
Two Recursive Simulation Schemes

Duncan Murdoch

Department of Statistical & Actuarial Sciences, University of Western Ontario

June 19, 2009

1 of 44

Outline

1 Introduction

2 Simulating Functionals of Diffusions

3 Binary Adaptive Rejection Sampler

4 References

2 of 44

Outline

1 Introduction

2 Simulating Functionals of Diffusions

3 Binary Adaptive Rejection Sampler

4 References

3 of 44

Introduction

About 12 years ago I studied perfect simulation, including Propp and
Wilson’s CFTP algorithm.

I realized that CFTP is an example of the following general principle: to
simulate from a target density f (·), often we can generate a finite
sequence of approximations, and be certain that a draw from the final
one is drawn exactly from f (·).
Today I will talk about two applications of this principle. This is joint
work with Tingting Gou and John Braun.

4 of 44

Outline

1 Introduction

2 Simulating Functionals of Diffusions

3 Binary Adaptive Rejection Sampler

4 References

5 of 44

Simulating Extremes of a Diffusion

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

high

low

Given a stochastic differential equation

dXs = µ(Xs)ds+σ(Xs)dWs

our ultimate goal is to simulate functionals such as the high and low points
and where they occur, without simulating the entire path.

6 of 44

Just the high for Brownian motion

McLeish (2002) described a simple algorithm to simulate the High or Low
values of a Brownian Motion over an interval [0;T], conditional on the values
at the end points W0 = o;WT = c.

Algorithm

High(o;c;T)
Y ∼ Unif(0;exp[−(c−o)2=2T)]
Return [c+o+

√
−2T log(Y)]=2

7 of 44

Both the high and its time

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

●

●

((0,, 0))

((1 4,, W1
4
))

((1 2,, W1
2
))

((3 4,, W3
4
))

((1,, W1))

h1
h2

h3

h4

The Euler method:

Divide the interval into N subintervals.

Discretize and use McLeish on each subinterval, then pick the biggest.

8 of 44

What is wrong with Euler?

The Euler method gets the distribution of the high exactly right, but only
obtains the time to within an interval of length 1=N.

This is inaccurate if N is small, slow if N is large.

We can speed it up by a recursive approach...

9 of 44

A Recursive Rejection Algorithm

Principle: Divide the interval into two parts: the “inside” [s; t] (containing the
max) and the “outside” [0;1]\ [s; t]. Recursively shrink the inside part.

Recursion: At each step, we start with (s; t;Ws;Wt;houtside); use 2-step
Euler and apply McLeish twice to choose one half of [s; t] as the new
inside, and to update houtside.

Rejection: The high inside must be bigger than houtside. Repeat Euler and
McLeish until it is.

Advantage: Order n steps for 2n step accuracy: much more efficient than the
Euler Method.

10 of 44

RRA at step one

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

houtside

((s,, Ws))
((t,, Wt))

After one step we might have this. (Don’t simulate the full path, but consider
it fixed...)

11 of 44

RRA first proposal

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

houtside

((s,, Ws))
((t,, Wt))●

h1
h2

Simulate the inside interval until max(h1;h2) > houtside. This one failed!

12 of 44

RRA second proposal

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

houtside

((s,, Ws))
((t,, Wt))

●

h1

h2

Try again: failed again!

13 of 44

RRA third proposal

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

houtside

((s,, Ws))
((t,, Wt))

●

h1
h2

Try again: success!
Accept this simulation, set houtside = max(houtside;h2), discard h1.

14 of 44

RRA at step two

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

●

houtside

((s,, Ws))

((t,, Wt))
●

Update to the new state.

15 of 44

RRA at step three

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

●

houtside

((s,, Ws))

((t,, Wt))

●

●●

Repeat the whole recursive step to refine the interval. Continue until |t− s| is
small enough.

16 of 44

RRA at step four

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

●

houtside

((s,, Ws))
((t,, Wt))

●

●

●

17 of 44

RRA is done

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

●

●

●

●

houtside

((s,, Ws))
((t,, Wt))

●

●

high

Apply McLeish one more time at the end (or just use the max(h1;h2) value
from the previous step).

18 of 44

Extensions

Simulating lows instead of highs—use mins not maxes.

Barrier crossing times and other functionals can be simulated in a similar
way.
Simulating both lows and highs and both locations—more complicated:

Invert distribution from Billingsley (1999) to simulate high and low
simultaneously.
In RRA, the “inside” eventually becomes two disjoint intervals, one
containing the high, the other containing the low.
We maintain both high and low in the “outside”.

More general diffusions—Beskos and Roberts (2005), Beskos et al.
(2006) described an exact algorithm (EA) for simulating some
diffusions. First generate a random skeleton; conditional on the skeleton,
simulate Brownian bridges between.

19 of 44

Refinement

Our goal was exact simulation, and RRA only gives us the time(s) to within
2−n. Shepp (1979) derived the joint density of the high h, its time θ , and
closing value c for a Brownian motion on [0;T], which allows us to derive

f (θ |h;c;T) ∝
1

θ 3=2(T−θ)3=2 exp
[
− h2

2θ
− (h− c)2

2(T−θ)

]
This is a non-standard density, but we can construct a rejection sampler for it.

20 of 44

Rejection Sampling

x

D
en

si
ty

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●●

●
●

●
●

●●
●● ●

●

●

Proposal g(x)
Target k f(x)

Suppose you want to sample from density f (·), and know how to sample from
density g(·). Find k such that g(x)≥ kf (x) for all x. Then:

1 Sample Y from g(·).
2 Sample U from Unif(0;g(Y)).
3 If U < kf (Y), output Y; else repeat.

The probability of acceptance is k.
21 of 44

The Rejection Sampler Can Be Slow

It is simple to compute the mode (or modes) of the Shepp density, and then
use a Unif(0,1) proposal in a rejection sampler. But this can be very slow (i.e.
k can be very small). Some solutions:

1 Identify the values of h, c and T that lead to a slow sampler, and use
another RRA step in those cases.

2 Work out a smarter proposal density.
3 Use an adaptive proposal.

22 of 44

Outline

1 Introduction

2 Simulating Functionals of Diffusions

3 Binary Adaptive Rejection Sampler

4 References

23 of 44

When does rejection sampling work well?

Rejection sampling works very well in low dimensions:

We can sample even if we do not know the normalizing constants on the
densities.

We get IID samples from the target, unlike MCMC, which gives
correlated values from an approximation to the target.

It is often not hard to find a bounding function in one dimension.

Gilks and Wild (1992) presented an adaptive rejection sampler: with
each rejection, g(·) was adjusted to be a better approximation to f (·). It
produced very tight approximations.

24 of 44

Why not use rejection sampling?

In high dimensions, rejection sampling is not so successful:

It is hard to find a proposal that gives tight bounds. (Sometimes this is
hard even in one dimension.)

Typically k will be extremely small, so the sampler will be very
inefficient.

Multidimensional proposal distributions are hard to work with.

Gilks and Wild (1992) required strong conditions (log-concavity) on
f (·); these are not always available and verifiable.

25 of 44

Our strategy

We would like to construct an adaptive sampler, with weak conditions on f (·).

Start with any bound, one region.

Split regions where there are a lot of rejections to get tighter bounds.

26 of 44

Example: Shepp’s density

x

D
en

si
ty

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●●

●
●

●
●

●●
●● ●

●

●

Proposal g(x)
Target k f(x)

We accepted 10=100 proposals. Can we improve this?

27 of 44

Split the interval and bound separately

x

D
en

si
ty

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●● ●
●●

Proposal g(x)
Target k f(x)

Now we accept 19=100 proposals.

28 of 44

Split again

x

D
en

si
ty

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●●
● ●

●

●

●

●

●

●

●

●●

●

Proposal g(x)
Target k f(x)

We chose to split the region with the highest expected number of rejections.
Now we accept 31=100 proposals.

29 of 44

And again..

x

D
en

si
ty

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●
●●

●

●

●

●

●●

●

●● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

● ●●●●
●●

●

●

●

●

●

●

●

●●

●

Proposal g(x)
Target k f(x)

We accept 52=100 proposals with this approximation. We may now draw a
large sample using this sampler, which is very fast.

30 of 44

How did we choose where to subdivide?

We can estimate the rejection rate in each region in several ways:
1 Just count how many rejections there were in each region.
2 Better: Find the average of P(reject) in each region, and multiply by the

number sampled in that region.
3 Best: Use the computed volume of each region as the multiplier.

31 of 44

Higher Dimensions

We don’t really need the adaptive rejection sampler in one dimension: our first
uniform proposal was good enough. But how to handle higher dimensions?
Our strategy:

Divide the space into rectangular regions, and use the same strategy as
before to select regions to subdivide.

Use a proposal that is independent in the coordinates on each subregion.

Subdivide the target region one coordinate at a time to improve the
bound.

After choosing the region, try all coordinate choices, and pick the best
one.

32 of 44

Two Dimensional Example

Try to sample from kf (x;y) = 1=(0:01+ |x−0:9|:4 + |y−0:1|:6), 0 < x < 1,
0 < y < 1, using uniform proposals.

33 of 44

Finding a bound

If x ∈ [x0;x1] and y ∈ [y0;y1], then an upper bound on kf (x;y) is kf (x∗;y∗),
where

x∗ =


x0 if x0 > 0:9
x1 if x1 < 0:9
0:9 otherwise

with a similar formula for y∗.

34 of 44

Sampling from f (x;y)

 1 1 2

 2 3

Accepted 11 proposals

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●● ●

●
●

● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 1 1 2

 2 3

Accepted 16 proposals

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

35 of 44

Continuing...

 1 1 2

 2 3

Accepted 35 proposals

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● 1 1 2

 2 3

Accepted 35 proposals

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

36 of 44

Continuing...

 1 1 2

 2 3

Accepted 43 proposals

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 1 1 2

 2 3

Accepted 44 proposals

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

37 of 44

Pump Data Example

Gaver and O’Muircheartaigh (1987) described data on pump failures at a
nuclear power plant. A number of authors have analyzed this using the
following Bayesian hierarchical model:

s1; : : : ;s10 count failures after operation for known times t1; : : : ; t10.

sk ∼ Poisson(λktk), k = 1; : : : ;10.

λk ∼ Gamma(α;β), k = 1; : : : ;10, with α = 1:802 treated as known.

β ∼ Gamma(γ;δ), with γ = 0:01 and δ = 1.

We want to study the joint posterior distribution of (β ;λ), where
λ = (λ1; : : : ;λ10).

38 of 44

The Target Density

The joint posterior is (up to normalizing constants):

f (β ;λ) = β
γ+10α−1e−βδ

10

∏
k=1

λ
sk+α−1
k e−λktk e−λkβ

If β > β0 and λk > λk0 then

g(β ;λ) = eβ0 ∑λk0

×β
γ+10α−1e−β (δ+∑λk0)

×
10

∏
k=1

λ
sk+α−1
k e−λk(tk+β0)

dominates f (β ;λ), so we may use independent truncated Gamma proposals
on rectangular regions.

39 of 44

The Acceptance Rate

●

●

●
●

●

●

●

●
●●

●
●
●

●●
●
●●

●
●

●
●
●●
●●●●

●●
●
●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●

Regions

P
(a

cc
ep

t)

0 20 40 60 80 100

10
−

50
10

−
40

10
−

30
10

−
20

10
−

10
1

●●●
●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●
●
●
●
●
●
●●●

●●●

●
●
●●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80

Regions

%
 a

cc
ep

te
d

The acceptance rate starts out very low (less than 10−50), but quickly rises to
acceptable levels.

40 of 44

Samples

ββ

F
re

qu
en

cy

1 2 3 4 5 6

0
10

0
30

0
50

0

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

ββ

λλ 1

We obtain IID samples from the posterior, which we can use in whatever
further inference we like.

41 of 44

Issues in Multidimensional Case

Implementing the pump data example was both easy and difficult:

Finding the bounds was very easy, because the target density is mainly
made up of easy factors. We expect this to be quite common in Bayesian
hierarchical models.
Evaluating the bounds, and implementing the sampler, was a little
trickier than we expected:

The problem was in evaluating the truncated Gamma proposals. In many
cases, the samples come from far out in the tails, and we were
experiencing underflows and huge rounding errors.
The solution in this case was to work on a log scale, and to evaluate
probabilities using both the CDF and the survival function.

Experience has shown that the pump data is unusually well suited to our
algorithm. We can’t handle general densities with 11 parameters.

42 of 44

Outline

1 Introduction

2 Simulating Functionals of Diffusions

3 Binary Adaptive Rejection Sampler

4 References

43 of 44

References

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P.
(2006). Exact and computationally efficient likelihood-based estimation
for discretely observed diffusion processes. JRSS B, 68:1–29.

Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions.
Ann. Appl. Prob., 15:2422–2444.

Billingsley, P. (1999). Convergence of Probability Measures. Wiley.

Gaver, D. and O’Muircheartaigh, I. (1987). Robust empirical Bayes
analysis of event rates. Technometrics, 29:1–15.

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs
sampling. Appl. Stat., 41:337–348.

McLeish, D. L. (2002). Highs and lows: Some properties of the extremes
of a diffusion and applications in finance. CJS, 30:243–267.

Shepp, L. A. (1979). The joint density of the maximum and its location
for a Wiener process with drift. JAP, 16:423-427.

44 of 44

	Introduction
	Simulating Functionals of Diffusions
	Binary Adaptive Rejection Sampler
	References

