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� Diffusion processes/SDEs: why, when, where.

� Part I: identification of SDE’s via pseudo φ-divergences

� Part II: clustering ot SDE’s via Markov Operator Distance
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(Very) Roughly speaking, given a smooth, non stochastic dynamical system

Xt = X(t), its evolution with respect to time can be represented as

dXt

dt
= b(Xt) or in differential form dXt = b(Xt)dt

A stochastic differential equation models the noise (or the stochastic part) of

this system by adding the variation of some stochastic process to the above

dynamics, e.g. the Wiener process

dXt = b(Xt)dt+ σ(Xt)dWt

i.e.

deterministic trend + stochastic noise
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In this talk the statistical model is the parametric family of diffusion process

solutions of the SDE

dXt = b(α,Xt)dt+ σ(β,Xt)dWt, X0 = x0,

θ = (α, β) ∈ Θα × Θβ = Θ, where Θα ⊂ Rp and Θβ ⊂ Rq .

The drift and diffusion coefficients are known up to α and β and such that the

solution of the SDE exists and the process is also ergodic.

We will consider hypotheses testing via φ-divergences and clustering based on

discrete time observations from X .
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Every time we pass from a static analysis to a dynamic one, modeling via

SDEs appears to be effective.
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Every time we pass from a static analysis to a dynamic one, modeling via

SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA,

etc) stochastic differential equations assume that the stochastic process

evolves continuously.
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Every time we pass from a static analysis to a dynamic one, modeling via

SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA,

etc) stochastic differential equations assume that the stochastic process

evolves continuously.

In both cases observations come at discrete time. While this is not a problem

for time series analysis, additional care is needed for discretely observed

continuous time processes. This is a relatively new field of statistics (1993 -

today)
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Every time we pass from a static analysis to a dynamic one, modeling via

SDEs appears to be effective.

Although we can think of using standard time series approach (AR, ARIMA,

etc) stochastic differential equations assume that the stochastic process

evolves continuously.

In both cases observations come at discrete time. While this is not a problem

for time series analysis, additional care is needed for discretely observed

continuous time processes. This is a relatively new field of statistics (1993 -

today)

Next is an example from economics where discrete vs continuous time

modeling matters
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In time series analysis, Granger causality is synonym of “ability to predict with

minimal variance”. Assume we are given a target time series Yt, Yt−1, . . . and

the information Ft generated by two other times series Xt, Xt−1, . . . and Zt,

Zt−1, . . . .
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In time series analysis, Granger causality is synonym of “ability to predict with

minimal variance”. Assume we are given a target time series Yt, Yt−1, . . . and

the information Ft generated by two other times series Xt, Xt−1, . . . and Zt,

Zt−1, . . . .

The process Xt is said to “Granger cause” Yt with respect to Ft if the variance

of the optimal linear predictor of Yt+h based on Ft has smaller variance than

the optimal linear predictor based on Zt, Zt−1, . . . .
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In time series analysis, Granger causality is synonym of “ability to predict with

minimal variance”. Assume we are given a target time series Yt, Yt−1, . . . and

the information Ft generated by two other times series Xt, Xt−1, . . . and Zt,

Zt−1, . . . .

The process Xt is said to “Granger cause” Yt with respect to Ft if the variance

of the optimal linear predictor of Yt+h based on Ft has smaller variance than

the optimal linear predictor based on Zt, Zt−1, . . . .

In other words, Xt is Granger causal for Yt if Xt helps predict Yt at some

stage in the future.
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Usually a VAR model is used to test Granger causality
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Usually a VAR model is used to test Granger causality
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Unfortunately, it is not unsual to obtain that “Xt Granger cause Yt” and “Yt

Granger cause Xt” even if it makes sense to expect causality in one direction

only.
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Unfortunately, it is not unsual to obtain that “Xt Granger cause Yt” and “Yt

Granger cause Xt” even if it makes sense to expect causality in one direction

only.

According to McCrorie & Chambers (2006) and others, this “spurious Granger

causality is only a consequence of the intervals in which economic data are

generated being finer than the econometrician’s sampling interval.”
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Unfortunately, it is not unsual to obtain that “Xt Granger cause Yt” and “Yt

Granger cause Xt” even if it makes sense to expect causality in one direction

only.

According to McCrorie & Chambers (2006) and others, this “spurious Granger

causality is only a consequence of the intervals in which economic data are

generated being finer than the econometrician’s sampling interval.”

In essence, the underlying process (and causality) evolve continuously rather

than discretely.
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McCrorie and Chambers (2006) proposed the continuous version of the VAR

model

dX(t) = A(θ)X(t)dt+ dWt

where X(t) is a n-dimensional diffusion process (i.e. the components of X(t)
may be Yt, Xt, and Zt in the previous notation), A(θ) is a n× n matrix and θ
parameters on which tests will be performed and W (t) is a multidimensional

Brownian motion.
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Discrete sampling of the above continuous time model leads to observations

Xi = X(ti), ti = i∆, i = 0, . . . , n, n∆ = T which solve exactly the so

called Euler scheme

Xi = F (θ)Xi−1 + ∆ǫi, i = 1, . . . , n

where ǫ is a white noise and

F (θ) = eA(θ), Var(ǫ) = Ω(θ) =

∫ 1

0
erA(θ)

∑

erA(θ)′dr
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Discrete sampling of the above continuous time model leads to observations

Xi = X(ti), ti = i∆, i = 0, . . . , n, n∆ = T which solve exactly the so

called Euler scheme

Xi = F (θ)Xi−1 + ∆ǫi, i = 1, . . . , n

where ǫ is a white noise and

F (θ) = eA(θ), Var(ǫ) = Ω(θ) =

∫ 1

0
erA(θ)

∑

erA(θ)′dr

Assuming the above continuous time model instead of the classical time series

approach can greatly improve testing of Granger causality (see McCrorie and

Chambers, 2006)
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In pharmacokinetic/pharmacodynamic (PK/PD) models we have

yij , i = 1, . . . , N, j = 1, . . . , ni

repeated measures on the i-th individual at time point tij

N = number of individuals

ni = number of measurements for individual i

The response is modeled as a NLME model

yij = f(xi(tij), di(tij), φi) + ǫij
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yij = f(xi(tij), di(tij), φi) + ǫij

xi(·) : i-th individual state variables (e.g. the amount of drug in the PK

experiment)
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yij = f(xi(tij), di(tij), φi) + ǫij

xi(·) : i-th individual state variables (e.g. the amount of drug in the PK

experiment)

di(·) : a vector of inputs (e.g. dose administration)

φi : vector of individual parameters

ǫij : model residuals

tij : time of the measurement
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yij = f(xi(tij), di(tij), φi) + ǫij

xi(·) : i-th individual state variables (e.g. the amount of drug in the PK

experiment)

di(·) : a vector of inputs (e.g. dose administration)

φi : vector of individual parameters

ǫij : model residuals

tij : time of the measurement

There is a second stage model for φ, not relevant to this discussion.
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yij = f(xi(tij), di(tij), φi) + ǫij

The PK dynamics is usually assumed to be regulated by the ordinary

differential equation (ODE)

dxi(t)

dt
= g(xi(t), di(t), φi)
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yij = f(xi(tij), di(tij), φi) + ǫij

The PK dynamics is usually assumed to be regulated by the ordinary

differential equation (ODE)

dxi(t)

dt
= g(xi(t), di(t), φi)

but applications (Overgaard et. al, 2005) shows that this model is inadequate

and to capture deviations from the ODE model, the SDEs approach has been

proposed (expressed in differential form)

dxi(t) = g(xi(t), di(t), φi)dt+ σwdWt

σw may be a function of x, d, t and some other parameters
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Divergences are measure of discrepancy between statistical models and

φ-divergences are defined as follows

Dφ(θ, θ0) =

∫

X
p(θ0, x)φ

(

p(θ, x)

p(θ0, x)

)

µ(dx)

= Eθ0φ

(

p(X, θ)

p(X, θ0)

)

and the minimal requirement on the function φ is: φ(1) = 0
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The φ-divergences where introduced by Csiszár (1963) and studied

extensively later in Liese and Vajda (1987)

They include most of known other divergences. We discuss some examples in

the following
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The α-divergences (Csiszár, 1967, Amari, 1985) are defined as

Dα(θ, θ0) = Dφα(θ, θ0)

with

φα(x) =
4
(

1 − x
1+α

2

)

1 − α2
, −1 < α < 1

They are such that Dα(θ0, θ) = D−α(θ, θ0).
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The α-divergences include some special cases.

For example, for α→ −1, D−1 is the well-known Kullback-Leibler divergence

D−1(θ, θ0) = DKL(θ, θ0) = −Eθ0

{

log

(

p(X, θ)

p(X, θ0)

)}

For α→ 0, the Hellinger distance (see, e.g., Beran, 1977, Simpson, 1989) can

be derived

dH(θ, θ0) =
1

2
E
(

√

p(X, θ) −
√

p(X, θ0)
)2
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The α-divergence is also equivalent to the Rényi’s divergence (Rényi, 1961)

Rα(θ, θ0) =
1

1 − α
logEθ0

(

p(X, θ)

p(X, θ0)

)α

DKL(θ, θ0) = lim
α→1

Rα(θ, θ0)

again

dH(θ, θ0) = 1 − exp

{

1

2
R 1

2
(θ, θ0)

}
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Liese and Vajda (1987) generalized Rényi divergences to all real orders

α 6= 0, 1

Dα(θ, θ0) =
1

α(α− 1)
logEθ0

(

p(X, θ)

p(X, θ0)

)α

only for α = 1
2 the divergence is symmetric

D 1
2
(θ0, θ) = D 1

2
(θ, θ0) = 4 log

∫

√

p(x, θ)p(θ0, x)µ(dx)

[known as Bhattacharyya (1946) divergence], otherwise

Dα(θ0, θ) = D1−α(θ, θ0)
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The transformation

ψ(Rα) = (exp{(α− 1)Rα − 1}/(1 − α)

coincides with the power-divergence introduced by Cressie and Read (1984)

Power divergences Dφλ
can be obtained directly from the φ-divergences

choosing

φλ(x) =
xλ+1 − λ(x− 1) − x

λ(λ+ 1)
, λ ∈ R − {0,−1}

...and so forth



Summary of φ-divergences (see Pardo, 2006)
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φ(x) with x = p(θ, ·)/p(θ0, ·) Divergence

x log x − x + 1 Kullback-Leibler

− log x + −1 Minimum Discrimination Information

(x − 1) log x J -divergence

1
2
(x − 1)2 Pearson, Kagan

(x−1)2

(x+1)2
Balakrishnan & Sanghvi

−xs+s(x−1)+1
1−s

, s 6= 1 Rathie & Kannappan

1−x
2

−

„

1+x−r

2

«

−1/r

r > 0 Harmonic mean (Mathai & Rathie)

(1−x)2

2(a+(1−a)x)
0 ≤ a ≤ 1 Rukhin

ax log x−(ax+1−a) log(ax+1−a)
a(1−a)

a 6= 0, 1 Lin

xλ+1
−x−λ(x−1)
λ(λ+1)

λ 6= 0, −1 Cressie & Read

|1 − xa|1/a 0 < a < 1 Matusita

|1 − x|a a ≥ 1 χ-divergence of order a (Vajda) and Total Variation if a = 1 (Saks)
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Divergences can be used in both hypotheses testing and estimation (see, e.g.

Pardo, 2006), here we consider hypotheses testing problems.

For a given sample of n i.i.d. observations X1, . . . , Xn, under standard

regularity assumptions on the model and on φ, the standard result is that,

under H0 : θ = θ0
2nDφ(θ̂n, θ0) ⇒ χ2

d

where θ̂n = θ̂n(X1, . . . , Xn) is
√
n-consistent and asymptotically gaussian

estimator of θ and d is the dimension of θ
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For continuous time observations from diffusion processes, Vajda (1990)

considered the model

dX(t) = −b(t)Xtdt+ σ(t)dWt

and derived explicit formulas for the Rényi divergence
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For continuous time observations from diffusion processes, Vajda (1990)

considered the model

dX(t) = −b(t)Xtdt+ σ(t)dWt

and derived explicit formulas for the Rényi divergence

Küchler and Sørensen (1997) and Morales et al. (2004) contain several results

on the generalized likelihood ratio test statistics and Rényi statistics for

exponential families of diffusions
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For continuous time observations from diffusion processes, Vajda (1990)

considered the model

dX(t) = −b(t)Xtdt+ σ(t)dWt

and derived explicit formulas for the Rényi divergence

Küchler and Sørensen (1997) and Morales et al. (2004) contain several results

on the generalized likelihood ratio test statistics and Rényi statistics for

exponential families of diffusions

Explicit derivations of the Rényi information on the invariant law of ergodic

diffusion processes have been presented in De Gregorio and I. (2008)
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For continuous time small diffusion processes f -unbiased information criteria

have been derived in Uchida and Yoshida (2004) by means of Malliavin

calculus. For mixing processes in Uchida and Yoshida (2001)
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For continuous time small diffusion processes f -unbiased information criteria

have been derived in Uchida and Yoshida (2004) by means of Malliavin

calculus. For mixing processes in Uchida and Yoshida (2001)

Rivas et al. (2005) derived Rényi divergences for discrete time observations

from the model dXt = adt+ bdWt where a and b are two scalars
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For continuous time small diffusion processes f -unbiased information criteria

have been derived in Uchida and Yoshida (2004) by means of Malliavin

calculus. For mixing processes in Uchida and Yoshida (2001)

Rivas et al. (2005) derived Rényi divergences for discrete time observations

from the model dXt = adt+ bdWt where a and b are two scalars

Akaike Information Criteria for discretely observed diffusion processes was

derived by Uchida and Yoshida (2005)
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Kutoyants (2004) and Dachian and Kutoyants (2008) consider the problem of

testing statistical hypotheses for ergodic diffusion models in continuous time
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Kutoyants (2004) and Dachian and Kutoyants (2008) consider the problem of

testing statistical hypotheses for ergodic diffusion models in continuous time

Kutoyants (1984) and Iacus and Kutoyants (2001) consider parametric and

semiparametric hypotheses testing for small diffusion processes
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Kutoyants (2004) and Dachian and Kutoyants (2008) consider the problem of

testing statistical hypotheses for ergodic diffusion models in continuous time

Kutoyants (1984) and Iacus and Kutoyants (2001) consider parametric and

semiparametric hypotheses testing for small diffusion processes

Negri and Nishiyama (2008) propose a non parametric test based on score

marked empirical process for continuous time observations of ergodic

diffusions and Masuda et al. (2008) analyzed the discrete time case. Lee and

Wee (2008) considered the parametric version of this test for a simplified

ergodic model. Negri and Nishiyama (2007) studied the same test for

continuous and discrete time observations from small diffusion processes.
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Aı̈t-Sahalia (1996), Giet and Lubrano (2008) and Chen et al. (2008) proposed

tests based on the several distances between parametric and nonparametric

estimation of the invariant density of discretely observed ergodic diffusion

processes
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Aı̈t-Sahalia (1996), Giet and Lubrano (2008) and Chen et al. (2008) proposed

tests based on the several distances between parametric and nonparametric

estimation of the invariant density of discretely observed ergodic diffusion

processes

(Up to our knowledge) No other option exists for parametric hypotheses testing

based on divergences for discretely observed diffusions processes, and this

was the motivation for this work
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Consider again the φ-divergence

Dφ(θ, θ0) = Eθ0φ

(

p(X, θ)

p(X, θ0)

)

where p(X, θ) is the likelihood of the process X under θ.

Let φ(·) be such that φ(1) = 0. When they exist, define Cφ = φ′(1) and Kφ = φ′′(1).
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Consider again the φ-divergence

Dφ(θ, θ0) = Eθ0φ

(

p(X, θ)

p(X, θ0)

)

where p(X, θ) is the likelihood of the process X under θ.

Let φ(·) be such that φ(1) = 0. When they exist, define Cφ = φ′(1) and Kφ = φ′′(1).

In order to get additional properties, in the i.i.d. case φ(x) is assumed to be convex or

decreasing in x ∈ (0, 1) and increasing for x > 1. These conditions are very convenient in the

presence of exponential families. We do not ask for these conditions in our framework.
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We assume that the process Xt is ergodic for every θ with invariant law µθ. The process Xt is

observed at discrete times ti = i∆n, i = 0, 1, 2, ..., n, where ∆n is the length of the steps. We

denote the observations by Xn := {Xi = Xti}0≤i≤n.

The asymptotic is ∆n → 0, n∆n → ∞ and n∆2
n → 0 as n→ ∞.

Given θ̃n a consistent and asymptotically gaussian estimator for θ, we propose the following test

statistics based on the pseudo φ-divergence

Dφ(θ̃n, θ0) = φ

(

fn(Xn, θ̃n)

fn(Xn, θ0)

)

to test H0 : θ = θ0 against H1 : θ 6= θ0.

Here fn(·, θ) is an the approximate likelihood of the observed diffusion.

Notice: there is no expect value! Hence, “pseudo” φ-divergences
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We need an estimator θ̃n such such that: Γ−1/2(θ̃n − θ0)
d→ N(0, I(θ0)

−1)

where I(θ0) the Fisher information matrix, positive definite and invertible at θ0

I(θ0) =

(

(Ikj
b (θ0))k,j=1,...,p 0

0 (Ikj
σ (θ0))k,j=1,...,q

)

with
I

kj
b

(θ0) =

Z

1

σ2(β0, x)

∂b(α0, x)

∂αk

∂b(α0, x)

∂αj

µθ0
(dx)

I
kj
σ (θ0) = 2

Z

1

σ2(β0, x)

∂σ(β0, x)

∂βk

∂σ(β0, x)

∂βj

µθ0
(dx)

and Γ the (p+ q) × (p+ q) matrix

Γ =

(

1
n∆n

Ip 0

0 1
n
Iq

)

with Ip is the p× p identity matrix.
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As in Uchida and Yoshida (2005), consider the following approximation of the likelihood

fn(θ) = exp {un(θ)} , un(θ) =
n
∑

k=1

u(∆n, Xi−1, Xi, θ)

where

u(t, x, y, θ) = −1

2
log(2πt) − log σ(y, β) − S2(x, y, β)

2t
+H(x, y, θ) + tg̃(x, y, θ) ,

with
S(x, y, β) =

Z y

x

du

σ(u, β)
, H(x, y, θ) =

Z y

x

B(u, θ)

σ(u, β)
du

g̃(x, y, θ) = −
1

2



C(x, θ) + C(y, θ) +
1

3
B(x, θ)B(y, θ)

ff

C(x, θ) =
1

2
B2(x, θ) +

1

2
Bx(x, θ)σ(x, β), B(x, θ) =

b(x, α)

σ(x, β)
−

1

2
σx(x, β)
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We consider the approximated maximum likelihood estimator θ̂n based on the locally Gaussian

approximation (see, e.g. Yoshida, 1992), i.e.

θ̂n = arg max
θ
ℓn(θ)

with

ℓn(θ) =
n
∏

i=1

1
√

2π∆nσ2(Xi−1, θ)
exp

{

−1

2

(Xi −Xi−1 − b(Xi−1, θ)∆n)2

∆nσ2(Xi−1, θ)

}

The estimator θ̂n satisfies previous convergence assumptions for θ̃n
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i) There exists a constant C such that

|b(α0, x) − b(α0, y)| + |σ(β0, x) − σ(β0, y)| ≤ C|x− y|.

ii) infβ,x σ
2(β, x) > 0.

iii) The process X is ergodic for every θ with invariant probability measure µθ . All polynomial
moments of µθ are finite.

iv) For all m ≥ 0 and for all θ, suptE|Xt|m <∞.

v) For every θ, the coefficients b(α, x) and σ(β, x) are five times differentiable with respect to x and
the derivatives are polynomial growth in x, uniformly in θ.

vi) The coefficients b(α, x) and σ(β, x) and all their partial derivatives respect to x up to order 2 are
three times differentiable respect to θ for all x in the state space. All derivatives respect to θ are
polynomial growth in x, uniformly in θ.
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Let i = 0, 1, 2, 3 and ∂i
θ the partial i-th derivative with respect to θ and similarly for x,

i) ∂i
θh̃(x, θ) = O(|x|2) as x→ ∞.

ii) infx ∂
i
θh̃(x, θ) > −∞

iii) supθ supx |∂i
θ∂

5
xh̃(x, θ)| ≤M <∞.

iv) There exists γ > 0 such that for every θ and j = 1, . . . , 4, |∂i
θ∂

j
xB̃(x, θ)| = O(|B̃(x, θ)|γ) as

|x| → ∞.

When the coefficients b(α, x) = b(α0, x) and σ2(β, x) = σ2(β0, x) for µθ0
a.s. for all x, then α = α0

and β = β0.
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Theorem: Under H0 : θ = θ0 and the asymptotic n∆2
n → 0, ∆n → 0, n∆n = T → ∞ the

pseudo-φ divergence test statistics is such that

Dφ(θ̂n, θ0)
d→ 1

2
(Cφξp+q + (Cφ +Kφ)ξ2p+q)

where ξp+q ∼ χ2
p+q
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Theorem: Under H0 : θ = θ0 and the asymptotic n∆2
n → 0, ∆n → 0, n∆n = T → ∞ the

pseudo-φ divergence test statistics is such that

Dφ(θ̂n, θ0)
d→ 1

2
(Cφξp+q + (Cφ +Kφ)ξ2p+q)

where ξp+q ∼ χ2
p+q

Remind that, in the i.i.d. case we have 2nDφ(θ̂n, θ0) ⇒ χ2
d

Notice: the limit distribution does not depend on φ in the i.i.d. In our approach it does and one

can try to characterize the limit. In particular, we can study the power function of the test

analytically under contiguous alternatives (not shown here).
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For example, consider the α-divergences

φα(x) =
4
(

1 − x
1+α

2

)

1 − α2

and the limit as α→ −1, i.e. the Kullback-Leibler divergence, we have

φ(x) = lim
α→−1

φα(x) = − log(x)

for which Cφ = −1 and Kφ = 1. Hence

DKull(θ̂n, θ0) = Dφ(θ̂n, θ0)
d→ 1

2
(Cφξp+q + (Cφ +Kφ)ξ2p+q)

reduces to the standard result of the i.i.d. setting.
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The proof is obtained by means of the δ-method up to second order.

These lemmas are needed to prove convergence

Γ
1
2∇θ log ℓn(Xn, θ0)

p→ N(0, I(θ0)) (Kessler, 1997)

Γ
1
2∇θ log fn(Xn, θ0) = Γ

1
2∇θ log ℓn(Xn, θ0) + op(1) (Uchida & Yoshida, 2005)

Γ
1
2∇2

θ log fn(Xn, θ0)Γ
1
2

p→ −I(θ0) (Uchida & Yoshida, 2005)

So the result hold for any approximation of the likelihood fn and appropriate estimator provided

that the above lemmas can be proved.

Almost all likelihood approximations available in the literature for SDE’s satisfy the assumptions.
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� α-divergences

Dα(θ̂n, θ0) = φα

(

fn(Xn, θ̂n)

fn(Xn, θ0)

)

with φα(x) = 4(1 − x
1+α

2 )/(1 − α2), with Cα = 2
α−1

and Kφ = 1. With

α ∈ {−0.99,−0.90,−0.75,−0.50,−0.25,−0.10};

� power-divergences of order λ

Dλ(θ̂n, θ0) = φλ

(

fn(Xn, θ̂n)

fn(Xn, θ0)

)

with φλ(x) = (xλ+1 − x − λ(x − 1))/(λ(λ + 1)), with Cλ = 0, Kλ = 1. With

λ ∈ {−0.99,−1.20,−1.50,−1.75,−2.00,−2.50};

� generalized likelihood ratio test statistic

Dlog(θ̂n, θ0) = − log

(

fn(Xn, θ̂n)

fn(Xn, θ0)

)
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The Vasicek (VAS) model: dXt = κ(α−Xt)dt+ σdWt, where, in

finance, σ is interpreted as volatility, α is the long-run equilibrium value of the

process and κ is the speed of reversion. Let

θ0 = (κ0, α0, σ
2
0) = (0.85837, 0.089102, 0.0021854)

we consider three different sets of hypotheses for the parameters
model θ = (κ, α, σ2)

VAS0 (κ0, α0, σ
2
0)

VAS1 (4 · κ0, α0, 4 · σ2
0)

VAS2 (1
4κ0, α0,

1
4 · σ2

0)



Model comparisons
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The Cox-Ingersoll-Ross (CIR) model: dXt = κ(α−Xt)dt+ σ
√

XtdWt. Let

θ0 = (κ0, α0, σ
2
0) = (0.89218, 0.09045, 0.032742)

we consider different sets of hypotheses for the parameters
model θ = (κ, α, σ2)

CIR0 (κ0, α0, σ
2
0)

CIR1 (1
2 · κ0, α0,

1
2 · σ2

0)
CIR2 (1

4 · κ0, α0,
1
4 · σ2

0)

This model has a transition density of χ2-type, hence local gaussian approximation is less likely

to hold for non negligible values of ∆n.

The parameters of the above models, have been chosen according to Pritsker (1998) and Chen

et al. (2008), in particular VAS0 corresponds to the model estimated by Aı̈t-Sahalia (1996) for

real interest rates data.
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The empirical level of the test is calculated as the number of times the test

rejects the null hypothesis under the true model, i.e.

α̂n =
1

M

M
∑

i=1

1{Dφ>cα} under H0

where 1A is the indicator function of set A, M = 10, 000 is the number of

simulations and cα is the (1 − α)% quantile of the proper distribution.

Similarly we calculate the power of the test under alternative models as

β̂n =
1

M

M
∑

i=1

1{Dφ>cα} under H1



Vasicek. Alpha-div. of order a, a = −0.99 = GLRT

Plan of the talk

Diffusions

Granger causality

NLME

Part I

Examples

i.i.d. setup

Hypotheses testing

Main result

Simulations

Part II

Simulations

NYSE data

References

43 / 74

model (α, n) a = −0.99 a = −0.90 a = −0.75 a = −0.50 a = −0.25 a = −0.10
VAS0 (0.01, 50) 0.01 0.10 0.39 0.62 0.73 0.77
VAS1 (0.01, 50) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.01, 50) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 50) 0.04 0.12 0.39 0.62 0.73 0.77
VAS1 (0.05, 50) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 50) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.01, 100) 0.01 0.10 0.39 0.63 0.74 0.78
VAS1 (0.01, 100) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.01, 100) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 100) 0.04 0.11 0.40 0.63 0.74 0.78
VAS1 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.01, 500) 0.02 0.18 0.61 0.83 0.90 0.92
VAS1 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 500) 0.07 0.20 0.61 0.83 0.90 0.92
VAS1 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
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model (α, n) λ = −0.99 λ = −1.20 λ = −1.50 λ = −1.75 λ = −2.00 λ = −2.50
VAS0 (0.01, 50) 0.00 0.00 0.00 0.01 0.02 0.04
VAS1 (0.01, 50) 0.00 0.99 1.00 1.00 1.00 1.00
VAS2 (0.01, 50) 0.40 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 50) 0.00 0.00 0.00 0.01 0.03 0.06
VAS1 (0.05, 50) 0.67 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 50) 0.99 1.00 1.00 1.00 1.00 1.00

VAS0 (0.01, 100) 0.00 0.00 0.00 0.01 0.02 0.04
VAS1 (0.01, 100) 0.23 1.00 1.00 1.00 1.00 1.00
VAS2 (0.01, 100) 0.88 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 100) 0.00 0.00 0.00 0.01 0.03 0.06
VAS1 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.01, 500) 0.00 0.00 0.00 0.01 0.03 0.08
VAS1 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 (0.05, 500) 0.00 0.00 0.01 0.03 0.06 0.12
VAS1 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
VAS2 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
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model (α, n) a = −0.99 a = −0.90 a = −0.75 a = −0.50 a = −0.25 a = −0.10
CIR0 (0.01, 50) 0.01 0.14 0.54 0.77 0.85 0.87
CIR1 (0.01, 50) 0.80 0.98 1.00 1.00 1.00 1.00
CIR2 (0.01, 50) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.05, 50) 0.05 0.16 0.54 0.77 0.85 0.87
CIR1 (0.05, 50) 0.94 0.98 1.00 1.00 1.00 1.00
CIR2 (0.05, 50) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.01, 100) 0.01 0.13 0.49 0.71 0.79 0.82
CIR1 (0.01, 100) 0.99 1.00 1.00 1.00 1.00 1.00
CIR2 (0.01, 100) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.05, 100) 0.04 0.15 0.49 0.71 0.79 0.82
CIR1 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00
CIR2 (0.05, 100) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.01, 500) 0.00 0.06 0.28 0.54 0.69 0.74
CIR1 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00
CIR2 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.05, 500) 0.02 0.08 0.28 0.54 0.69 0.74
CIR1 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
CIR2 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
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model (α, n) λ = −0.99 λ = −1.20 λ = −1.50 λ = −1.75 λ = −2.00 λ = −2.50
CIR0 (0.01, 50) 0.00 0.00 0.00 0.01 0.02 0.06
CIR1 (0.01, 50) 0.00 0.06 0.52 0.75 0.86 0.94
CIR2 (0.01, 50) 0.00 0.99 1.00 1.00 1.00 1.00

CIR0 (0.05, 50) 0.00 0.00 0.00 0.02 0.04 0.09
CIR1 (0.05, 50) 0.00 0.23 0.70 0.85 0.92 0.96
CIR2 (0.05, 50) 0.06 1.00 1.00 1.00 1.00 1.00

CIR0 (0.01, 100) 0.00 0.00 0.00 0.01 0.02 0.05
CIR1 (0.01, 100) 0.00 0.56 0.96 0.99 1.00 1.00
CIR2 (0.01, 100) 0.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.05, 100) 0.00 0.00 0.00 0.02 0.03 0.08
CIR1 (0.05, 100) 0.00 0.83 0.99 1.00 1.00 1.00
CIR2 (0.05, 100) 0.97 1.00 1.00 1.00 1.00 1.00

CIR0 (0.01, 500) 0.00 0.00 0.00 0.00 0.01 0.02
CIR1 (0.01, 500) 0.00 1.00 1.00 1.00 1.00 1.00
CIR2 (0.01, 500) 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 (0.05, 500) 0.00 0.00 0.00 0.01 0.02 0.04
CIR1 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
CIR2 (0.05, 500) 1.00 1.00 1.00 1.00 1.00 1.00
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The power divergences are, on average, better than the generalized likelihood

ratio test in terms of both empirical level α̂ and power β̂ for the models

considered and under the selected alternatives

the α-divergence do not behave very well and only approximate the GLR test

at most (i.e. always worse than GLRT)

For the CIR study, all test statistics have, in general, lower power under the

alternative CIR1 than under CIR2

Power divergences are yet the best test statistics in both cases (CIR and VAS),

for λ = (−1.20,−1.50,−1.75)
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The package sde for the R statistical environment is freely available at

http://cran.R-Project.org.

It contains the function sdeDiv which implements the φ-divergence test

statistics.

http://cran.R-Project.org
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We consider the model

dXt = (θi1 − θi2Xt)dt+ θi3

√

XtdWt, i = 0, 1

with (as, in Pritsker, 1998, and Chen et al., 2008)

θ0 = (0.0807, 0.8922, 0.1809)

θ1 = (0.0403, 0.8922, 0.1279)

theta0 <- c(0.0807, 0.8922, 0.1809)

theta1 <- c(0.0403, 0.8922, 0.1279)

We simulate under H1 : θ = θ1 and test for H0 : θ = θ0

set.seed(123)

X <- sde.sim(X0=rsCIR(1, theta1), N=5000, delta=1e-3, model="CIR", theta=theta1)
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after setting up model description

b <- function(x,theta) theta[1]-theta[2]*x # drift coefficient

b.x <- function(x,theta) -theta[2]

s <- function(x,theta) theta[3]*sqrt(x) # diffusion coefficient

s.x <- function(x,theta) theta[3]/(2*sqrt(x))

s.xx <- function(x,theta) -theta[3]/(4*x^1.5)

we choose the power divergences

lambda <- -1.75

myphi <- expression((x^(lambda+1) -x -lambda*(x-1))/(lambda*(lambda+1)))

φ(x) =
xλ+1 − x− λ(x− 1)

λ(λ+ 1)
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We run the test. Should reject H0

sdeDiv(X=X, theta0 = theta0, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,

method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))

estimated parameters

0.04041047 1.298524 0.1290066

Testing H0 against H1

H0: 0.0807 0.8922 0.1809

H1: 0.04041047 1.298524 0.1290066

Divergence statistic: 2.8492e+151 (p-value=0)

Likelihood ratio test statistic: 930.69 (p-value=1.9486e-201)
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We run the test. Should reject H0

sdeDiv(X=X, theta0 = theta0, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,

method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))

estimated parameters

0.04041047 1.298524 0.1290066

Testing H0 against H1

H0: 0.0807 0.8922 0.1809

H1: 0.04041047 1.298524 0.1290066

Divergence statistic: 2.8492e+151 (p-value=0)

Likelihood ratio test statistic: 930.69 (p-value=1.9486e-201)

H0 successfully rejected! Both by power-divergence and GLRT.
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Now we run the test for H0 = H1, should not reject

sdeDiv(X=X, theta0 = theta1, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,

method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))

estimated parameters

0.04041047 1.298524 0.1290066

Testing H0 against H1

H0: 0.0403 0.8922 0.1279

H1: 0.04041047 1.298524 0.1290066

Divergence statistic: 8.7511 (p-value=0.24091)

Likelihood ratio test statistic: 6.883 (p-value=0.075723)
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Now we run the test for H0 = H1, should not reject

sdeDiv(X=X, theta0 = theta1, phi = myphi, b=b, s=s, b.x=b.x, s.x=s.x, s.xx=s.xx,

method="L-BFGS-B", lower=rep(1e-3,3), guess=c(1,1,1))

estimated parameters

0.04041047 1.298524 0.1290066

Testing H0 against H1

H0: 0.0403 0.8922 0.1279

H1: 0.04041047 1.298524 0.1290066

Divergence statistic: 8.7511 (p-value=0.24091)

Likelihood ratio test statistic: 6.883 (p-value=0.075723)

clearly H0 not rejected at 5% by power divergences. Not rejected also by GLRT with suspect

p-value
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Consider again the nonparametric family of ergodic diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt, 0 ≤ t ≤ T,

Let

s(x) = exp

{

−2

∫ x

x0

b(y)

σ2(y)
dy

}

and m(x) =
1

σ2(x)s(x)
.

be the scale and speed measures. x0 ∈ [a, b], [a, b] the state space of X .
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Consider again the nonparametric family of ergodic diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt, 0 ≤ t ≤ T,

Let

s(x) = exp

{

−2

∫ x

x0

b(y)

σ2(y)
dy

}

and m(x) =
1

σ2(x)s(x)
.

be the scale and speed measures. x0 ∈ [a, b], [a, b] the state space of X .

Then, the invariant measure of X is

µb,σ(x) =
m(x)

M
, with M =

∫

m(x)dx
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The discretized observations Xi form a Markov process and all the mathematical properties are

embodied in the so-called transition operator

P∆f(x) = E{f(Xi)|Xi−1 = x}

with f is a generic function, e.g. f(x) = xk.

Notice that P∆ depends on the transition density between Xi and Xi−1, so we put explicitly the

dependence on ∆ in the notation.

Luckily, there is no need to deal with the transition density, we can estimate P∆ directly and fully

non parametrically.

We assume n∆2
n → 0, ∆n → 0, n∆n = T → ∞.
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For a given L2-orthonormal basis {φj , j ∈ J} of L2([a, b]), where J is an index set, following

Gobet et. al (2004) it is possible to obtain an estimator P̂∆ of < P∆φj , φk >µb,σ
with entries

(P̂∆)j,k(X) =
1

2N

N
∑

i=1

{φj(Xi−1)φk(Xi) + φk(Xi−1)φj(Xi)} , j, k ∈ J

The terms (P̂∆)j,k are approximations of < P∆φj , φk >µb,σ
, that is, the action of the transition

operator on the state space of X with respect of the unknown scalar product < ·, · >µb,σ
.

Remind that µb,σ is the unknown invariat distribution of the process depending on the unknown

drift b(·) and diffusion σ(·) coefficients but we don’t need to specify them.
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Then, P̂∆ can be used as “proxy” of the probability structure of the model.

Our proposal is to use the distance between two estimated Markov Operators

dMO(X,Y ) =
∑

j,k∈J

[(P̂∆)j,k(X) − (P̂∆)j,k(Y )]2

In our examples, we compare dMO against

� the Euclidean distance dEUC

� the Short-Time-Series distance dSTS

� and the Dynamic Time Warping distance dDTW
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We simulate 10 paths Xi, i = 1, . . . , 10, according to the combinations of drift bi and diffusion

coefficients σi, i = 1, . . . , 4 presented in the following table

σ1(x) σ2(x) σ3(x) σ4(x)

b1(x) X10, X1 X5

b2(x) X2,X3 X4

b3(x) X6, X7

b4(x) X8

where

b1(x) = 1 − 2x, b2(x) = 1.5(0.9 − x), b3(x) = 1.5(0.5 − x), b4(x) = 5(0.05 − x)

σ1(x) = 0.5 + 2x(1 − x), σ2(x) =
√

0.55x(1 − x)

σ3(x) =
√

0.1x(1 − x), σ4(x) =
√

0.8x(1 − x)

The process X9=1-X1, hence it has drift −b1(x) and the same quadratic variation of X1 and

X10.
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We consider the time series of daily closing quotes, from 2006-01-03 to 2007-12-31, for the
following 20 financial assets:

Microsoft Corporation (MSOFT in the plots) Advanced Micro Devices Inc. (AMD)
Dell Inc. (DELL) Intel Corporation (INTEL)
Hewlett-Packard Co. (HP) Sony Corp. (SONY)
Motorola Inc. (MOTO) Nokia Corp. (NOKIA)
Electronic Arts Inc. (EA) LG Display Co., Ltd. (LG)
Borland Software Corp. (BORL) Koninklijke Philips Electronics NV (PHILIPS)
Symantec Corporation (SYMATEC) JPMorgan Chase & Co (JMP)
Merrill Lynch & Co., Inc. (MLINCH) Deutsche Bank AG (DB)
Citigroup Inc. (CITI) Bank of America Corporation (BAC)
Goldman Sachs Group Inc. (GSACHS) Exxon Mobil Corp. (EXXON)

Quotes come from NYSE/NASDAQ. Source Yahoo.com.
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Data clustered according to DTW distance
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The package sde for the R statistical environment is freely available at

http://cran.R-Project.org.

It contains the function MOdist which calculates the Markov Operator distance

and returns a dist object.

data(quotes)

d <- MOdist(quotes)

cl <- hclust( d )

groups <- cutree(cl, k=4)

plot(quotes, col=groups)

cmd <- cmdscale(d)

plot( cmd, col=groups)

text( cmd, labels(d) , col=groups)

http://cran.R-Project.org
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