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Market microstructure features
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Main features

• discreteness of
prices

• many zero returns

• bid-ask bounce



Assumption: unobserved e�cient price process

0 50 100 150 200 250

45
.8

0
45

.8
2

45
.8

4
45

.8
6

Simulated data

0 10 20 30 40

−
0.

2
0.

2
0.

6
1.

0

Autocorrelation of the returns (returns = first differences)



A nonlinear state-space model in transaction time

Notation:

• tj , j = 1, 2, . . ., transaction times (strictly increasing)

• Ytj observed transaction prices

• Xtj unobserved e�cient log-prices

Nonlinear state-space model:

Ytj = gtj ;Yt1:j−1

(
exp[Xtj ]

)
(observation equation)

Xtj = Xtj−1 + Ztj (state equation)

where Ztj ∼ N (0, σ2
tj

) with constant or time-varying volatility σtj .

Key quantity: p(xtj |yt1:j ) �ltering distribution1

1yt1:j = {yt1 , . . . , ytj }



A class of nonlinear market microstructure noise models

Aim: A model for the nonlinear time-varying (possibly stochastic) dependence of the observed
transaction prices and the latent e�cient prices

Ytj = gtj ;Yt1:j−1

(
exp[Xtj ]

)
Model assumptions:

1 The distribution of Ytj = gtj ;Yt1:j−1

(
exp[Xtj ]

)
is discrete.

2 The conditional distribution of Ytj given Xtj and previous observations is of the form

p
(
ytj
∣∣yt1:j−1 , exp[xtj ]

)
∝ 1Atj

(
exp[xtj ]

)
(a.s.)

where Atj depends on ytj and on the past observations yt1 , . . . , ytj−1 .

Remarks:

• If gtj = gtj ;Yt1:j−1
is deterministic then Atj := g−1

tj
(ytj ) = {z : gtj (z) = ytj } is the

inverse image of ytj under gtj .

• Concrete speci�cations of the set Atj give quite di�erent models



Examples

1 Rounding to the nearest cent

• Deterministic: Atj = [ytj − 0.5, ytj + 0.5) and ytj = round(exp[xtj ])

• Stochastic: e.g. rounding up/down with probability 1/2, Atj = (ytj − 1, ytj + 1)

2 Rounding to the nearest order book level

• Atj = {z ∈ R : argminγ∈Mtj-
|z − γ| = ytj }

and gtj ;yt1:j−1
(z) = argminγ∈Mtj-

|z − γ|

3 Rounding to the nearest market maker quote

4 A general rounding for transaction data

• Atj = [ytj −∆tj , ytj + ∆tj ) with ∆tj =

{
0.5 |ytj − ytj−1 | if ytj 6= ytj−1,

∆tj−1 else



Example: order book data

Economic intuition: The e�cient price should be closer to the observed price than to any other
order book level.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10t11
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Figure: Bid and ask levels of the order book (green and blue lines), supports of the �ltering distributions
(gray vertical lines), transaction prices (red circles), e�cient prices in transaction time (diamonds), the
e�cient price process in clock time (black line)
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Real data vs. deterministic rounding vs. stochastic rounding
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⇒ Deterministic rounding reproduces the major microstructure features
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The synchronous trading case

• Consider S securities: e�cient log-prices Xt,s and transaction prices Yt,s, s = 1, . . . , S

Ytj = gtj
(
exp[Xtj ]

)
,

Xtj = Xtj−1 + Ztj ,

where
Ztj ∼ N (0,Σtj ),

gtj (exp[Xtj ]) = (g
t
(1)
j

(exp[Xtj ,1]), . . . , g
t
(S)
j

(exp[Xtj ,S ]))T , Xt = (Xt,1, . . . , Xt,S)T .

• Aim: On-line estimation of covariance matrix Σt (spot cross-volatilities)

• Remarks:

- Assumption: Σt is slowly varying (or constant)

- Spot volatility estimation: S = 1 and Σt = σ2
t



An e�cient particle �lter

Assume weighted particles {xit1:j−1
, ωitj−1

}Ni=1 approximating p(xt1:j−1 |yt1:j−1 ) are given.

1 For i = 1, . . . , N :

• Sample xitj ∼ p(xtj |yt1:j ,x
i
tj−1

) ∝ N (xtj |xitj−1
,Σtj )

∣∣
logAtj ,1×···×logAtj ,S

• Compute importance weights ω̆itj ∝ ω
i
tj−1

∫
log Atj

N (xtj |xitj−1
,Σtj )dxtj

2 For i = 1, . . . , N : Normalize importance weights ωitj = ω̆itj /(
∑N
k=1 ω̆

k
tj

)

3 Resample particles

Result: Particles {xit1:j , ω
i
tj
}Ni=1 approximating p(xt1:j |yt1:j ).

Remarks:

• The particle �lter is very e�cient because the particles are sampled from the optimal
proposal p(xtj |yt1:j ,xtj−1 ).

• In practice, Σtj is replaced by an estimate Σ̂pf
tj
.



EM algorithms

• The standard EM algorithm:

- Maximization of

Q(Σ|Σ̂(m)) = const +
T∑
j=2

EΣ̂(m) [log pΣ(Xtj |Xtj−1 )|yt1:T ]

with respect to Σ

- Depends on smoothing distributions (⇒ o�-line algorithm)

• Our sequential EM algorithm:

- Recursive maximization of

Qtj (Σ|Σ̂t1:j−1 ) = {1−λj}Qtj−1 (Σ|Σ̂t1:j−2 )+λj EΣ̂t1:j−1
[log pΣ(Xtj |Xtj−1 )|yt1:j ]

with respect to Σ

- Depends on �ltering distributions (⇒ on-line algorithm)



Our sequential EM-type algorithm

• E-step: (based on particles {xitj−1:j
, ωitj }

N
i=1)

Q̂tj (Σ|Σ̂t1:j−1 ) = {1− λj} Q̂tj−1 (Σ|Σ̂t1:j−2 )

− λj
1

2

N∑
i=1

ωitj

[
S log 2π + log |Σ|+ tr

{
Σ−1(xitj − xitj−1

)(xitj − xitj−1
)T
}]

• M-step:
Σ̂tj = {1− λj} Σ̂tj−1 + λj Σ̆tj (ωtj )

with

Σ̆tj (ωtj ) =
N∑
i=1

ωitj (xitj − xitj−1
)(xitj − xitj−1

)T

Step size selection:

• Simple approach: constant step size λj = λ

• Advanced approach: adaptive time-varying step size
e.g. spatially aggregated exponential smoothing (SAGES) developed by Chen and Spokoiny
(2009)



Back and forth between particle �lter and seq. EM algorithm

Time Particle Filter Sequential EM algorithm

tj−1

tj

tj+1

Σ̂tj−1

- Simulate transition xi
tj−1

 xi
tj

using ytj
and Σ̂pf

tj
= Σ̂tj−1

- Obtain particles {xi
tj−1:j

, ωi
tj
}

{xi
tj−1:j

, ωi
tj
}

- Compute update Σ̆tj
(ωtj

)

using {xi
tj−1:j

, ωi
tj
}

- Obtain estimate Σ̂tjΣ̂tj



Clock time estimation

Until now we considered the estimation of Σtj = Σ(tj) in a transaction time model.

A simple clock time estimator:

• Consider
dX(t) = Γ(t) dW(t) where Γ(t) ΓT (t) = Σc(t).

W(t) is a multivariate Brownian motion and Σc(t) denotes the �volatility per time unit�
(while Σ(t) denotes �volatility per transaction�)

• We obtain

Σ̂ctj = (1− λj)Σ̂ctj−1
+ λj

N∑
i=1

ωcitj

(
xcitj − xcitj−1

)(
xcitj − xcitj−1

)T
|tj − tj−1|

with modi�ed particles {xcitj−1:j
, ωcitj }

N
i=1.

An alternative clock time estimator: see our paper



Non-synchronous trading case

Let Ztj = Xtj −Xtj−1 be the returns of the e�cient log-prices.

Security 1

Security 2

t
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�overlapping time� of z
t
(1)
4

and z
t
(2)
2

Facts:

• Trading times are non-synchronous

• Each security s evolves in an individual transaction time {t(s)j }
Ts
j=1

• �Overlapping time� is the key quantity for cross-volatility estimation



Our model: a non-standard state-space model

Our model:

Y
t
(s)
j

= g
t
(s)
j

(
exp[X

t
(s)
j

]
)

(observation equation)

X
t
(s)
j

= X
t
(s)
j−1

+ Z
t
(s)
j

(state equation)

for s = 1, . . . , S and Z
t
(s)
j

∼ N (0, (Σ
t
(s)
j

)ss),

Cov(Z
t
(s1)
j

, Z
t
(s2)
k

) =
|[t(s1)

j−1 ,t
(s1)
j )∩[t

(s2)
k−1,t

(s2)
k

)|

|t(s1)
j −t(s1)

j−1 |
1/2|t(s2)

k
−t(s2)

k−1|
1/2

(Σ
min{t(s1)

j ,t
(s2)
k
}
)s1s2 .

Properties:

• Nonlinear observation equation

• Components evolve non-synchronously in di�erent times (non-standard state-space model)

• Standard particle �lters cannot be applied

• Synchronous trading is a special case



The recursive covariance estimator

Let tv denote the joint transaction time. Our EM-type estimator is given, componentwise, by

(Σ̂tv )s1s2 = (1− λv,s1,s2 )(Σ̂tv−1 )s1s2 + λv,s1,s2 (Σ̆tv )s1s2 ,

where

(Σ̆tv )s1s2 =


∑N
i=1 ω

i

max{t(s1)
hv
1
,t

(s2)
hv
2
}
zi
t
(s1)
hv
1

zi
t
(s2)
hv
2

|t(s1)
hv
1
−t(s1)

hv
1−1|

1/2|t(s2)
hv
2
−t(s2)

hv
2−1|

1/2

|[t(s1)
hv
1−1,t

(s1)
hv
1

)∩[t
(s2)
hv
2−1,t

(s2)
hv
2

)|
if t

(s1)
hv
1

= tv

or t
(s2)
hv
2

= tv

(Σ̂tv−1 )s1s2 else

with hvs = min{hs : t
(s)
hs
≥ tv}.

Remark:

• The number of updates for each component is di�erent
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Real data: volatility estimation in transaction time
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Figure: The upper plot shows transaction data of Citigroup for the 3rd September 2007. The
middle and the lower plot give the volatility estimators Σ̂tj (black line), Σ̂Stj (red line), and the

benchmark estimator Σ̂B
tj

(gray line).



Real data: volatility estimation in clock time
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Figure: Estimation of time-varying spot volatility in clock time based on the transactions data
of Citigroup for the 3rd September 2007. Simple clock time estimator Σ̂cStj (black line) and

alternative clock time estimator Σ̂cS
alt

(tj) = Σ̂Stj /δ̄j (red line). Lower plot: averaged duration
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Real data: cross-volatility estimation
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Figure: Upper plot: Transaction data of BAC (black line), C (red line), and JPM (green line) plotted
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Conclusion

New modeling and estimation aspects:

• A class of nonlinear market microstructure noise models

• A method for spot volatility estimation based on a particle �lter and a new sequential
EM-type algorithm

• Estimation in transaction time and clock time

• Our method works on-line and is computationally very e�cient

Empirical results:

• Deterministic rounding schemes reproduce the major microstructure features

• The volatility in transaction time is often rougly constant (in contrast to volatility in clock
time)

• The correlations of real stock returns vary signi�cantly over the trading day



Thank you for your attention!

• Dahlhaus, R. and Neddermeyer, J.C. (2010), �Particle Filter-Based On-Line Estimation of
Spot Volatility with Nonlinear Market Microstructure Noise Models,� under revision.

• Neddermeyer, J.C. (2010), �Importance Sampling-Based Monte Carlo Methods with
Applications to Quantitative Finance,� PhD dissertation, University of Heidelberg.

Questions?
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