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Composite Likelihoods
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Intractable likelihoods

Likelihoods often difficult to evaluate or specify in
‘modern’ (?) applications

Typical obstacles:

– large dense covariance matrices

– high-dimensional integrals

– normalization constants

– nuisance components

– . . .

For example, models with unobservables

L(θ; y) =
∫

f (y|u; θ)f (u; θ)du

Hard when the integral is high-dimensional like in
spatial-temporal statistics
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What are composite likelihoods?

Suppose intractable likelihood but low-dimensional
distributions readily computed

Solution: combine low-dimensional terms to construct
a pseudolikelihood

General setup:
– collection of marginal or conditional events
{A1, . . . , AK }

– associated component likelihoods
Lk(θ; y) ∝ f (y ∈ Ak; θ)

A composite likelihood is the weighted product

CL(θ; y) =
K∏

k=1

Lk(θ; y)wk

for some weights wk > 0
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Major credit. . .

Bruce G Lindsay (1988). Composite likelihood
methods. Contemporary Mathematics
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Marginal or conditional?

Marginal:

– independence likelihood CL(θ) =
∏

i f (yi ; θ)

– pairwise likelihood CL(θ) =
∏

i
∏

j f (yi , yj; θ)

– tripletwise CL(θ) =
∏

i
∏

j
∏

k f (yi , yj, yk; θ)

– blockwise . . .

Conditional:

– Besag pseudolikelihood
CL(θ) =

∏
i f (yi |neighbours of yi ; θ)

– full conditionals CL(θ) =
∏

i f (yi |y(i); θ)

– pairwise conditional CL(θ) =
∏

i
∏

j f (yi |yj; θ)
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Integrals...

Spatial generalized linear model:

E(Yi |ui) = g(x>
i β+ ui)

where ui realization of a Gaussian random field

Likelihood function:

L(θ; y) =
∫
Rn

f (u1, . . . , un; θ)
n∏

i=1

f (yi |ui ; θ)dui

where f (u1, . . . , un; θ) is density of multivariate normal
with dense covariance matrix

Pairwise likelihood:

PL(θ; y) =
∏

i

∏
j

{∫
R2

f (ui , uj; θ)f (yi |ui ; θ)f (yj |uj; θ)duiduj

}wij
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Names...

Many names for just the same thing:

– composite likelihood

– pseudolikelihood

– quasi-likelihood

– limited information method

– approximate likelihood

– split-data likelihood

– . . .

Comments:

– pseudo- and approximate likelihood too unspecific

– quasi-likelihood could be confused with the
popular method for generalized linear models
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Terminology

Log composite likelihood

cl(θ) = log CL(θ)

Composite score

ucl(θ) = ∂cl(θ)/∂θ

Maximum composite likelihood estimator

ucl(θ̂cl) = 0

Variability matrix

k(θ) = Var{ucl(θ; Y )}

Sensitivity matrix (Fisher information)

i(θ) = E{−∂ucl(θ; Y )/∂θ}

Godambe information (sandwich information)

g(θ) = i(θ)k(θ)−1i(θ)
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Why it works?

Two arguments

First argument: The composite score function

ucl(θ) =
∑

k

wk
∂

∂θ
log Lk(θ; y)

is a linear combination of ‘valid’ likelihood score
functions

Unbiased under usually regularity conditions on each
likelihood component

Asymptotic theory derived from standard estimating
equations theory
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Why it works? (cont’d)

Second argument: θ̂CL converges to the minimizer of
the composite Kullback-Leibler divergence

CKL(θ) =
∑

k

wkEh

[
log
{

h(y ∈ Ak)

f (y ∈ Ak; θ)

}]
where h(·) is ‘density’ of the ‘true’ model

For example, the maximum pairwise likelihood
estimator converges to the minimizer of

CKL(θ) =
∑
(i,j)

w(i,j)

∫
log
{

h(yi , yj)

f (yi , yj; θ)

}
h(yi , yj)dyidyj

Measure the distance from the true model only with
bivariate aspects of the data

Apply directly the theory of misspecified likelihoods
(White, 1982) with KL divergence replaced by CKL
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Limit distribution

Y is an m-dimensional vector

Sample y1, . . . , yn from f (y; θ)

Asymptotic consistency and normality for n →∞ and
m fixed √

n(θ̂cl − θ) ∼ N {0, g(θ)−1}

Sandwich-type asymptotic variance

g(θ)−1 = i(θ)−1k(θ)i(θ)−1

In the full likelihood case, we have i(θ) = k(θ)

More difficult if n fixed and m →∞, need assumptions
on replication

For example, time series and spatial models require
certain mixing properties
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Significance functions

Composite likelihood versions of Wald and score
statistics easily constructed

we(θ) = (θ̂cl − θ)
>g(θ)(θ̂cl − θ)

d→ χ2
p (dim(θ) = p)

wu(θ) = uc(θ)
>g(θ)−1uc(θ)

d→ χ2
p

Composite likelihood ratio statistic with non-standard
limit

w(θ) = 2{cl(θ̂cl) − cl(θ)} d→
p∑

i=1

λiZ2
i

with λi eigenvalues of i(θ)g(θ)−1 and Zi
iid
∼ N(0, 1)

Various proposals to ‘calibrate’ w(θ): Satterthwaite
approx, rescaling, Saddlepoint (Pace et al., 2011)
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Bayesian composite likelihoods

Composite posterior

πc(θ|y) =
CL(θ; y)π(θ)∫
CL(θ; y)π(θ)dθ

Overly precise inferences using directly the composite
likelihood (Pauli et al., 2011; Ribatet et al., 2012)

The curvature of CL needs to be adjusted... just the
same problem of the composite likelihood ratio
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Model selection

Model selection with the composite likelihood
information criterion (Varin and Vidoni, 2005)

CLIC = −2cl(θ̂cl) + 2 trace{i(θ)−1g(θ)}

Penalty trace{i(θ)−1g(θ)} accounts for the ‘effective
number of parameters’

Reduce to AIC when i(θ) = g(θ)

But reliable estimation of the model penalty often hard

Gong and Song (2011) derive BIC for composite
likelihoods
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Where are composite likelihood used?

Lots of application areas already, still growing rapidly

Popular application areas include

– genetics

– geostatistics

– correlated random effects (longitudinal data, time
series, spatial models, network data)

– spatial extremes

– financial econometrics

Some references (already a bit outdated) in Varin, Reid
and Firth (2011)
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Efficiency?

Usually high efficiency when n →∞ and fixed m
(longitudinal and clustered data)

Performance when m →∞ and n fixed (single long
time series, spatial data) depends on the dependence
structure

Some form of pseudo-replication is needed for
acceptable efficiency when m →∞ and n fixed

Usually more efficient for discrete/categorical than
continuous data

Carefull selection of likelihood components may
improve efficiency
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Some simple illustrations

Composite Likelihood Estimation ,



Symmetric normal
Cox and Reid (2004)

Efficiency of maximum pairwise likelihood for model

Yi
iid
∼ Nm(0, R) Var(Yir) = 1 Cor(Yir , Yis) = ρ

(n independent vectors of size m)

731Miscellanea

The associated score function is

U
2
(r; Y (1), . . . , Y (n) )=

nq(q−1)r
2(1−r2 )

−
1+r2+2(q−1)r
2(1−r2 )2


W
+
(q−1)(1−r)2
2(1−r2 )2


B
q

and the asymptotic variance of rA is

avar (rA )=
2

nq(q−1)
(1−r)2c(q, r)
(1+r2 )2

,

where

c(q, r)= (1−r)2 (3r2+1)+qr(−3r3+8r2−3r+2)+q2r2 (1−r)2.

This may be compared to the variance of the maximum likelihood estimator using the full model,

avar (r@ )=
2

nq(q−1)
{1+ (q−1)r}2 (1−r)2

1+ (q−1)r2
.

This ratio is 1 for q=2, as expected, and is also 1 if r=0 or 1, for any value of q. Figure 1 illustrates
the loss of information with increasing q.

Fig. 1. Ratio of asymptotic variance of r@ to rA , as a function of r,
for fixed q. At q=2 the ratio is identically 1. The lines shown are

for q=3, 5, 8, 10 (descending).

2. E : L q

In § 1 we consider fixed q as n increases. We now look at the problem where a small number n
of individually large sequences is available, i.e. we let q increase for fixed n. This includes the
possibility of observing a single replicate of a process in which substantial and possibly complicated
internal dependencies are present. The case that n and q increase simultaneously, for example in a
fixed ratio, may also be of interest.
While the estimating equation U

n
(hA ; Y )=0 is unbiased, this no longer implies satisfactory

properties of the resulting estimator.
Consider first the estimating equation U1 (h

A ; Y )=0, still assuming for simplicity that h is a scalar.
We expand formally around h to obtain, to the first order,

q−1∑ U
1s
(h)+q−1 (hA−h) ∑ U∞

1s
(h)=0.

Efficiency for fixed m = 3, 5, 8, 10
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Truncated symmetric normal
Cox and Reid (2004)

Vectors of binary correlated variables generated
truncating the symmetric normal model of the
previous slide

Efficiency of maximum pairwise likelihood for m = 10:

ρ .02 .05 .12 .20 .40 .50
ARE .998 .995 .992 .968 .953 .968
ρ .60 .70 .80 .90 .95 .98

ARE .953 .903 .900 .874 .869 .850
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Symmetric normal: large m fixed n
Cox and Reid (2004)

Symmetric normal

Var(ρ̂pair) =
2

n m(m − 1)
(1 − ρ2)

(1 + ρ2)2
c(m2, ρ4)

O(n−1) O(1)

n →∞ m →∞
Truncated symmetric normal

Var(ρ̂pair) =
1
n

4π2

m2
(1 − ρ2)

(m − 1)2
c(m4)

O(n−1) O(1)

n →∞ m →∞
not consistent if m →∞, n fixed!
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Autoregressive model with additive noise
Varin and Vidoni (2009)

Autoregressive model with additive noise

Yt = β+ Xt + Vt , Vt
iid
∼ N(0,σ2)

Xt = γXt−1 + Wt , Wt
iid
∼ N(0, τ2), |γ| < 1

Pairwise likelihood of order d:

PL(d)(θ; y) =
n∏

r=d+1

d∏
s=1

f (yr , yr−s; θ)

In the special case of no observation noise (σ2 = 0),
PL(1) fully efficient. But PL(d) is increasingly
inefficient as d increases.

What happens when there is observation noise?
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Relative efficiency based on 1,000 simulated series of
length 500 with β = 0.1,σ = 1.0,γ = 0.95, τ = 0.55
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The spatial lorelogram
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Spatial clustered data

Clustered data often analyzed under the assumption
that observations from distinct clusters are
independent

But what when clusters are associated with different
locations within a study region?

For example, public health studies involving clusters
of patients nested within larger units such as
hospitals, districts or villages

Spatial dependence between adjacent clusters is often
a proxy for unobserved geographical or
socio-economical covariates
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Prevalence of Malaria in Gambia
Thomson et al. (1999)

Study on malaria prevalence in children of Gambia

Data gambia in the geoR package (Diggle and Ribeiro,
2007)

2043 children from 65 villages

Binary response: malaria in a child blood sample?

Covariates:
– child age
– child regularly sleeps under a bed-net or not?
– bed-net treated or not?
– satellite-derived measure of the green-ness

around the village
– an health center in the village?
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Prevalence of Malaria in Gambia

Source: Thompson et al. (1999)
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Generalized Estimating Equations
Liang and Zeger (1986)

Marginal logistic regression

logit(πi) = x>
i β,

where πi = P(Yi = 1)

Generalized Estimating Equations (GEEs):

– solve optimal estimating equations for β(
∂π

∂β

)>
V−1(y − π) = 0,

where Y = (Y1, . . . , Yn) and π = (π1, . . . ,πn)

– using a ‘working’ variance matrix V = Var(Y )
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Pairwise odds ratios

The original GEEs receipt assumes orthogonal
parameterization of marginal parameters and
correlations

But correlations between binary variables are
(severely) constrained by univariate marginals (Fréchet
bounds)!

A better measure of the dependence between binary
variables is the pairwise odds ratio

ψij =
πij (1 − πij − πi − πj)

(πi − πij) (πj − πij)

where πij = P(Yi = 1, Yj = 1)

ψij is unconstrained by univariate marginals
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The spatial lorelogram

Extension of the lorelogram of Heagerty and Zeger
(1998) to the spatial context

The logarithm of the pairwise odds ratio assumed to
be a function of the observation coordinates

Isotropic spatial lorelogram:

logψij = γ(dij),

where dij is the distance between the observations and
γ(·) is a ‘suitable’ function

How to specify function γ(·)? The expected behavior of
isotropic lorelograms just the same of isotropic spatial
covariance functions. . .
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Spatial lorelogram models

Parametric spatial lorelogram models

γ(dij;α) = α11(dij = 0) + α2ρ(dij;α3)

Ingredients:

– α1 nugget effect

– α2 and α3 describe the strength of spatial
dependence

– ρ(·) is a spatial correlation function (Gaussian,
exponential, Matérn, spherical, wave, etc.)
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between clusters distance
(λ2 = 2.71, λ3 = 0.5) (λ2 = 1.79, λ3 = 1.5) (λ2 = 1.46, λ3 = 2.5)

}nugget effect
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Hybrid pairwise likelihood
Kuk (2007)

Plan: modify GEEs for estimation of the spatial
lorelogram model

The hybrid pairwise likelihood method iterates
between:

– estimation of β given α using optimal estimating
equations

– estimation of α given β using pairwise likelihood

log PL(θ) =
∑
i<j

wij(d) log f (yi , yj; θ), wij = 1(dij < d)

In the special case of no spatial dependence, the
method is equivalent to alternating logistic regression
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Parameter orthogonality

Why the hybrid pairwise likelihood is attractive?

First order expansion(
β̂− β

α̂− α

)
.
=

(
Iβ,β Iβ,α

Iα,β Iα,α

)(
(∂π/∂β)>V−1(y − π)

∂ log PL/∂α

)
where

– Iβ,β = (∂π/∂β)>V−1(∂π/∂β)

– Iβ,α = 0 by construction
– Iα,β = 0 for the orthogonality of the pairwise odds

ratio with respect to univariate marginals
– Iα,α = E(−∂2 log PL/∂α∂α>)

Consequences:
– β̂ and α̂ asymptotically independent!
– α̂ when β is given varies only slowly with β (and

viceversa)
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Gambia data

Preliminary identification with the empirical
lorelogram
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Best fitting given by the wave model with nugget effect:

logψij = α11(dij = 0) + α2(α3/dij)sin(dij/α3)

with α̂1 = 0.33, α̂2 = 0.15 and α̂3 = 8.14
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Gambia data (cont’d)

Estimated regression parameters:
Estimate Std. Error z value

Intercept 8.01 3.58 2.24
age ×103 0.59 0.11 5.63
netuse -0.38 0.14 -2.65
treated -0.35 0.18 -1.91
green -0.41 0.15 -2.67
I(green2)×102 0.46 0.16 2.87
health center -0.28 0.20 -1.41

Traditional GEEs analysis assuming independence
between villages indicates instead a significant effect
of treated

But residual analysis indicate the presence of residual
spatial variability in GEEs
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Conclusions
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Open areas

Composite likelihood general framework for scalable
likelihood-type inference in complex models?

Perhaps, but there are several open questions to
address first:

– choice of likelihood components

– choice of weights

– robustness

– reliable estimation of the variability matrix k(θ)

– software implementation
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Thanks for listening!
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