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The pure approach

For a Bayesian purist, all uncertainty is represented by probability
distributions.

Given a set of candidate models M1 . . .MJ ,

we need to supply prior probabilities π1 . . . πJ .

The posterior probabilitity of model Mi given data Y is

p(Mi | Y ) =
πip(Y | Mi )∑J
j=1 πjp(Y | Mj)
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Bayesian Model Averaging

We could select the maximum a posteriori model, but:

Further inference would be conditional on the selected model
being true.

Often p(Mi | Y )� 1 even for the “best” model.

The pure Bayesian approach rejects model choice in favour of
model averaging.

Keep all candidate models, but down-weight those with small
posterior probability.
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Bayesian Model Averaging

Models selected by BMA

Model #
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M The BMA package
(Raftery, Hoeting,
Volinsky, Painter, Yeung)
for R uses (approximate)
Bayesian model averaging
for variable selection in
regression models.

This graph summarizes an
analysis of the UScrime
data set (MASS package)
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Bayes Factors

Given two candidate models M1 and M2

p(M1 | Y )
p(M2 | Y )

= π1
π2

× p(Y | Mi )
p(Y | M2)

posterior odds = prior odds × Bayes factor

We can avoid difficulty of supplying prior probabilities by just using
the second factor.
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Interpreting Bayes factors

“The Bayes factor is a summary of the evidence provided by the
data in favor of one scientific theory by a statistical model, as
opposed to another” - Kass and Raftery (1995)

Bayes factor Interpretation

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
>150 Very strong
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Models with parameters

Models typically have parameters that must be estimated.

For the Bayes factor, parameters are eliminated by integrating
them out

p(Y | Mi ) =

∫
p(θ | Mi )p(Y | θ,Mi )dθ

to give the marginal likelihood p(Y | Mi ).

Candidate models do not need to share the same parameter
space.
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Practical problems with Bayes factors

Diffuse reference priors cannot be used for the model parameters:

Lindley-Bartlett paradox

When comparing two nested models with diffuse priors, the Bayes
factor systematically favours the smaller model.
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Philosophical problems with Bayes factors

They require that one of the candidate models is “true”.

The probability model describes the data generating
mechanism.

One of the possible values of the parameters θ describes the
true state of nature.

The prior distribution p(θ | M) gives reasonable prior
probability to the true parameter value.
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Posterior predictive p-values

Gelman, Meng and Stern (1996)

Bayesian models describe a data generating process.

Given the posterior distribution of the parameters, we can
simulate a new replicate data set.

The replicate data set should look like the real data.
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Posterior predictive p-values

Test statistic T (Y , θ) measures discrepancy between
parameters and data

Replicate data Y rep is conditionally independent of Y given θ

The p-value

P {T (Y rep, θ) > T (Y , θ) | Y ,Mi}

can be estimated by iterative simulation by counting the
proportion of iterations such that

T (Y rep, θ) > T (Y , θ)
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Example of posterior predictive p-values

Using Observed/Expected ratio of multiple HPV infections to find
departures from independence.
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The deviance information criterion

Spiegelhalter, Best, Carlin and van der Linde (2002) introduced the
deviance information criterion

DIC = D + pD

which combines

A measure of fit D, the expected deviance.

A measure of complexity pD , the effective number of parameters

Choose the model with the smallest DIC
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Notation for DIC

Y1 Y2 Yn

θ

ψ

. . . Y = (Y1 . . .Yn) is a vector of
observations

θ is a vector of parameters
common to all models (the
focus)

Models differ in the prior
structure p(θ | ψ)
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Definition of pD
The effective number of parameters

The effective number of parameters in a model was defined by
Spiegelhalter et al (2002) as

pD = D − D
(
θ
)

where

θ = E (θ | Y)

D = E (D(θ) | Y)
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DIC and the Akaike Information Criterion

DIC can also be written:

D
(
θ
)

+ 2pD

In this form it resembles the classical Akaike Information Criterion
(Akaike 1974)

D(θ̂) + 2p

where θ̂ is the maximum likelihood estimate of θ and p is the
number of parameters
For non-hierarchical models with a non-informative prior on θ,

DIC = AIC
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Advantages of DIC

Easy to calculate using Markov Chain Monte Carlo (MCMC)
simulation.

Implemented in WinBUGS/OpenBUGS.

Widely used and cited

Described in text books on Bayesian data analysis
543 citations on ISI database.
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Citations of Spiegelhalter et al (2002)
from the ISI citation database
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Limitations of DIC

DIC also inherits some of the limitations of AIC.

Restricted to nested models

Difference between AIC of two models is Op(n1/2) in general
but Op(1) for nested models (Ripley 1996)

Not consistent.

Given a set of nested models, DIC will tend to choose a model
that is too large as n ↑ ∞.
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Problems with DIC

Not coordinate free.

Outside of exponential family models, pD is not easy to
calculate.

Many people have suggested alternative penalties that are not
pD but have a similar prima facie plausibility

Plummer (2002) Alternative definition of pD

Gelman et al (2004) Use half the sample variance of the
deviance scores instead of pD (R2WinBUGS)
Celeux et al (2006) Eight variations of DIC for mixture models
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Criticism of DIC

The main conclusion of our paper is thus that DIC lacks
a natural generalisation outside exponential families or,
alternatively, that it happened to work within exponential
families while lacking a true theoretical foundation.

– Celeux, Forbes, Robert, and Titterington (2006)
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Parameter
estimation

Model
criticism

You cannot use the data twice
The same data cannot be used for both
parameter estimation and model criticism.

Bayesian approaches can be classified by
how much of the data they use for each
purpose.

Bayes factors

Model choice based on marginal likelihood
without any attempt to estimate model
parameters.

Incompatible with improper or diffuse
reference priors.

Intrinsic and partial Bayes factors

Designed for use with reference priors.

Sacrifice a minimal part of the data to get
a proper posterior.
Use this as a prior with the rest of the
data to calculate a Bayes factor

Two-phase studies

Data collection in two phases

Initial data collection used for parameter
estimation (hypothesis generating)
New data collection for model criticism
(hypothesis testing)

Used by genome-wide association studies to
find and then test candidate genes.

k-fold cross-validation

Randomly split the data k ≈ 10 groups

Use data from k − 1 groups for parameter
estimation.
Use remaining group for model criticism.

Repeat k times and pool results

leave-one-out (loo) cross-validation

Drop each observation in turn.

Use other n − 1 observations for parameter
estimation.
Use dropped observation for model
criticism.

More computationally expensive than k-fold
cross-validation.

Posterior predictive inference

Use all data for parameter estimation

No data left for model criticism ...

Simulate replicate data sets from the
model!
Look for discrepancies between simulated
and real data.
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Loss functions

We adopt a utilitarian approach to model choice

A model is considered useful if it gives good out-of-sample
predictions.

Ideally we have two data sets

Z, a set of training data
Y, a set of validation data

We measure the utility of a model with a loss function

L(Y,Z)

that measures the ability to make good predictions of Y from
Z
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Exact replicate loss functions

In practice, we have only one data set Y.

It is tempting to use L(Y,Y) as a utility

Call this the exact replicate loss function
It uses the data twice (e.g the posterior Bayes factor, Aitkin
1991)

We expect L(Y,Y) to be conservative.

If we can quantify how conservative L(Y,Y) is then we can
pay a rational price for using the data twice
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Linear loss functions

Definition

A loss function is linear if it breaks down into a sum of
contributions from each element of the test data Y.

L(Y,Z) =
∑

i

L(Yi ,Z)

Loss functions based on the deviance are linear if the elements of
Y are conditionally independent given θ.
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Optimism

Definition

The optimism of L(Yi ,Y)

popt i
= E {L(Yi ,Y−i )− L(Yi ,Y) | Y−i}

where
Y−i = (Y1, ...Yi−1,Yi+1, . . .Yn)

is the data set with observation i removed.
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Penalized loss functions

Definition

The penalized loss for observation i

L(Yi ,Y) + popt i

has the same expectation (given Y−i ) as the cross-validation loss

L(Yi ,Y−i )

Definition

Sum over the penalized losses to get the total penalized loss

L(Y,Y) + popt
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The plug-in deviance

The plug-in deviance

Lp(Y,Z) = −2 log
[
p
{
Y | θ̄(Z)

}]
is a linear loss-function based on the deviance.

It depends only on the posterior expectation of θ

θ̄(Z) = E(θ | Z)
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The penalized plug-in deviance

For a linear model (with known variance)

Lp(Y,Y) + popt = D +
∑

i

pDi
/(1− pDi

)

where pDi
is the contribution of observation i to pD .

This formula is asymptotically correct for generalized linear
mixed models (with canonical link).
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Plug-in deviance and DIC

When there are no influential observations pDi
� 1 and∑

i

pDi
/(1− pDi

) ≈
∑

i

pDi
= pD

and DIC is an approximation to the penalized plug-in deviance.

A necessary condition is pD � n.
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Example: Lip Cancer in Scotland

A classic problem in disease
mapping

We want an accurate
representation of spatial variation
in a rare disease (lip cancer)

But we want to ignore random
fluctuations due to small disease
counts
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Model for the lip cancer data

We use a generalized linear mixed model (GLMM) with Poisson
family and log link

log {E(Yi )} = α0 + γi + δi + log (Ei )

where

γ1 . . . γn are unstructured random effects

δ1 . . . δn have a conditional autoregressive prior

E1 . . .En are expected numbers of cases based on population
structure

Which effects to include for an optimal disease map?
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DIC is a poor approximation for the lip cancer data

The effective number of parameters (pD) is close to the
number of independent observations (n = 56).

pD is a poor approximation to the correct penalty for D.

Model pD Correct
penalty

Pooled 1.0 1.1
Exchangeable 43.5 570.5
Spatial 31.0 163.9
Exchangeable + spatial 31.6 166.4
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The expected deviance

The expected deviance

Le(Y,Z) = −2

∫
dθ p (θ | Z) log {p (Y | θ)}

is a linear loss function based on the deviance.

In its exact replicate form

Le(Y,Y) = D
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The penalized expected deviance

For a linear model (with known variance)

Le(Y,Y) + popt = D + 2
∑

i

pDi
/(1− pDi

)

Similar to the plug-in deviance but with a penalty twice the
size.
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Exponential family models

In exponential family models, the penalized expected deviance is

D + 2ϕ−1
n∑

i=1

Cov (θi , µi | Y−i )

where

θi is the canonical parameter

µi is the mean value parameter

ϕ is the scale parameter
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Estimation of popt in general models

If J(θ2, θ2) is the undirected information divergence between the
predictive density of Y at θ = θ1 and the density at θ = θ2, then

popti =

∫
dθ

∫
dθ′ p (θ | Y−i ) p

(
θ′ | Y−i

)
Ji (θ,θ

′)
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Approximation of popt

In the absence of influential observations

popti ≈
∫

dθ

∫
dθ′ p (θ | Y) p

(
θ′ | Y

)
Ji (θ,θ

′)

which may be estimated using two parallel chains.
In this case popt ≈ 2p∗D where p∗D is the “effective number of
parameters” produced by JAGS, and the penalized expected
deviance is:

D + 2p∗D
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Necessary conditions for DIC

DIC can be justified – at least in exponential family models –
as an approximation to the penalized plug-in deviance.

But there are necessary conditions attached

Conditional independence of Y1 . . .Yn given θ
No influential observations (pD � n)

The latter may not be satisfied by models with individual-level
random effects.
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Recommendations

In GLMMs, consider using “corrected” DIC:

DICc = D +
n∑

i=1

pDi
/(1− pDi

)

which is available with no more computational effort.
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Open problems

Need an efficient way of calculating popt for the penalized
expected deviance.

Need flexibility in choosing the correct focus (missing data,
latent variable models)
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