generate independent ei ∼ N(0, 0.5) and let Zi = Xi + ei

Fit the least squares line to (Yi ,Zi )

Repeat using σ2
e = 1, 2 respectively



Impact of Measurement Error: A simulation study
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Impact of Measurement Error: A simulation study

Generate independent Xi ∼ UNIF (0, 1), i = 1, 2, ..., n = 40

Generate Yi = sin(2πXi ) + εi , where εi ∼ N(0, 0.22)

Generate Zi = Xi + ei , where ei ∼ N(0, 0.22)

Plot (Xi ,Yi ) and (Zi ,Yi )



Impact of Measurement Error: A simulation study
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Impact of Measurement Error: Theory

The relationship of interest: Y = β0 + βxX + ε, ε|X ∼ (0, σ2)

Actual data: Y ,Z = X + e, where e is independent of X .

The naive model ignoring ME: Y = β∗0 + βzZ + ε∗

The naive least squares estimator

β̂z
P→ βz =

σ2
xβx

σ2
z

= λβx

The attenuation factor

λ =
σ2

x

σ2
x + σ2

e

≤ 1 and λ = 1 if and only if σ2
e = 0.

The LSE of the intercept: β̂∗0
P→ β∗0 = β0 + (1− λ)βxµx

The LSE of the error variance: σ̂2∗ P→ σ2∗ = σ2 + λβ2
xσ

2
e



Identifiability of Normal Linear Model

The simple linear model: Y = β0 + βxX + ε, Z = X + e

Suppose X ∼ N(µx , σ
2
x), e ∼ N(0, σ2

e ), ε ∼ N(0, σ2
ε), independent.

The joint distribution of the observed variables (Y ,Z ) is normal.

Therefore all observable information is contained in the first two
moments

E (Y ) = β0 + βxµx , E (Z ) = µx

Var(Y ) = β2
xσ

2
x + σ2

ε , Cov(Y ,Z ) = βxσ
2
x

Var(Z ) = σ2
x + σ2

e

There are 5 moment equations but 6 unknown parameters.

In practice usually ad hoc restrictions are imposed to ensure unique
solution (e.g. σ2

e , σ2
e/σ

2
ε or σ2

e/σ
2
x is known or can be estimated using

extra data).



Nonlinear Measurement Error Model

The response model: Y = g(X , β) + ε, where
Y : the response variable; X : unobserved predictor (vector);
ε: random error independent of X ; and
g is nonlinear in general, e.g., generalized linear models.

The observed predictor is Z (vector)

Classical ME: Z = X + e, e independent of X and therefore
Var(Z ) > Var(X ). E.g. blood pressure.

Berkson ME: X = Z + e, e independent of Z and therefore
Var(X ) > Var(Z ). E.g. pollutants exposure.

The two types of ME lead to different statistical structures of the full
model and therefore require different treatments.



Identifiability of Nonlinear EIV Models

The identifiability of nonlinear EIV models is a long-standing and
challenging problem.

Nonlinear models with Berkson ME are generally identifiable without
extra data:

Rudemo, Ruppert and Streibig (1989): logistic model
Huwang and Huang (2000): univariate polynomial models
Wang (2003, 2004): general nonlinear models

Nonlinear classical ME models are identifiable with replicate data:
Li (2002), Schennach (2004).

Identifiability with instrumental variables (IV):

Hausman et al. (1991): univariate polynomial models
Wang and Hsiao (1995, 2007): regression function g ∈ L1(IRk)
Schennach (2007): |g | is univariate and bounded by polynomials in IR.



Maximum Likelihood Estimation

Likelihood analysis in nonlinear EIV models is difficult, because of
intractability of the likelihood function.

Example: Suppose ε ∼ N(0, σ2
ε) and e ∼ N(0, σ2

e ).

The likelihood function is a product of the conditional density

f (y |z) =

∫
f (y |x)f (x |z)dx

=
1

2πσεσe

∫
exp

[
−(y − g(x ;β))2

2σ2
ε

− (x − z)2

2σ2
e

]
dx .

The closed form is not available for general g .

Numerical approximations such as quadrature methods result in
inconsistent estimators.



Estimation in Nonlinear ME Models

The IV method assuming that ME variance shrinks to zero as sample
size tends to infinity: Wolter and Fuller (1982), Amemiya (1985,
1990), Stefanski and Carroll (1985), Amemiya and Fuller (1988)

Assume the conditional density f (x |z) has known parametric form:
Hsiao (1989, 1992), Li and Hsiao (2004)

Univariate polynomial model with IV: Hausman et al (1991),
Hausman, Newey and Powell (1995), Cheng and Schneeweiss (1998),
Huang and Huwang (2001)

Nonlinear model with replicate data: Li (2002), Schennach (2004)

Nonlinear semiparametric model with IV: Wang and Hsiao (1995,
2007), Schennach (2007)



Estimation in Nonlinear EIV Models

Approximate estimation when ME are small:

regression calibration: Carroll and Stefanski (1990), Gleser (1990),
Rosner, Willett and Spielgelman (1990)
simulation-extrapolation (SIMEX): Cook and Stefanski (1994),
Stefanski and Cook (1995), Carroll et al (1996)

Estimation in Berkson ME models:

logistic model: Rudemo, Ruppert and Streibig (1989)
univariate polynomial model: Huwang and Huang (2000)
general nonlinear models: Wang (2003, 2004)



Identifiability of Berkson ME Model: an Example

A quadratic model with Berkson ME

Y = β0 + β1X
2 + ε, ε ∼ N(0, σ2)

X = Z + e, e ∼ N(0, σ2
e )

The first two conditional moments

E (Y |Z ) = β0 + β1σ
2
e + β1Z

2

E (Y 2|Z ) = σ2 +
(
β0 + β1σ

2
e

)2
+ 2β2

1σ
4
e

+2β1

(
β0 + 3β1σ

2
e

)
Z 2 + β2

1Z 4

All unknown parameters are identifiable by these two equations and
the nonlinear least square method.



Estimation in Berkson ME models

A Berkson ME model: Y = g(X ;β) + ε,X = Z + e, where e is
independent of Z , ε and e ∼ fe(u, ψ).

The goal is to estimate γ = (β′, ψ′, σ2)′ given random sample
(Yi ,Zi ), i = 1, 2, ..., n.

The SLSE is γ̂n = argminγ Qn(γ), where Qn(γ) =
∑n

i=1 ρ
′
i (γ)Aiρi (γ),

ρi (γ) =
(
Yi − E (Yi |Zi , γ) ,Y 2

i − E
(
Y 2

i |Zi , γ
))′

and Ai = W (Zi ) is a 2× 2 weighting matrix.

Under some regularity conditions, as n→∞, we have γ̂n
a.s.−→ γ and

√
n(γ̂n − γ)

L→ N(0,B−1CB−1), where

B = E

[
∂ρ′(γ)

∂γ
A
∂ρ(γ)

∂γ′

]
, C = E

[
∂ρ′(γ)

∂γ
Aρ(γ)ρ′(γ)A

∂ρ(γ)

∂γ′

]



SLS Estimation in Berkson ME Models: an Example

A quadratic model

Yi = β0 + β1Xi + β2X
2
i + εi ,

Xi = Zi + ei ,

where εi ∼ N(0, σ2), ei ∼ N(0, σ2
e ) independent.

Generate data using Zi ∼ N(2, 1) and
β0 = 3, β1 = 2, β2 = 1, σ2 = 1, σ2

e = 2.

Sample size n = 100

Monte Carlo replications N = 1000



Example: Quadratic Model

β0 = 3 β1 = 2 β2 = 1 σ2 = 1 σ2
e = 2

SLS1 3.046 2.052 0.995 0.983 2.028
(Std.) (0.013) (0.014) (0.010) (0.019) (0.013)
SLS2 3.024 2.048 0.975 1.073 2.026
(Std.) (0.013) (0.013) (0.010) (0.020) (0.012)
NLS 5.025 1.929 1.024 88.356 NA
(Std.) (0.064) (0.087) (0.026) (0.622) NA

SLS1: SLSE using identity weight
SLS2: SLSE using optimal weight
NLS: Naive nonlinear least squares estimates ignoring ME



Simulation-based SLS Estimator

In general the first two moments are

E (Yi |Zi , γ) =

∫
g (Z + u, β) fe(u;ψ)du

E
(
Y 2

i |Zi , γ
)

=

∫
g2 (Z + u, β) fe(u;ψ)du + σ2

If the integrals have no closed forms and the dimension is higher than
two or three, then numerical minimization of Qn(γ) is difficult.

In this case, they can be replaced by Monte Carlo simulators:

1

S

S∑
j=1

g(Zi + uij , β)fe(uij ;ψ)

h(uij)
,

1

S

S∑
j=1

g2(Zi + uij , β)fe(uij ;ψ)

h(uij)
+ σ2

where uij are generated from a known density h(u).



Simulation-based SLS Estimator

Choose a known density h(u) such that Supp(h) ⊇ Supp(fe(u;ψ)).

Generate random points uij ∼ h(u), i = 1, ..., n, j = 1, ..., 2S and
calculate ρi ,1(γ) using uij , j = 1, 2, ...,S and ρi ,2(γ) using
uij , j = S + 1,S + 2, ..., 2S

Then ρi ,1(γ) and ρi ,2(γ) are conditionally independent given data and
therefore

Qn,S(γ) =
n∑

i=1

ρ′i ,1(γ)Aiρi ,2(γ),

is an unbiased simulator for Qn(γ).

The simulation-based SLS estimator is γ̂n,S = argminγ Qn,S(γ).



Simulation-based SLS Estimator

Under the same regularity conditions for the SLSE, for any fixed S ,

γ̂n,S
a.s.−→ γ as n→∞ and

√
n(γ̂n,S − γ)

L→ N(0,B−1CSB−1), where

2CS = E

[
∂ρ′1(γ)

∂γ
W ρ2(γ)ρ′2(γ)W

∂ρ1(γ)

∂γ′

]
+ E

[
∂ρ′1(γ)

∂γ
W ρ2(γ)ρ′1(γ)W

∂ρ2(γ)

∂γ′

]
How much efficiency is lost due to simulation?

We can show that

CS = C +
1

S
M1 +

1

S2
M2,

where M1 and M2 are two constant matrices.

Therefore the efficiency loss is of order O(1/S).



Simulation-based SLSE: an Example

A linear-exponential model

Yi = β1X1i + β2 exp(−β3X2i ) + εi ,

X1i = Z1i + e1i ,X2i = Z2i + e2i ,

where εi ∼ N(0, σ2), e1i ∼ N(0, σ2
1), e2i ∼ N(0, σ2

2) independent.

Generate data using Zi ∼ N(1, 1) and
β0 = 3, β1 = 2, β2 = 1, σ2 = 1, σ2

1 = 1, σ2
2 = 1.5.

Choose h(u) to be the density of N2(0, diag(5, 5)) and S = 1000.

Sample size n = 100, and Monte Carlo replications N = 1000.



Example: Linear-Exponential Model

β1 = 3 β2 = 2 β3 = 1 σ2 = 1 σ2
1 = 1 σ2

2 = 1.5

SLS1 3.000 2.009 0.878 1.023 1.073 1.356
(Std.) (0.011) (0.008) (0.004) (0.009) (0.011) (0.007)
SLS2 2.987 2.066 0.869 1.026 1.039 1.275
(Std.) (0.009) (0.009) (0.003) (0.009) (0.010) (0.005)
SbSLS 3.002 1.898 0.947 1.000 1.003 1.319
(Std.) (0.006) (0.005) (0.004) (0.005) (0.005) (0.008)
NLS 3.215 2.391 1.017 45.557 NA NA
(Std.) (0.008) (0.007) (0.006) (3.365) NA NA

SLS1: SLSE using identity weight
SLS2: SLSE using optimal weight
SbSLS: Simulation-based SLSE using identity weight
NLS: Naive nonlinear least squares estimates ignoring ME



Estimation in Classical ME Model

A semiparametric model with classical ME and IV:

Y = g(X , β) + ε

Z = X + e

X = ΓW + U

Y ∈ IR ,Z ∈ IRk ,W ∈ IR` are observed;

X ∈ IRk , β ∈ IRp, Γ ∈ IRk×` are unobserved;

E (ε | X ,Z ,W ) = 0 and E (e | X ,W ) = 0;

U and W independent and E (U) = 0;

Suppose U ∼ fU(u;φ) which is known up to φ ∈ IRq.

X , ε and e have nonparametric distributions.



SLS-IV Estimation for Classical ME Models

Under model assumptions:

E (Z |W ) = ΓW (1)

E (Y |W ) =

∫
g(x ;β)fU(x − ΓW ;φ)dx (2)

E (YZ |W ) =

∫
xg(x ;β)fU(x − ΓW ;φ)dx (3)

E (Y 2 |W ) =

∫
g2(x ;β)fU(x − ΓW ;φ)dx + σ2

ε (4)

Γ can be estimated by the LSE Γ̂ = (
∑

ZjW
′
j )(
∑

WjW
′
j )−1.

Given Γ̂, to estimate γ = (β, φ, σ2) using (2)-(4).

The SLS-IV estimator is γ̂n = argminψ
∑n

i=1 ρ
′
i (γ)Aiρi (γ), where

ρi (γ) = (Yi −E (Yi |Wi , γ),Y 2
i −E (Y 2

i |Wi , γ),YiZi −E (YiZi |Wi , γ))′.



Example of Longitudinal Data

Orange Tree data (Draper and Smith 1981, p.524):
Trunk circumference (in mm) of 5 orange trees measured on 7
occasions over a period of 1600 days from December 31, 1968.

Trunk Circumference
Day Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81

1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 139 209 174
1582 145 203 140 214 177



Orange Tree Data
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All growth curves have a similar shape

However, the growth rate of each curve is different



Orange Tree Data

A logistic growth model

yit =
ξi

1 + exp[−(xit − β1)/β2]
+ εit ,

where

yit = circumference , i = 1, ..., 5, t = 1, ..., 7

xit = days , i = 1, ..., 5, t = 1, ..., 7

ξi is a random parameter: ξi = ϕ+ δi

ϕ is the fixed effect

δi is random effect, usually assumed δi ∼ N(0, σ2
δ )

εit ∼ N(0, σ2
ε) are i .i .d . random errors



Example of Longitudinal Data

Pharmacokinetics of cefamandole (Davidian and Giltinan 1995):
A dose of 15 mg/kg body weight is administered by ten-minute
intravenous infusion to six healthy male volunteers, and plasma
concentration is measured at 14 time points.

Subject
Time 1 2 3 4 5 6
10 127.00 120.00 154.00 181.00 253.00 140.00
15 80.00 90.10 94.00 119.00 176.00 120.00
20 47.40 70.00 84.00 84.30 150.00 106.00
30 39.90 40.10 56.00 56.10 90.30 60.40
45 24.80 24.00 37.10 39.80 69.60 60.90
60 17.90 16.10 28.90 23.30 42.50 42.20
75 11.70 11.60 25.50 22.70 30.60 26.80
90 10.90 9.20 20.00 13.00 19.60 22.00
120 5.70 5.20 12.40 8.00 13.80 14.50
150 2.55 3.00 8.30 2.40 11.40 8.80
180 1.84 1.54 4.50 1.60 6.30 6.00
240 1.50 0.73 3.40 1.10 3.80 3.00
300 0.70 0.37 1.70 0.48 1.55 1.30
360 0.34 0.19 1.19 0.29 1.22 1.03



Cefamandole Plasma Concentration
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An exponential model with two random effects

yit = ξ1i exp (−ξ2ixit) + εit

ξ1i = ϕ1 + δ1i , ξ2i = ϕ2 + δ2i



A General Nonlinear Mixed Effects Model

The model

yit = g(xit , ξi , β) + εit , t = 1, 2, ...,Ti

ξi = Ziϕ+ δi , i = 1, 2, ..., n,

where

yit ∈ IR , xit ∈ IRk , ξi ∈ IR`, β ∈ IRp, ϕ ∈ IRq

δi ∼ fδ(u;ψ), ψ ∈ IR r , independent of Zi and Xi = (xi1, xi2, ..., xiTi
)′

εit are i .i .d . and E (εit |Xi ,Zi , δi ) = 0, E (ε2it |Xi ,Zi , δi ) = σ2
ε

The goal is to estimate γ = (β, ϕ, ψ, σ2
ε)



Estimation in Mixed Effects Models

Maximum likelihood estimation:
Lindstrom and Bates (1990), Davidian and Gallant (1993), Ke and
Wang (2001), Vonesh et al. (2002), Wu (2002), Daimon and Goto
(2003), Lai and Shih (2003)

Generalized method of moments (GMM) estimation for linear (and
some nonlinear) dynamic models:
Wooldridge (1999), Arellano and Honoré (2001), Hsiao, Pesaran and
Tahmiscioglu (2002), Arellano and Carrasco (2003), Honoré and Hu
(2004)

In general, the maximum likelihood estimators are difficult to
compute and existing approximation methods rely on normality
assumption (Hartford and Davidian (2000)).



Identification Using First Two Moments: An Example

Exponential model

yit = ξ1i exp (−ξ2ixit) + εit

ξi = ϕ+ δi , δi ∼ N2 [(0, 0), diag(ψ1, ψ2)]

The first two moments of yit given Xi are

E (yit |Xi ) = ϕ1 exp
(
−ϕ2xit + ψ2x

2
it/2
)

E (yityis |Xi ) = (ϕ2
1 + ψ1) exp

[
−ϕ2(xit + xis) + ψ2(xit + xis)2/2

]
+σits

where σits = σ2
ε if t = s, and zero otherwise.

ϕ1, ϕ2 and ψ2 are identified by the first equation and the nonlinear
least squares method, while ψ1 and σ2

ε are identified by the second
equation.



Second-order Least Squares Estimator

The first two conditional moments:

µit(γ) = Eγ(yit |Xi ,Zi ) =

∫
g (xit , u, β) fδ(u − Ziϕ;ψ)du,

νits(γ) = Eγ(yityis |Xi ,Zi )

=

∫
g(xit , u, β)g(xis , u, β)fδ(u − Ziϕ;ψ)du + σits ,

where σits = σ2
ε if t = s, and zero otherwise.

The SLSE for γ is γ̂N = argminγ QN(γ), where
Qn(γ) =

∑n
i=1 ρ

′
i (γ)Aiρi (γ),

ρi (γ) = (yit − µit(γ), yityis − νits(γ), 1 ≤ t ≤ s ≤ Ti )
′

and Ai is n.d. and may depend on Xi ,Zi .



Example: Exponential Model

The model

yit = ξ1i exp (−ξ2ixit) + εit , εit ∼ N(0, σ2
ε)

ξi = ϕ+ δi , δi ∼ N2 [(0, 0), (ψ1, ψ2, ψ12)]

xit = xt ∼ Unif(0, 5)

First two moments

µit(γ) = (ϕ1 − ψ12xit) exp
(
−ϕ2xit + ψ2x

2
it/2
)

νits(γ) =
[
ψ1 + (ϕ1 − ψ12(xit + xis))2

]
×

exp
[
−ϕ2(xit + xis) + ψ2(xit + xis)2/2

]
+ σits ,

where σits = σ2
ε if t = s, and zero otherwise.

Also compute quasilikelihood estimates for ϕ1, ϕ2, ψ2, ψ12 assuming
ψ1, σ

2
ε are known.

Monte Carlo replications: 1000



Simulation 1: Exponential model with n = 20,T = 5

ϕ1 = 10 ϕ2 = 5 ψ1 = 1 ψ2 = 0.7 ψ12 = 0.5 σ2 = 1

SLS1 9.9024 4.9369 1.0032 0.6803 0.5003 0.9827
SSE 0.0499 0.0229 0.0092 0.0055 0.0055 0.0051
RMSE 1.5816 0.7264 0.2915 0.1749 0.1733 0.1612

SLS2 9.8597 4.9365 0.9940 0.6913 0.5012 0.9395
SSE 0.0442 0.0214 0.0092 0.0056 0.0055 0.0051
RMSE 1.4030 0.6785 0.2919 0.1768 0.1734 0.1722

QLE 11.2574 5.4979 - 0.6056 0.4935 -
SSE 0.0333 0.0186 - 0.0051 0.0055 -
RMSE 1.6392 0.7707 - 0.1868 0.1743 -

SLS1: SLSE using identity weight
SLS2: SLSE using optimal weight
QLE: Quasilikelihood estimates
SSE: Monte Carlo simulation standard error
RMSE: Root mean squared error



Simulation 2: Exponential model with n = 40,T = 7

ϕ1 = 10 ϕ2 = 5 ψ1 = 1 ψ2 = 0.7 ψ12 = 0.5 σ2 = 1

SLS1 9.9178 4.8742 0.9959 0.6454 0.5104 0.9915
SSE 0.0475 0.0310 0.0089 0.0048 0.0055 0.0034
RMSE 1.5029 0.9888 0.2804 0.1614 0.1732 0.1073

SLS2 9.9049 4.8969 0.9971 0.6572 0.5055 0.9332
SSE 0.0391 0.0264 0.0091 0.0052 0.0054 0.0034
RMSE 1.2404 0.8406 0.2870 0.1691 0.1709 0.1269

QLE 11.4357 5.8306 - 0.6335 0.4920 -
SSE 0.0184 0.0129 - 0.0052 0.0055 -
RMSE 1.5491 0.9246 - 0.1759 0.1739 -

SLS1: SLSE using identity weight
SLS2: SLSE using optimal weight
QLE: Quasilikelihood estimates
SSE: Monte Carlo simulation standard error
RMSE: Root mean squared error



Example: Logistic model

The model

yit =
ξi

1 + exp[−(xit − β1)/β2]
+ εit , εit ∼ N(0, σ2

ε)

ξi = ϕ+ δi , δi ∼ N(0, ψ)

xit = xt = (20, 40, ..., 20T )

First two moments

µit(γ) =
ϕ

1 + exp[(β1 − xit)/β2]

νits(γ) =
ϕ2 + ψ

(1 + exp[(β1 − xit)/β2])(1 + exp[(β1 − xis)/β2])
+ σits

Compute SLS using identity weight.

Monte Carlo replications: 500



Example: Logistic model (Cont’d)

Choose h(u) to be the density of N(0, σ2
0) with σ2

0 = 5

Generate uij ∼ h(u) with S = 1000.

Compute

µit,1(γ) =
1

S

S∑
j=1

uij

√
σ2

0/ψ exp
[
−(uij − ϕ)2/2ψ + u2

ij/2σ2
0

]
1 + exp[(β1 − xit)/β2]

,

νits,1(γ) =
1

S

S∑
j=1

u2
ij

√
σ2

0/ψ exp
[
−(uij − ϕ)2/2ψ + u2

ij/2σ2
0

]
(1 + exp[(β1 − xit)/β2])(1 + exp[(β1 − xis)/β2])

+σits

and µit,2(γ), νits,2(γ) similarly using uij , j = S + 1, ..., 2S .

Compute SBE using identity weight.



Simulation 3: Logistic model with n = 7,T = 5.

β1 = 70 β2 = 34 ϕ = 20 ψ = 9 σ2
ε = 1

SLS 69.9058 34.0463 19.8818 9.0167 1.0140
(0.0720) (0.0592) (0.0510) (0.0142) (0.0215)

SBE 69.9746 34.1314 18.9744 10.7648 0.9921
(0.1143) (0.1159) (0.1137) (0.0216) (0.0607)

SLS: SLSE using identity weight
SBE: Simulation-based estimates using identity weight
( · ): Simulation standard errors

Simulation 4: Logistic model with n = 30,T = 10.

β1 = 70 β2 = 34 ϕ = 20 ψ = 9 σ2
ε = 1

SLS 70.0203 34.0303 20.0319 8.9625 1.0016
(0.0398) (0.0395) (0.0258) (0.0128) (0.0249)

SBE 69.9754 34.2096 19.1365 10.8034 0.8936
(0.1183) (0.1146) (0.1094) (0.0180) (0.0537)



Example: Logistic model with 2 random effects

The model

yit =
ξ1i

1 + exp[−(xit − ξ2i )/β]
+ εit , εit ∼ N(0, σ2

ε)

ξi = ϕ+ δi , δi ∼ N2 [(0, 0), diag(ψ1, ψ2)]

The closed forms of the moments are not available.

Generate S = 500 points {uij} ∼ N2[(200, 700), diag(81, 81)].

Monte Carlo replications: 500

Simulation 5: Sample sizes n = 7,T = 5.
True β = 350 ϕ1 = 200 ϕ2 = 700 ψ1 = 100 ψ2 = 625 σ2

ε = 25

SBE 349.8222 199.3850 699.3057 104.8866 634.3594 25.3303
(0.5896) (0.5984) (0.5620) (0.0088) (0.0533) (0.2605)

SBE: Simulation-based estimates using identity weight
( · ): Simulation standard errors


