Penalized Loss functions for Bayesian Model Choice

Martyn Plummer

International Agency for Research on Cancer Lyon, France

13 November 2009

The pure approach

For a Bayesian purist, all uncertainty is represented by probability distributions.

- Given a set of candidate models $\mathcal{M}_1 \dots \mathcal{M}_J$,
- we need to supply prior probabilities $\pi_1 \dots \pi_J$.

The posterior probabilitity of model \mathcal{M}_i given data Y is

$$p(\mathcal{M}_i \mid Y) = \frac{\pi_i p(Y \mid \mathcal{M}_i)}{\sum_{j=1}^J \pi_j p(Y \mid \mathcal{M}_j)}$$

Bayesian Model Averaging

We could select the maximum *a posteriori* model, but:

- Further inference would be conditional on the selected model being true.
- Often $p(\mathcal{M}_i \mid Y) \ll 1$ even for the "best" model.

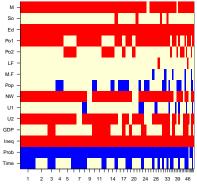
The pure Bayesian approach rejects model choice in favour of model averaging.

• Keep all candidate models, but down-weight those with small posterior probability.

Bayes factors

Other approaches Comparison of Bayesian model choice solutions Loss functions for model choice Summary

Bayesian Model Averaging



Models selected by BMA

Model #

- The BMA package (Raftery, Hoeting, Volinsky, Painter, Yeung) for R uses (approximate) Bayesian model averaging for variable selection in regression models.
- This graph summarizes an analysis of the UScrime data set (MASS package)

Given two candidate models \mathcal{M}_1 and \mathcal{M}_2

$$\frac{p(\mathcal{M}_1 \mid Y)}{p(\mathcal{M}_2 \mid Y)} = \frac{\pi_1}{\pi_2} \times \frac{p(Y \mid \mathcal{M}_i)}{p(Y \mid \mathcal{M}_2)}$$
posterior odds = prior odds × Bayes factor

We can avoid difficulty of supplying prior probabilities by just using the second factor.

Interpreting Bayes factors

"The Bayes factor is a summary of the evidence provided by the data in favor of one scientific theory by a statistical model, as opposed to another" - Kass and Raftery (1995)

Bayes factor	Interpretation
1 to 3	Not worth more than a bare mention
3 to 20	Positive
20 to 150	Strong
>150	Very strong

Models with parameters

- Models typically have parameters that must be estimated.
- For the Bayes factor, parameters are eliminated by integrating them out

$$p(Y \mid \mathcal{M}_i) = \int p(\theta \mid \mathcal{M}_i) p(Y \mid \theta, \mathcal{M}_i) d\theta$$

to give the marginal likelihood $p(Y | \mathcal{M}_i)$.

• Candidate models do not need to share the same parameter space.

Practical problems with Bayes factors

Diffuse reference priors cannot be used for the model parameters:

Lindley-Bartlett paradox

When comparing two nested models with diffuse priors, the Bayes factor systematically favours the smaller model.

Philosophical problems with Bayes factors

They require that one of the candidate models is "true".

- The probability model describes the data generating mechanism.
- One of the possible values of the parameters θ describes the true state of nature.
- The prior distribution p(θ | M) gives reasonable prior probability to the true parameter value.

Posterior predictive p-values

Gelman, Meng and Stern (1996)

- Bayesian models describe a data generating process.
- Given the posterior distribution of the parameters, we can simulate a new replicate data set.
- The replicate data set should look like the real data.

Posterior predictive p-values

- Test statistic $T(Y, \theta)$ measures discrepancy between parameters and data
- Replicate data Y^{rep} is conditionally independent of Y given θ
- The p-value

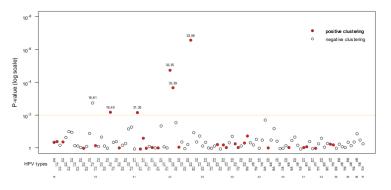
$$P\left\{T(Y^{rep},\theta) > T(Y,\theta) \mid Y, \mathcal{M}_i\right\}$$

can be estimated by iterative simulation by counting the proportion of iterations such that

$$T(Y^{rep}, \theta) > T(Y, \theta)$$

Example of posterior predictive p-values

Using Observed/Expected ratio of multiple HPV infections to find departures from independence.



The deviance information criterion

Spiegelhalter, Best, Carlin and van der Linde (2002) introduced the deviance information criterion

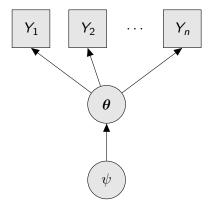
$$\mathsf{DIC} = \overline{D} + p_D$$

which combines

A measure of fit \overline{D} , the expected deviance.

A measure of complexity p_D , the effective number of parameters Choose the model with the smallest DIC

Notation for DIC



 $\mathbf{Y} = (Y_1 \dots Y_n)$ is a vector of observations

heta is a vector of parameters common to all models (the focus)

Models differ in the prior structure $p(\theta \mid \psi)$

Definition of p_D The effective number of parameters

The effective number of parameters in a model was defined by Spiegelhalter *et al* (2002) as

$$p_D = \overline{D} - D\left(\overline{\theta}\right)$$

Definition of p_D The effective number of parameters

The effective number of parameters in a model was defined by Spiegelhalter *et al* (2002) as

$$p_D = \overline{D} - D\left(\overline{\theta}\right)$$

where

$$\overline{\boldsymbol{\theta}} = \mathsf{E}(\boldsymbol{\theta} \mid \mathbf{Y})$$
$$\overline{D} = \mathsf{E}(D(\boldsymbol{\theta}) \mid \mathbf{Y})$$

DIC and the Akaike Information Criterion

DIC can also be written:

$$D\left(\overline{\boldsymbol{\theta}}\right) + 2p_D$$

In this form it resembles the classical Akaike Information Criterion (Akaike 1974)

$$D(\widehat{oldsymbol{ heta}})+2p$$

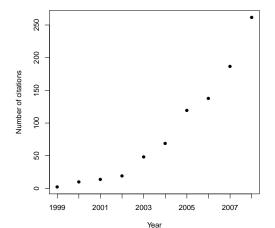
where $\hat{\theta}$ is the maximum likelihood estimate of θ and p is the number of parameters For non-hierarchical models with a non-informative prior on θ ,

$$\mathsf{DIC} = \mathsf{AIC}$$

Advantages of DIC

- Easy to calculate using Markov Chain Monte Carlo (MCMC) simulation.
- Implemented in WinBUGS/OpenBUGS.
- Widely used and cited
 - Described in text books on Bayesian data analysis
 - 543 citations on ISI database.

Citations of Spiegelhalter *et al* (2002) from the ISI citation database



Early publications cite the technical report Spiegelhalter, Best and Carlin (1998).

Plummer

DIC

Limitations of DIC

DIC also inherits some of the limitations of AIC.

- Restricted to nested models
 - Difference between AIC of two models is O_p(n^{1/2}) in general but O_p(1) for nested models (Ripley 1996)
- Not consistent.
 - Given a set of nested models, DIC will tend to choose a model that is too large as $n \uparrow \infty$.

Problems with DIC

- Not coordinate free.
- Outside of exponential family models, *p*_D is not easy to calculate.
- Many people have suggested alternative penalties that are not *p_D* but have a similar *prima facie* plausibility
 - Plummer (2002) Alternative definition of pD
 - Gelman et al (2004) Use half the sample variance of the deviance scores instead of *p*_D (R2WinBUGS)
 - Celeux et al (2006) Eight variations of DIC for mixture models

Criticism of DIC

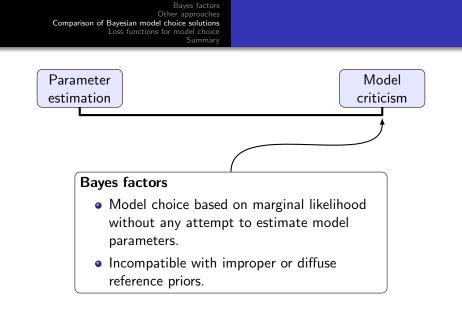
The main conclusion of our paper is thus that DIC lacks a natural generalisation outside exponential families or, alternatively, that it happened to work within exponential families while lacking a true theoretical foundation.

- Celeux, Forbes, Robert, and Titterington (2006)

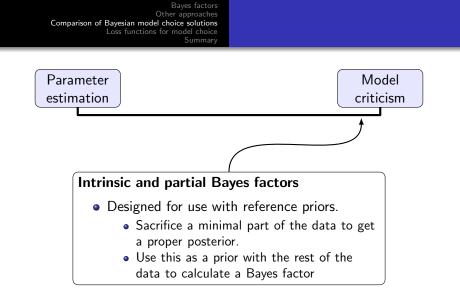
You cannot use the data twice

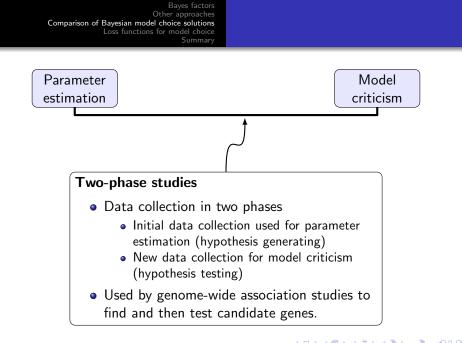
- The same data cannot be used for both parameter estimation and model criticism.
- Bayesian approaches can be classified by how much of the data they use for each purpose.

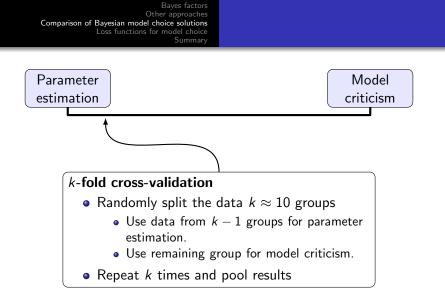
∃ >

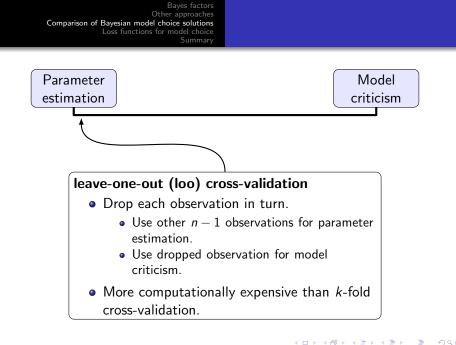


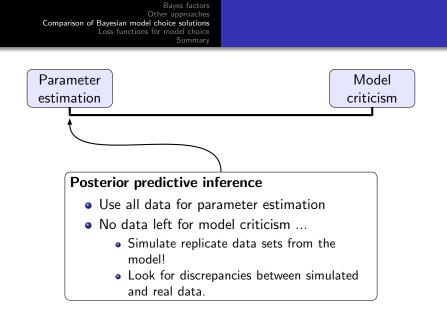
∃ >











- ∢ ≣ ▶

э

Loss functions

We adopt a utilitarian approach to model choice

- A model is considered useful if it gives good out-of-sample predictions.
- Ideally we have two data sets
 - Z, a set of training data
 - Y, a set of validation data
- We measure the utility of a model with a loss function

L(Y,Z)

that measures the ability to make good predictions of ${\bf Y}$ from ${\bf Z}$

Exact replicate loss functions

- In practice, we have only one data set Y.
- It is tempting to use $L(\mathbf{Y}, \mathbf{Y})$ as a utility
 - Call this the exact replicate loss function
 - It uses the data twice (*e.g* the posterior Bayes factor, Aitkin 1991)
- We expect $L(\mathbf{Y}, \mathbf{Y})$ to be conservative.
- If we can quantify *how conservative* $L(\mathbf{Y}, \mathbf{Y})$ is then we can pay a rational price for using the data twice

Linear loss functions

Definition

A loss function is linear if it breaks down into a sum of contributions from each element of the test data \mathbf{Y} .

$$L(\mathbf{Y},\mathbf{Z}) = \sum_{i} L(Y_i,\mathbf{Z})$$

Loss functions based on the deviance are linear if the elements of **Y** are conditionally independent given θ .

Optimism

Definition

The optimism of $L(Y_i, \mathbf{Y})$

$$p_{opt_i} = \mathsf{E}\left\{L(Y_i, \mathbf{Y}_{-i}) - L(Y_i, \mathbf{Y}) \mid \mathbf{Y}_{-i}\right\}$$

æ

- 4 聞 と 4 臣 と 4 臣 と

Optimism

Definition

The optimism of $L(Y_i, \mathbf{Y})$

$$p_{opt_i} = \mathsf{E}\left\{L(Y_i, \mathbf{Y}_{-i}) - L(Y_i, \mathbf{Y}) \mid \mathbf{Y}_{-i}\right\}$$

where

$$\mathbf{Y}_{-i} = (Y_1, \dots, Y_{i-1}, Y_{i+1}, \dots, Y_n)$$

is the data set with observation i removed.

Penalized loss functions

Definition

The penalized loss for observation i

$$L(Y_i, \mathbf{Y}) + p_{opt_i}$$

has the same expectation (given \mathbf{Y}_{-i}) as the cross-validation loss

 $L(Y_i, \mathbf{Y}_{-i})$

Definition

Sum over the penalized losses to get the total penalized loss

 $L(\mathbf{Y}, \mathbf{Y}) + p_{opt}$

Plummer DIC

The plug-in deviance

• The plug-in deviance

$$L^{p}(\mathbf{Y}, \mathbf{Z}) = -2 \log \left[p \left\{ \mathbf{Y} \mid \bar{\boldsymbol{\theta}}(\mathbf{Z})
ight\}
ight]$$

is a linear loss-function based on the deviance.

• It depends only on the posterior expectation of heta

$$ar{m{ heta}}({f Z}) = {f E}({m{ heta}} \mid {f Z})$$

The penalized plug-in deviance

• For a linear model (with known variance)

$$L^p(\mathbf{Y},\mathbf{Y}) + p_{opt} = \overline{D} + \sum_i p_{D_i}/(1-p_{D_i})$$

where p_{D_i} is the contribution of observation *i* to p_D .

 This formula is asymptotically correct for generalized linear mixed models (with canonical link).

Plug-in deviance and DIC

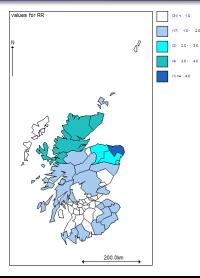
When there are no influential observations $p_{D_i} \ll 1$ and

$$\sum_i p_{D_i}/(1-p_{D_i}) \approx \sum_i p_{D_i} = p_D$$

and DIC is an approximation to the penalized plug-in deviance.

A necessary condition is $p_D \ll n$.

Example: Lip Cancer in Scotland



- A classic problem in disease mapping
- We want an accurate representation of spatial variation in a rare disease (lip cancer)
- But we want to ignore random fluctuations due to small disease counts

Model for the lip cancer data

We use a generalized linear mixed model (GLMM) with Poisson family and log link

$$\log \{\mathsf{E}(Y_i)\} = \alpha_0 + \gamma_i + \delta_i + \log (E_i)$$

where

- $\gamma_1 \dots \gamma_n$ are unstructured random effects
- $\delta_1 \dots \delta_n$ have a conditional autoregressive prior
- $E_1 \dots E_n$ are expected numbers of cases based on population structure

Which effects to include for an optimal disease map?

DIC is a poor approximation for the lip cancer data

- The effective number of parameters (p_D) is close to the number of independent observations (n = 56).
- p_D is a poor approximation to the correct penalty for \overline{D} .

Model	<i>p</i> _D	Correct
		penalty
Pooled	1.0	1.1
Exchangeable	43.5	570.5
Spatial	31.0	163.9
Exchangeable + spatial	31.6	166.4

The expected deviance

• The expected deviance

$$L^{e}(\mathbf{Y}, \mathbf{Z}) = -2 \int d\theta \ p(\theta \mid \mathbf{Z}) \log \{ p(\mathbf{Y} \mid \theta) \}$$

is a linear loss function based on the deviance.

• In its exact replicate form

$$L^{e}(\mathbf{Y},\mathbf{Y}) = \overline{D}$$

The penalized expected deviance

• For a linear model (with known variance)

$$L^{e}(\mathbf{Y}, \mathbf{Y}) + p_{opt} = \overline{D} + 2\sum_{i} p_{D_{i}}/(1 - p_{D_{i}})$$

• Similar to the plug-in deviance but with a penalty twice the size.

Exponential family models

In exponential family models, the penalized expected deviance is

$$\overline{D} + 2\varphi^{-1} \sum_{i=1}^{n} \operatorname{Cov}\left(\theta_{i}, \mu_{i} \mid \mathbf{Y}_{-i}\right)$$

where

- θ_i is the canonical parameter
- μ_i is the mean value parameter
- φ is the scale parameter

Estimation of p_{opt} in general models

If $J(\theta_2, \theta_2)$ is the undirected information divergence between the predictive density of **Y** at $\theta = \theta_1$ and the density at $\theta = \theta_2$, then

$$p_{opt_i} = \int d\theta \int d\theta' \ p\left(\theta \mid \mathbf{Y}_{-i}
ight) p\left(\theta' \mid \mathbf{Y}_{-i}
ight) J_i(\theta, \theta')$$

Estimation of p_{opt} in general models

If $J(\theta_2, \theta_2)$ is the undirected information divergence between the predictive density of **Y** at $\theta = \theta_1$ and the density at $\theta = \theta_2$, then

$$p_{opt_{i}} = \int d\theta \int d\theta' \ p\left(\theta \mid \mathbf{Y}_{-i}\right) p\left(\theta' \mid \mathbf{Y}_{-i}\right) J_{i}(\theta, \theta')$$

Approximation of p_{opt}

In the absence of influential observations

$$p_{opt_i} \approx \int d\theta \int d\theta' \ p\left(\theta \mid \mathbf{Y}\right) p\left(\theta' \mid \mathbf{Y}\right) J_i(\theta, \theta')$$

which may be estimated using two parallel chains. In this case $p_{opt} \approx 2p_D^*$ where p_D^* is the "effective number of parameters" produced by JAGS, and the penalized expected deviance is:

$$\overline{D} + 2p_D^*$$

Necessary conditions for DIC

- DIC can be justified at least in exponential family models as an approximation to the penalized plug-in deviance.
- But there are necessary conditions attached
 - Conditional independence of $Y_1 \dots Y_n$ given θ
 - No influential observations $(p_D \ll n)$

The latter may not be satisfied by models with individual-level random effects.

Recommendations

In GLMMs, consider using "corrected" DIC:

$$DIC_c = \overline{D} + \sum_{i=1}^n p_{D_i}/(1-p_{D_i})$$

which is available with no more computational effort.

- Need an efficient way of calculating *p*_{opt} for the penalized expected deviance.
- Need flexibility in choosing the correct focus (missing data, latent variable models)