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Introduction

Motivation

Computation of volatility/covariance of financial asset returns plays a
central role for many issues in finance: risk management, hedging strategies,
forecasting...
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Introduction

Motivation

Computation of volatility/covariance of financial asset returns plays a central role

for many issues in finance: risk management, hedging strategies, forecasting...

Black&Scholes model - constant volatility does not account for:
heteroschedasticity, predictability, volatility smile, covariance between asset
returns and volatility (leverage effect) V
stochastic volatility models proposed to model asset price evolution and to
price options (adding risk factors represented by Brownian motions
[Heston, 1993, Hull and White, 1987, Stein and Stein, 1991, Meddahi, 2001],
jumps [Bates, 1996], or introducing memory [Hobson and Rogers, 1998])
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Introduction

Motivation

Computation of volatility/covariance of financial asset returns plays a central role
for many issues in finance: risk management, hedging strategies, forecasting...

Black&Scholes model - constant volatility) does not account for:
heteroschedasticity, predictability, volatility smile, covariance between asset returns
and volatility (leverage effect) V
stochastic volatility models proposed to model asset price evolution and to price

options (adding risk factors represented by Brownian motions

[Heston, 1993, Hull and White, 1987, Stein and Stein, 1991, Meddahi, 2001],

jumps [Bates, 1996], or introducing memory [Hobson and Rogers, 1998])

Availability of high frequency data have the potential to improve the
capability of computing volatility/covariances in an efficient way to many
extend [Andersen et al., 2006] (forecasting), [Bollerslev and Zhang, 2003]
(risk factor models), [Fleming et al., 2003] (asset allocation)....
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Introduction Outline

Outline

Definition of Fourier estimator of spot and integrated volatility/covariance

Properties of Fourier estimator with high frequency data

Potentiality of Fourier estimator for some applications:

Volatility of Volatility and Leverage
Forecasting and Asset Allocation
Quarticity
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Continuous time model

Non-parametric and model free context

Model: continuous Brownian semimartingale

(B) dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, . . . , n,

W = (W 1, . . . ,W d) are independent Brownian motions and σ∗∗ and b∗ are
adapted random processes satisfying

E [

∫ 2π

0

(bj(t))2dt] <∞, E [

∫ 2π

0

(σj
i (t))4dt] <∞ i = 1, . . . , d , j = 1, . . . ,m
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Continuous time model

Non-parametric and model free context

Model: continuous Brownian semimartingale

(B) dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, . . . , n,

W = (W 1, . . . ,W d) are independent Brownian motions and σ∗∗ and b∗ are adapted
random processes satisfying

E [

∫ 2π

0

(bj(t))2dt] <∞, E [

∫ 2π

0

(σj
i (t))4dt] <∞ i = 1, . . . , d , j = 1, . . . ,m

Objective: estimation of the time dependent volatility matrix:

Σjk(t) =
d∑

i=1

σj
i (t)σk

i (t) j , k = 1, . . . , n
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Continuous time model

Main Issues

p∗(t) asset log-price Brownian semimartingale ⇒ integrated volatility/covariance∫ t

0

Σik(s)ds = P− lim
n→∞

∑
0≤j<t2n

(
pi ((j + 1)2−n)− pi (j2−n)

)(
pk((j + 1)2−n)− pk(j2−n)

)
.

Nevertheless, when sampling high frequency returns, three difficulties arise:

1) the distortion from efficient prices due to the market microstructure noise such as
price discreteness, infrequent trading,...[Roll, 1984].
2) instantaneous volatility computation involves a sort of numerical derivative, which
gives rise to numerical instabilities
[Foster and Nelson, 1996, Comte and Renault, 1998, Mykland and Zhang, 2006]
In the multivariate case also:
3) the non-synchronicity of the arrival times of trades across markets leads to a bias
towards zero in correlations among stocks as the sampling frequency increases
[Epps, 1979]
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Fourier metod

Mean covariance [Malliavin and M. 2002, 2009]

Theorem

Consider a process p satisfying the assumption (B). Then we have:

1

2π
F(Σij) = F(dpi ) ∗B F(dpj). (1)

The convergence of the convolution product (1) is attained in probability

where, for k ∈ Z

F(dpi )(k) :=
1

2π

∫ 2π

0

exp(−ikϑ) dpi (ϑ)

(Φ ∗B Ψ)(k) := lim
N→∞

1

2N + 1

N∑
s=−N

Φ(s)Ψ(k − s)

F(Σij)(k) :=
1

2π

∫ 2π

0

exp(−ikϑ) Σij(ϑ) dϑ
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Fourier metod

Fourier instantaneous covariance computation

By the theorem we gather all the Fourier coefficients of the volatility matrix by
means of the Fourier transform of the log-returns. Then reconstruct the
cross-volatility functions Σij(t) from its Fourier coefficients by the Fourier-Fejer
summation:
let for i , j = 1, 2 and for any |k | ≤ N,

c ij
N(k) :=

1

2N + 1

∑
|s|≤N

F(dpi )(s)F(dpi )(k − s),

then

Σij(t) = lim
N→∞

∑
|k|<N

(1− |k |
N

)c ij
N(k) exp(ikt)
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Fourier estimator Consistency under asynchronous observations

Consistency

I 1
i := [t1

i , t
1
i+1[, J2

j := [t2
j , t

2
j+1[, ρ(n) := ρ1(n1) ∨ ρ2(n2) and

ρi (ni ) = maxt i
j
|t i

j+1 − t i
j |,

ck(dp1
n1

) :=
1

2π

n1−1∑
i=0

exp(−ikt1
i )(p1(t1

i+1)− p1(t1
i ))

ck(dp2
n2

) :=
1

2π

n2−1∑
j=0

exp(−ikt2
j )(p2(t2

j+1)− p2(t2
j ))

ck(Σ12) :=
1

2π

∫ 2π

0

e−iktΣ12(t)dt
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Fourier estimator Consistency under asynchronous observations

Consistency

Define for any |k| ≤ N

αk(N, p1
n1
, p2

n2
) =

2π

2N + 1

∑
|s|≤N

cs(dp1
n1

)ck−s(dp2
n2

). (2)

Suppose that Nρ(n)→ 0 as N, n→∞. Then, for any k , in probability

αk(N, p1
n1
, p2

n2
)→ ck(Σ12)

In probability, uniformly in t,

Σ̂12
n1,n2,N(t) :=

∑
|k|≤N

(1− |k |
N

)αk(N, p1
n1
, p2

n2
)eikt → Σ12(t) (3)
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Fourier estimator Consistency under asynchronous observations

Consistency of the estimator of integrated covariance

In particular the Fourier estimator of integrated covariance
∫ 2π

0
Σ12(t)dt is

Σ̂12
N,n1,n2

:=
(2π)2

2N + 1

∑
|s|≤N

cs(dp1
n1

)c−s(dp2
n2

)

Theorem

If ρ(n)N → 0, the following convergence in probability holds:

lim
n1,n2,N→∞

Σ̂12
N,n1,n2

=

∫ 2π

0

Σ12(t)dt.
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Fourier estimator Consistency under asynchronous observations

Consistency of the estimator of integrated covariance

In particular the Fourier estimator of integrated covariance
∫ 2π

0
Σ12(t)dt is

Σ̂12
N,n1,n2

:=
(2π)2

2N + 1

∑
|s|≤N

cs(dp1
n1

)c−s(dp2
n2

)

Theorem

If ρ(n)N → 0, the following convergence in probability holds:

lim
n1,n2,N→∞

Σ̂12
N,n1,n2

=

∫ 2π

0

Σ12(t)dt.

In the application we consider also the following version which preserves definite
positiveness of the covariance matrix

Σ̂12
N,n1,n2

:=
(2π)2

N + 1

∑
|s|≤N

(1− |s|
N

)cs(dp1
n1

)c−s(dp2
n2

).
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Model with microstructure noise

Model with microstructure

Consider the following model for the observed log-returns

p̃i (t) := pi (t) + ηi (t) for i = 1, 2,

Moreover the following assumptions hold:

(M)

M1. p := (p1, p2) and η := (η1, η2) are independent processes, moreover η(t) and
η(s) are independent for s 6= t and E [η(t)] = 0 for any t.
M2. E [ηi (t)ηj(t)] = ωij <∞ for any t, i , j = 1, 2.

or (MD)

the microstructure noise is correlated with the price process and there is also a
temporal dependence in the noise components
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Model with microstructure noise Integrated covariance estimators

Quadratic covariation type

The following estimators are based on the choice of a synchronization procedure,
which gives the observations times {0 = τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 2π} for both assets

Realized covariation RC 12 :=
n−1∑
i=1

δi (p1)δi (p2),

Realized covariation with leads and lags RCLL12 :=
∑

i

L∑
h=−l

δi+h(p1)δi (p2),

Realized covariance kernels estimator RCLLW 12 :=
∑

i

L∑
h=−l

w(h)δi+h(p1)δi (p2),

where δi (p∗) = p∗(τi+1)− p∗(τi ), and w(h) is a kernel.
inconsistent for asynchronous observations and inconsistent under (i.i.d)
noise, the MSE diverges as the number of observations increases; RCLL1,2,
RCLLW 1,2 more robust to microstructure noise, but they are much biased by
dependent noise contaminations [Griffin and Oomen, 2010]
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Model with microstructure noise Integrated covariance estimators

Refresh times consistent estimators

• [Barndorff-Nielsen and al., 2008a] Realized covariance kernels with refresh times
consistent for asynchronous observations/robust to some kind of noise

K 12 :=
n∑

h=−n

k

(
h

H + 1

)
Γ12

h ,

Γ12
h is h-th realised autocovariance of the two assets, k(·) belongs to a suitable

class of kernel functions (Parzen).

• [Kinnebrock and Podolskij, 2008] Modulated Realised Covariation
pre-averaging technique to reduce the microstructure effects (if one averages a
number of observed log-prices, one is closer to the latent process p(t))
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Model with microstructure noise Integrated covariance estimators

Consistent estimator

• [Hayashi and Yoshida, 2005] All-overlapping estimator

AO12 :=
∑
i,j

δI 1
i
(p1)δI 2

j
(p2)I(I 1

i ∩I 2
j 6=∅),

where δI∗i (p∗) := p∗(t∗i+1)− p∗(t∗i ). Consistent for asynchronous observations, not
robust to noise.

• [Voev et Lunde, 2007] Sub-sampled All-overlapping estimator

AO12
sub :=

1

S

S∑
s=1

AO12(s),

where the AO12(s)’s are computed on different non overlapping subgrids using
only the skip-S returns for the base asset.
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Model with microstructure noise MSE under noise and asynchronicity

MSE

regular asynchronous trading:

the asset 1 trades at regular points: Π1 = {t1
i : i = 1, . . . , n1 and t1

i+1 − t1
i = 2π

n1
}; also asset 2 trades at regular points:

Π2 = {t2
j : j = 1, . . . , n2 and t2

j+1 − t2
j = 4π

n1
}, but no trade of asset 1 occurs at the same time of a trade of asset 2

MSEAO = o(1)

MSEAOm = o(1) + 2ω11

n
2
−1∑

j=1

E [

∫ t2
j+1

t2
j

Σ22(t)dt] + 2ω22

n−1∑
i=1

E [

∫ t1
i+1

t1
i

Σ11(t)dt]+

+2(n − 1)ω11ω22
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Model with microstructure noise MSE under noise and asynchronicity

MSE

MSEAO = o(1)

MSEAOm = o(1) + 2ω11

n
2
−1∑

j=1

E [

∫ t2
j+1

t2
j

Σ22(t)dt] + 2ω22

n−1∑
i=1

E [

∫ t1
i+1

t1
i

Σ11(t)dt]+

+2(n − 1)ω11ω22

MSEF = o(1)

MSEFm = o(1) + 2ω11

n
2
−1∑

j=1

D2
N(t1

n−1 − t2
j )E [

∫ t2
j+1

t2
j

Σ22(t)dt]+

+2ω22

n−1∑
i=1

D2
N(t1

i − t2
n
2
−1)E [

∫ t1
i+1

t1
i

Σ11(t)dt] + 4ω11ω22D
2
N(t1

n−1 − t2
n
2
−1)

where DN (t) := 1
2N+1

sin[(N+ 1
2

)t]

sin t
2
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Model with microstructure noise MSE under noise and asynchronicity

Fourier estimator properties

1) uses all the available observations, no synchronization of the original data: it is
based on the integration of the time series of returns rather than on its
differentiation
2) it is designed specifically for high frequency data: by cutting the highest
frequencies, it uses as much as possible of the sample path without being more
sensitive to market frictions
3) later...
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Model with microstructure noise Montecarlo Analysis

Montecarlo Analysis

We simulate discrete data from the continuous time bivariate GARCH model[
dp1(t)
dp2(t)

]
=

[
β1σ

2
1(t)

β2σ
2
4(t)

]
dt +

[
σ1(t) σ2(t)
σ3(t) σ4(t)

] [
dW5(t)
dW6(t)

]
dσ2

i (t) = (ωi − θiσ2
i (t))dt + αiσ

2
i (t)dWi (t), i = 1, . . . , 4,

The logarithmic noises η1(t), η2(t) are i.i.d. Gaussian, possibly contemporaneously
correlated and independent from p.

We generate second-by-second return and variance paths over a daily trading period of h = 6 hours. Then we sample the observations according to

different scenarios: regular synchronous trading with durations ρ1 = ρ(n1) and ρ2 = 2ρ1; regular non-synchronous trading with durations ρ1 and

ρ2 = 2ρ1 and displacement δ · ρ1; Poisson trading with durations between trades drawn from an exponential distribution with means λ1, λ2.
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Model with microstructure noise Montecarlo Analysis

Reg-NS Reg-S + Unc Reg-NS + Unc Reg-NS + Cor

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

5.72e-4 -9.88e-3 3.35e-4 -6.09e-3 7.29e-4 -1.12e-2 4.73e-4 -8.82e-3

RC12
0.5min 2.96e-2 -1.68e-1 1.06e-3 8.80e-4 3.45e-2 -1.80e-1 3.20e-2 -1.74e-1

RC12
1min 9.14e-3 -8.44e-2 2.08e-3 2.70e-3 1.12e-2 -9.16e-2 9.74e-3 -8.65e-2

RC12
5min 1.16e-2 -1.80e-2 1.14e-2 5.00e-3 1.44e-2 -2.33e-2 1.13e-2 -1.68e-2

RCLL12
0.5min 2.88e-3 -1.68e-3 3.34e-3 2.94e-3 3.71e-3 -2.43e-3 3.15e-3 -1.55e-3

RCLL12
1min 6.40e-3 -3.13e-3 6.42e-3 5.04e-3 8.00e-3 -3.37e-4 6.13e-3 3.09e-3

RCLL12
5min 3.35e-2 1.11e-2 3.12e-2 3.15e-4 4.23e-2 -7.22e-3 3.61e-2 6.79e-3

AO12 4.72e-4 -1.20e-3 4.47e-4 -1.08e-3 6.88e-4 9.45e-4 5.98e-4 -5.91e-4

K12 9.33e-4 -8.13e-3 9.13e-4 -5.22e-4 1.28e-3 -6.32e-3 1.09e-3 -7.18e-3

MRC12 2.80e-3 -3.27e-2 2.57e-3 -2.55e-2 3.38e-3 -3.01e-2 2.91e-3 -2.87e-2

Reg-NS + Dep Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.96e-4 -6.32e-3 1.07e-3 -1.38e-2 1.18e-3 -1.53e-2 1.00e-3 -1.43e-2

RC12
0.5min 3.02e-2 -1.66e-1 3.33e-2 -1.76e-1 3.11e-2 -1.70e-1 2.91e-2 -1.64e-1

RC12
1min 9.97e-3 -8.17e-2 1.08e-2 -8.95e-2 1.05e-2 -8.85e-2 1.03e-2 -8.62e-2

RC12
5min 1.47e-2 -1.70e-2 1.28e-2 -2.50e-2 1.36e-2 -2.06e-2 1.23e-2 -2.64e-2

RCLL12
0.5min 4.42e-3 3.20e-3 3.81e-3 -7.98e-3 3.40e-3 -6.84e-3 3.73e-3 -9.08e-3

RCLL12
1min 8.06e-3 -9.21e-4 6.81e-3 -3.41e-3 7.23e-3 1.26e-3 7.80e-3 3.78e-3

RCLL12
5min 3.59e-2 -1.60e-2 3.31e-2 -3.59e-3 3.74e-2 6.35e-3 3.67e-2 -1.47e-2

AO12 7.42e-3 7.46e-2 1.29e-3 -8.75e-4 1.24e-3 9.32e-3 8.10e-3 7.49e-2

K12 5.25e-3 5.43e-2 5.88e-3 -6.35e-2 4.57e-3 -5.46e-2 2.85e-3 -1.95e-2

MRC12 3.93e-3 -1.59e-2 4.19e-3 -3.00e-2 3.71e-3 -2.71e-2 4.72e-3 -2.24e-2

Tabella: Comparison of integrated volatility estimators. The noise variance is 90% of the
total variance for 1 second returns. ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0
seconds for Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for
Poisson trading.
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Model with microstructure noise Montecarlo Analysis

Reg-S + Unc Reg-NS + Unc Reg-NS + Cor Reg-NS + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.41e-4 -6.07e-3 6.14e-4 -9.26e-3 4.84e-4 -8.06e-3 3.50e-4 -4.88e-3

RC12
0.5min 2.00e-3 4.20e-4 3.65e-2 -1.81e-1 3.41e-2 -1.78e-1 5.71e-2 -1.68e-1

RC12
1min 2.69e-3 -2.10e-3 1.22e-2 -9.36e-2 1.09e-2 -8.71e-2 2.34e-2 -8.50e-2

RC12
5min 1.10e-2 -2.29e-3 1.61e-2 -1.84e-2 1.38e-2 -1.92e-2 1.87e-2 -1.59e-2

RCLL12
0.5min 3.95e-3 -3.33e-3 5.03e-3 -1.63e-4 4.24e-3 7.19e-4 1.83e-2 -1.31e-3

RCLL12
1min 6.94e-3 1.29e-3 9.24e-3 -3.85e-3 8.14e-3 4.15e-3 1.88e-2 3.26e-3

RCLL12
5min 2.98e-2 6.90e-3 4.56e-2 -7.88e-4 3.93e-2 7.38e-4 4.14e-2 1.37e-2

AO12 1.95e-3 7.56e-4 2.18e-3 1.54e-3 2.23e-3 4.78e-3 4.42e-2 7.40e-2

K12 1.71e-3 -1.01e-3 2.18e-3 -1.90e-3 2.18e-3 2.87e-6 2.39e-2 5.62e-2

MRC12 3.19e-3 -1.54e-2 4.33e-3 -1.71e-2 3.82e-3 -1.45e-2 6.56e-3 -1.17e-2

Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

1.26e-3 -1.68e-2 1.10e-3 -1.40e-2 5.36e-4 -8.04e-3

RC12
0.5min 3.50e-2 -1.80e-1 3.00e-2 -1.63e-1 4.95e-2 -1.57e-1

RC12
1min 1.24e-2 -9.53e-2 1.09e-2 -8.32e-2 2.58e-2 -8.45e-2

RC12
5min 1.27e-2 -2.36e-2 1.48e-2 -5.81e-3 1.98e-2 -7.07e-3

RCLL12
0.5min 4.62e-3 -1.01e-2 5.61e-3 -6.71e-3 2.16e-2 -4.23e-3

RCLL12
1min 7.61e-3 -1.24e-3 9.35e-3 7.58e-3 1.90e-2 3.88e-3

RCLL12
5min 3.83e-2 -1.34e-2 4.21e-2 1.83e-2 4.43e-2 1.59e-3

AO12 2.58e-3 -3.12e-3 1.38e-2 1.06e-1 4.42e-2 8.25e-2

K12 6.95e-3 -6.62e-2 2.88e-3 -5.89e-3 2.13e-2 -9.48e-3

MRC12 5.03e-3 -2.23e-2 5.26e-3 -1.55e-2 7.78e-3 -1.13e-2

Tabella: Comparison of integrated volatility estimators. The noise is ten times the one in
Table 1. ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0 seconds for Reg-S and 2
seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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Model with microstructure noise Montecarlo Analysis

Reg-S + Unc Reg-NS + Unc Reg-NS + Cor Reg-NS + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.42e-4 -3.28e-3 3.93e-4 -4.93e-3 4.37e-4 -3.86e-3 8.67e-4 -4.90e-3

RC12
0.5min 3.81e-2 4.01e-3 6.92e-2 -1.66e-1 8.73e-2 -1.81e-1 2.00e+0 -1.47e-1

RC12
1min 2.26e-2 -4.08e-3 3.35e-2 -8.09e-2 4.31e-2 -8.67e-2 1.14e+0 -1.19e-1

RC12
5min 1.93e-2 -4.05e-3 2.21e-2 -1.48e-2 2.67e-2 -8.87e-3 2.84e-1 -5.89e-2

RCLL12
0.5min 2.77e-2 5.92e-3 3.46e-2 -1.57e-3 4.28e-2 2.48e-3 1.37e+0 -3.36e-2

RCLL12
1min 2.29e-2 -1.27e-3 2.59e-2 -9.86e-4 3.45e-2 -8.57e-3 6.82e-1 1.37e-2

RCLL12
5min 4.47e-2 1.02e-3 4.46e-2 1.02e-3 4.91e-2 1.48e-2 2.22e-1 -6.84e-4

AO12 9.76e-2 5.38e-3 7.71e-2 2.49e-2 9.23e-2 -7.94e-3 4.40e+0 -8.95e-3

K12 3.69e-2 -2.57e-3 3.80e-2 1.67e-2 4.94e-2 -7.48e-3 2.14e+0 2.44e-2

MRC12 6.42e-3 -1.66e-2 7.74e-3 -1.40e-2 8.04e-3 -9.84e-3 1.25e-2 -2.21e-2

Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

1.14e-3 -1.26e-2 5.35e-4 -5.62e-3 5.24e-4 -3.54e-3

RC12
0.5min 9.50e-2 -2.10e-1 5.11e-2 -4.78e-2 1.82e+0 -1.44e-1

RC12
1min 4.71e-2 -1.04e-1 3.00e-2 -1.54e-2 1.03e+0 -6.62e-2

RC12
5min 2.79e-2 -3.07e-2 2.39e-2 -1.75e-2 3.01e-1 -3.93e-2

RCLL12
0.5min 4.13e-2 -1.00e-2 3.70e-2 3.25e-4 1.43e+0 6.61e-2

RCLL12
1min 3.18e-2 1.08e-2 2.87e-2 -8.09e-3 6.96e-1 -3.81e-2

RCLL12
5min 5.88e-2 1.61e-2 4.39e-2 -2.27.e-3 2.40e-1 -3.03e-2

AO12 8.83e-2 5.85e-3 1.27e+0 1.07e+0 2.91e+0 1.12e-1

K12 4.87e-2 -5.59e-2 2.63e-1 4.70e-1 1.61e+0 1.83e-3

MRC12 1.23e-2 -2.12e-2 9.94e-3 -2.22e-2 1.58e-2 -2.66e-2

Tabella: Comparison of integrated volatility estimators. Increased Noise (as in
[Griffin and Oomen, 2010]). ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0 seconds for
Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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Volatility of volatility and Leverage

Again: Fourier estimator properties

1) uses all the available observations, no synchronization of the original data: it is
based on the integration of the time series of returns rather than on its
differentiation
2) it is designed specifically for high frequency data: by cutting the highest
frequencies, it uses as much as possible of the sample path without being more
sensitive to market frictions

Focus

3) it allows to reconstruct the volatility/covariance as a stochastic function of
time: we can handle the volatility function as an observable variable. This
property makes possible to iterate the volatility functor.
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Volatility of volatility and Leverage Volatility of volatility

Stochastic Volatility Model

[Barucci and M., 2010] {
dp(t) = σ(t)dW0(t) + a(t)dt
dv(t) = γ(t)dZ (t) + b(t)dt

v(t) := σ2(t) is the variance process, W0 and Z correlated Brownian motions

The second equation can be rewritten as

dv(t) = b(t)dt + α(t)dW0(t) + β(t)dW1(t)

where W0 and W1 are independent Brownian motions.

η(t)dt = dW0(t) ∗ dZ(t) ⇒ dZ(t) = η(t)dW0(t) +
√

1− η2(t)dW1(t).
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Volatility of volatility and Leverage Volatility of volatility

Method

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

1. compute the Fourier coefficients of the unobservable instantaneous variance
process v(t), t ∈ [0,T ] in terms of the Fourier coefficients of p(t) V v(t) is
reconstructed from its Fourier coefficients by the Fourier-Fejer summation method
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Volatility of volatility and Leverage Volatility of volatility

Method

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

1. compute the Fourier coefficients of the unobservable instantaneous variance process
v(t), t ∈ [0,T ] in terms of the Fourier coefficients of p(t) V v(t) is reconstructed from
its Fourier coefficients by the Fourier-Fejer summation method

2. the instantaneous variance v(t) is handled as an observable variable V we iterate the
procedure to compute the volatility of the variance process identifying the two
components: volatility of variance (γ(t)) and asset price-variance covariance (%(t))
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Volatility of volatility and Leverage Volatility of volatility

Method

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

1. compute the Fourier coefficients of the unobservable instantaneous variance process
v(t), t ∈ [0,T ] in terms of the Fourier coefficients of p(t) V v(t) is reconstructed from
its Fourier coefficients by the Fourier-Fejer summation method

2. the instantaneous variance v(t) is handled as an observable variable V we iterate the
procedure to compute the volatility of the variance process identifying the two
components: volatility of variance (γ(t)) and asset price-variance covariance (%(t))

3. finally compute η(t) by to the identity %(t) = η(t)σ(t)γ(t) with σ(t) and γ(t) a.s.
positive
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Volatility of volatility and Leverage Volatility of volatility

Volatility of volatility

Derive an estimator for Fourier coefficients (ck(γ2)) of γ2(t) given the
observations of the variance process:
By parts

ck(dvn,M) = ikck(vn,M) +
1

2π
(vn,M(2π)− vn,M(0)),

where ck(vn,M) were computed from dp

Let

ck(γ2
n,N,M) :=

2π

2N + 1

∑
|j|≤N

cj(dvn,M)ck−j(dvn,M)

If N4

M → 0 and M
5
4 ρ(n)→ 0 for n,N,M →∞

P − lim
n,N,M,L→∞

ck(γ2
n,N,M,L) = ck(γ2)
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Volatility of volatility and Leverage Leverage

Leverage

To compute the instantaneous covariance %(t) we exploit the multivariate version
of Fourier estimator.

obtain a consistent estimator of the k-th Fourier coefficient of %(t) starting
from the Fourier coefficients of the observed asset returns.

ck(%n,N,M) =
2π

2N + 1

∑
|j|≤N

cj(dpn)ck−j(dvn,M)

If N2

M → 0, N2ρ(n)→ 0 and Mρ(n)→ 0 for n,N,M →∞, then

P − lim
n,N,M→∞

ck(%n,N,M) = ck(%)
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Volatility of volatility and Leverage Leverage

(Preliminary) Montecarlo Analysis

Replicate [Bollerslev and Zhou, 2002] estimating ξ, ξη(= %) using Fourier
approach and square root process:

dp(t) =
√

v(t)dW0(t)

dv(t) = k(θ − v(t))dt + ξ
√

v(t)dZ (t)

k=mean reversion
θ=long run
ξ= volatility of variance

W0,Z are standard Brownian motions dW0(t) ∗ dZ (t) = ηdt
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Volatility of volatility and Leverage Montecarlo Analysis

Montecarlo Analysis

We consider the three parameter scenarios suggested in
[Bollerslev and Zhou, 2002]:

Scenario A : k = 0.03, θ = 0.25, ξ = 0.1,

Scenario B : k = 0.1, θ = 0.25, ξ = 0.1,

Scenario C : k = 0.1, θ = 0.25, ξ = 0.2,

Two values of η: η = −0.2 and η = −0.7
We reports average and median estimates of ξ, ξη(= %) and the corresponding
standard deviation obtained with the Fourier approach for the three sets of
parameters (daily observations).
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Volatility of volatility and Leverage Montecarlo Analysis

True values Mean Median Standard Deviation
T=1000 T=4000 T=1000 T=4000 T=1000 T=4000

Panel A
ξη = −0.02 -0.0220 -0.0221 -0.0125 -0.0262 0.2157 0.1474
ξ = 0.1 0.1040 0.1014 0.1040 0.1014 0.0890 0.0768

Panel A
ξη = −0.07 -0.0706 -0.0729 -0.0622 -0.0730 0.2201 0.2106
ξ = 0.1 0.1075 0.1048 0.1075 0.1048 0.0856 0.0138

Panel B
ξη = −0.02 -0.0181 -0.0282 -0.0177 -0.0201 0.2865 0.2488
ξ = 0.1 0.1012 0.1069 0.1012 0.1069 0.0699 0.0695

Panel B
ξη = −0.07 -0.0717 -0.0737 -0.1314 -0.0711 0.2828 0.2560
ξ = 0.1 0.1330 0.1075 0.1331 0.1075 0.1188 0.0753

Panel C
ξη = −0.04 -0.0469 -0.0409 -0.1394 -0.0373 0.2707 0.1987
ξ = 0.2 0.2023 0.2066 0.2341 0.2165 0.1474 0.0892

Panel C
ξη = −0.14 -0.1263 -0.1569 -0.1442 -0.1561 0.3380 0.0616
ξ = 0.2 0.1994 0.2006 0.1984 0.2130 0.1571 0.0926

Tabella: Average value, median value and standard deviation of ξ and of ξη for three
parameter scenarios, two correlation values and two choices of the size of the simulation
sample.

Simulation results are satisfactory. The mean and the median of the parameters obtained in Table 4 are similar to those obtained in
[Bollerslev and Zhou, 2002], only the standard deviation is slightly higher. Note that the two methodologies are different: the methodology in
[Bollerslev and Zhou, 2002] exploits the knowledge of the square root model that generates the asset price observations, our methodology instead is model
free and is able to recover the parameters of the data generating process without making a parametric assumption.
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Volatility of volatility and Leverage Montecarlo Analysis

The performance of Fourier method is comparable to the one of the parametric
method proposed in [Bollerslev and Zhou, 2002]. This exercise is only an
illustrative example to show the efficiency of the method: as a matter of fact,
parametric methods exploiting the assumption of a model, are expected to
outperform non parametric methods. Further analysis on going...
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Dynamic portfolio choice: economic gains

Portfolio choice

Evaluation of the economic benefit applying different methods of high frequency
estimation of covariance from the perspective of an asset-allocation decision
problem [Mancino et Sanfelici, 2010]:

Compare the utility obtained by virtue of covariance forecasts based on the Fourier
estimator to the utility obtained through covariance forecasts constructed using
the other estimators

Remark: we focus on covariance estimators, the results are fully justified by considering

the properties of the different estimators for both the variance and the covariance

measures
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Dynamic portfolio choice: economic gains

Portfolio choice

R f =risk-free return, Rt+1=return vector on k risky assets over a day [t, t + 1],
µt = Et [Rt+1] and Σt = Et [(Rt+1 − µt)(Rt+1 − µt)′]

Consider a mean-variance investor who solves the problem

min
wt

w ′tΣtwt subject to w ′tµt + (1− w ′t1k)R f = µp,

where wt=k-vector of portfolio weights, µp=target expected return on the
portfolio,1k = (1, . . . , 1)T . The solution to this program is

wt =
(µp − R f )Σ−1

t (µt − R f 1k)

(µt − R f 1k)′Σ−1
t (µt − R f 1k)

.

We estimate Σt using one-day-ahead forecasts Ĉt given a time series of daily
covariance estimates, obtained using some different estimators.
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Dynamic portfolio choice: economic gains

Portfolio

Given R f , µp and µt , each one-day-ahead forecast leads to a daily portfolio weight
wt : the time series of daily portfolio weights then leads to daily portfolio returns.
Choose µt = Et [Rt+1]= sample means of the returns on the risky assets over the
forecasting horizon.
We employ the investor’s long-run mean-variance utility as a metric to evaluate
the economic benefit of alternative covariance forecasts Ĉt :

U∗ = R̄p − λ

2

1

m

m∑
t=1

(Rp
t+1 − R̄p)2,

Rp
t+1 = R f + w ′t (Rt+1 − R f 1k) =return on portfolio with estimated weights wt ,

R̄p = 1
m

∑m
t=1 Rp

t+1=sample mean of portfolio returns across m ≤ n days,

λ=coefficient of risk-aversion.

M.E.Mancino (Dept. Math. for Decisions) Volatility estimation with high frequency data April 8th, 2011 39 / 56



Dynamic portfolio choice: economic gains

Portfolio

[Engle and Colacito, 2006] in order to avoid contaminations induced by noisy first
moment estimation, consider the variance component of U∗

U =
λ

2

1

m

m∑
t=1

(Rp
t+1 − R̄p)2,

UA − UB the fee that the investor would be willing to pay to switch from
covariance forecasts based on estimator A to covariance forecasts based on
estimator B

Implementation: Rf =0.03 (converted to daily values by dividing by 250), three
targets µp, namely 0.09, 0.12, 0.15. For all times t, the conditional covariance
matrix is computed as an out-of-sample forecast based on the different
variance/covariance estimates
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Dynamic portfolio choice: economic gains

Portfolio

Method µp = 0.09 µp = 0.12 µp = 0.15
λ 2 7 10 2 7 10 2 7 10

RC1min 1.907 6.675 9.536 4.291 15.019 21.456 7.629 26.701 38.144

RC5min 0.361 1.262 1.803 0.811 2.839 4.056 1.442 5.048 7.211

RC10min 1.801 6.303 9.004 4.052 14.181 20.258 7.203 25.210 36.014

RCLL1min -1.817 -6.359 -9.084 -4.088 -14.308 -20.439 -7.267 -25.436 -36.337

RCLL5min 3.245 11.359 16.227 7.302 25.557 36.510 12.981 45.435 64.906

RCLL10min 8.587 30.056 42.937 19.321 67.625 96.607 34.349 120.222 171.746

RCopt 0.110 0.385 0.551 0.248 0.867 1.239 0.441 1.542 2.203
AO 5.236 18.326 26.180 11.781 41.133 58.905 20.944 73.304 104.720
KER -1.169 -4.090 -5.844 -2.630 -9.204 -13.148 -4.675 -16.362 -23.374
SUB -0.980 -3.429 -4.898 -2.204 -7.714 -11.020 -3.918 -13.714 -19.592

Tabella: Annualized fees U Ĉ − UFourier that a mean-variance investor would be willing to
pay to switch from Ĉ to Fourier estimates. Case ω

1/2
ii = 0.002.

Note: a positive number is evidence in favor of of better performance of
Fourier estimator over Ĉ
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Dynamic portfolio choice: economic gains

Portfolio

Method µp = 0.09 µp = 0.12 µp = 0.15
λ 2 7 10 2 7 10 2 7 10

RC1min 4.673 16.355 23.364 10.514 36.799 52.570 18.691 65.420 93.457

RC5min 2.803 9.811 14.015 6.307 22.074 31.535 11.212 39.243 56.061

RC10min 3.505 12.268 17.526 7.887 27.603 39.433 14.020 49.072 70.103

RCLL1min 0.747 2.613 3.733 1.680 5.880 8.399 2.986 10.452 14.932

RCLL5min 5.145 18.009 25.727 11.577 40.520 57.886 20.582 72.036 102.909

RCLL10min 5.247 18.363 26233 11.805 41.317 59.024 20.986 73.452 104.931

RCopt 2.168 7.588 10.840 4.878 17.073 24.390 8.672 30.352 43.360
AO 4.206 14.722 21.032 9.464 33.125 47.322 16.826 58.889 84.128
KER 3.088 10.808 15.440 6.948 24.318 34.740 12.352 43.232 61.760
SUB 1.644 5.755 8.221 3.700 12.948 18497 6.577 23.018 32.883

Tabella: Annualized fees U Ĉ − UFourier that a mean-variance investor would be willing to
pay to switch from Ĉ to Fourier estimates. Case ω

1/2
ii = 0.004.
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Dynamic portfolio choice: economic gains

Portfolio

Method µp = 0.09 µp = 0.12 µp = 0.15
λ 2 7 10 2 7 10 2 7 10

RC1min 4.944 17.305 24.722 11.125 38.937 55.624 19.778 69.221 98.887

RC5min 1.805 6.316 9.023 4.060 14.211 20.301 7.218 25.264 36.091

RC10min 2.311 8.090 11.557 5.201 18.202 26.002 9.245 32.359 46.227

RCLL1min -0.66 -0.232 -0.332 -0.149 -0.522 -0.746 -0.265 -0.929 -1.327

RCLL5min 2.823 9.880 14.115 6.352 22.231 31.758 11.292 39521 56.458

RCLL10min 4.689 16.412 23.446 10.551 36.927 52.753 18.757 65.649 93.784

RCopt 1.555 5.442 7.774 3.498 12.243 17.491 6.219 21.766 31.094
AO 8.509 29.782 42.546 19.146 67.010 95.728 34.037 119.128 170.183
KER 0.918 3.213 4.590 2.066 7.229 10.328 3.672 12.852 18.360
SUB -0.417 -0.461 -2.087 -0.939 -3.287 -4.695 -1.669 -5.843 -8.347

Tabella: Annualized fees U Ĉ − UFourier that a mean-variance investor would be willing to
pay to switch from Ĉ to Fourier estimates. Dependent noise, with ω

1/2
ii = 0.004.
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Quarticity estimator

In order to produce feasible central limit theorems for all the estimators, and as
a consequence feasible confidence intervals, it is necessary to obtain efficient
estimators of the so called quarticity, which appears as conditional variance in
the central limit theorems.

Nevertheless, the studies about estimation of quarticity are still few:
[Barndorff-Nielsen and al., 2008a] remark that
estimating integrated quarticity reasonably efficiently is a tougher problem than
estimating the integrated volatility, as the effect of noise is magnified up.
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Quarticity estimator

Let p be a semi-martingale p satisfying assumption (B)

F(σ2)(k) = lim
N→∞

2π

2N + 1

∑
|s|≤N

F(dp)(s)F(dp)(k − s), for all k ∈ Z.

The second step consists in the computation of the k-th Fourier coefficient of
σ4(t).

Theorem

The k-th Fourier coefficient of the function σ4(t) is obtained as the following limit
in probability

F(σ4)(k) = lim
M→∞

∑
|s|<M

(1− |s|
M

)F(σ2)(s)F(σ2)(k − s).
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Quarticity estimator Consistency

Consistency

Fourier estimator of quarticity by

σ4
n,N,M := 2π

∑
|s|<M

(1− |s|
M

)cs(σ2
n,N)c−s(σ2

n,N). (4)

Theorem

Let σ4
n,N,M defined in (4). If NMρ(n)→ 0 and M2

N → 0 as M,N, n→∞, then
the following convergence in probability holds

lim
n,N,M→∞

σ4
n,N,M =

∫ 2π

0

σ4(t)dt.
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Quarticity estimator Montecarlo Analysis

We simulate second-by-second return and variance paths over a daily trading
period of T = 6 hours, for a total of 252 trading days and n = 21600 observation
per day
CIR square-root model :

dp(t) = σ(t) dW1(t)
dσ2(t) = α(β − σ2(t))dt + νσ(t) dW2(t),

(5)

where W1, W2 are independent Brownian motions.
(Parameters α = 0.01, β = 1.0, ν = 0.05. The initial value of σ2 is set equal to
one, while p(0) = log 100)

M.E.Mancino (Dept. Math. for Decisions) Volatility estimation with high frequency data April 8th, 2011 47 / 56



Quarticity estimator Montecarlo Analysis

RQ :=
n

3T

n−1∑
i=0

δi (p)4 [Barndorff-Nielsen and Shephard, 2002]

RQsub :=
1

S

S∑
s=1

RQ(s) [Ghysels and Sinko, 2007]

where the RQ(s)’s are computed on different non overlapping subgrids using skip-S returns

BQ :=
n

T

n−1∑
i=1

|δi (p)|2|δi−1(p)|2 realized bipower quarticity [Barndorff-Nielsen and Shephard, 2004a]

TQ1 := µ
−3
4/3

n2

(n − 2)T

n−1∑
i=2

|δi (p)|4/3|δi−1(p)|4/3|δi−2(p)|4/3 realized tripower quarticity

(µp = E(|Z|p ), Z is a standard normally distributed random variable)

TQ(k) := µ
−3
4/3

n2

(n − 2 − 2k)T

n−1∑
i=2+2k

|δi (p)|4/3|δi−(1+k)(p)|4/3|δi−2(1+k)(p)|4/3 [Andersen et al., 2006]

QQ := µ
−4
1

n

T

n−1∑
i=3

|δi (p)||δi−1(p)||δi−2(p)||δi−3(p)| realized quadpower quarticity [Barndorff-Nielsen and Shephard, 2006]

Qav =
1

3θ2ψ2
2

n−kn+1∑
i=0

(p̄n
i )4 −

ρ(n)ψ1

θ4ψ2
2

n−2kn+1∑
i=0

(p̄n
i )2

i+2kn−1∑
j=i+kn

(δj (p))2 +
ρ(n)ψ2

1

4θ4ψ2
2

n−3∑
i=0

(δi (p))2(δi+2(p))2
,

[Jacod et al., 2009], where the pre-averaged price process is

p̄n
i =

1

kn

 kn−1∑
j=kn/2

pi+j −
kn/2−1∑

j=0

pi+j

 , θ = kn

√
ρ(n), ψ1 = 1, ψ2 = 1/12.
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Quarticity estimator Montecarlo Analysis

NotF - average F - average NotF - day by day F - day by day

MSE BIAS MSE BIAS MSE BIAS MSE BIAS

Fourier 5.95e-004 1.42e-004 6.62e-004 5.44e-003 1.47e-006 5.54e-005 9.38e-004 2.96e-002
RQ 9.07e-004 3.42e-004 7.90e-004 -7.11e-004 3.97e-005 -2.74e-004 7.84e-004 -1.58e-003
BQ 1.02e-003 -1.40e-003 8.12e-004 -1.91e-003 5.84e-005 -5.47e-004 9.76e-004 -2.27e-003
Q 1.29e-003 1.21e-003 1.19e-003 -1.09e-004 3.89e-005 -3.70e-004 1.19e-003 -1.23e-003
TQ1 1.05e-003 -2.61e-003 9.51e-004 -1.94e-003 4.68e-005 -3.80e-004 1.22e-003 -8.90e-004
TQ2 1.05e-003 -3.28e-003 9.49e-004 -2.57e-003 4.78e-005 -4.40e-004 1.22e-003 -1.52e-003

TQ(k) 1.10e-003 -1.10e-003 1.06e-003 -1.76e-003 5.23e-005 -6.76e-004 1.16e-003 -3.32e-003
QQ 1.09e-003 -3.94e-003 1.07e-003 -2.60e-003 4.35e-005 -2.89e-004 1.36e-003 -1.89e-003
RQsub 8.15e-004 -1.31e-003 4.84e-004 -1.20e-003 5.66e-004 -2.79e-003 4.89e-004 -2.11e-003
BQsub 7.24e-004 -1.36e-002 8.67e-004 -2.02e-002 5.15e-004 -1.60e-002 1.04e-003 -2.51e-002
Qav 3.04e-004 -6.47e-003 3.22e-004 -1.12e-002 1.35e-004 -5.16e-003 3.12e-004 -1.07e-002

Tabella: No noise. F stand for feasible optimization; average means that we optimize the
MSE averaged over the 252 trading days, while day by day means that the optimization
is performed on each day separately.
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Quarticity estimator Montecarlo Analysis

NotF - average F - average NotF - day by day F - day by day

MSE BIAS MSE BIAS MSE BIAS MSE BIAS

Fourier 6.71e-004 6.72e-003 8.87e-004 1.45e-002 3.13e-006 1.14e-004 1.45e-003 3.73e-002
RQ 5.30e-003 2.60e-002 5.44e-003 3.18e-002 1.07e-004 1.65e-003 4.63e-003 2.71e-002
BQ 5.26e-003 3.37e-002 5.67e-003 3.01e-002 8.70e-005 1.18e-003 5.51e-003 2.87e-002
Q 6.83e-003 2.59e-002 7.45e-003 3.26e-002 7.71e-005 -2.71e-004 6.00e-003 2.63e-002
TQ1 6.27e-003 3.65e-002 7.34e-003 3.75e-002 9.94e-005 6.48e-004 6.38e-003 3.05e-002
TQ2 5.98e-003 3.37e-002 6.99e-003 3.44e-002 9.01e-005 3.73e-005 6.10e-003 2.74e-002

TQ(k) 6.87e-003 3.39e-002 8.41e-003 3.90e-002 1.31e-004 4.66e-004 7.22e-003 2.78e-002
QQ 6.23e-003 3.13e-002 7.21e-003 3.34e-002 7.74e-005 -3.37e-004 6.47e-003 2.70e-002
RQsub 3.16e-003 2.85e-002 3.17e-003 2.78e-002 2.11e-003 3.00e-002 3.24e-003 2.68e-002
BQsub 7.59e-004 -1.43e-002 2.41e-003 -9.56e-003 5.09e-004 -1.59e-002 2.36e-003 -1.01e-002
Qav 3.39e-004 -6.81e-003 4.36e-004 -3.37e-003 1.23e-004 -4.28e-003 4.42e-004 -3.65e-003

Tabella: Microstructure effects. ξ = 4.6341e − 005.
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Conclusion

Conclusion

We have proved that the Fourier estimator of covariance is:
(i) consistent under asynchronous trading,
(ii) positive definite,
(iii) asymptotically unbiased in the presence of various types of microstructure
noise,
(iv) inconsistent in the presence of microstructure noise, nevertheless the MSE of
the Fourier estimator converges to a constant as the number of observations
increases
(v) further it allows to treat volatility as an observable variable
V a very interesting alternative especially when microstructure effects are
particularly relevant in the available data
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A tale of two time scales: determining integrated volatility with noisy high frequency data. Journal of the American Statistical Association, 100
(472), 1394-1411.

M.E.Mancino (Dept. Math. for Decisions) Volatility estimation with high frequency data April 8th, 2011 55 / 56


	Introduction
	Outline

	Continuous time model
	Fourier metod
	Fourier estimator
	Consistency under asynchronous observations

	Model with microstructure noise
	Integrated covariance estimators
	MSE under noise and asynchronicity
	Montecarlo Analysis

	Volatility of volatility and Leverage
	Volatility of volatility
	Leverage
	Montecarlo Analysis

	Dynamic portfolio choice: economic gains
	Quarticity estimator
	Consistency
	Montecarlo Analysis

	Conclusion
	References

