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What Is a wavelet?

» A wavelet Is a waveform of effectively
imited duration that has an average value
of zero.

> Sine wave \Wavelet




What Is a wavelet?

» Admissibility’ condition:

» The function U (t)HL%(R) is often referred to as the
mother wavelet and must satisfy the admissibility
condition given by

Jig W (W)[E|w] dw < oo,

» where W(w) is the Fourier transform of Uy (t).

» |F W () has sufficient decay, then this condition is
equivalent to

> W(0) = - W (t)dt= 0.



What Is a wavelet?

» Example: Haar wavelet




VWhat can wavelets do?

1) Performing local analysis

2) Analyzing nonstationary signals
3) Denoising Signals

4) Data Compression

5) Decorrelating time series



Discrete Wavelet Transform

As discretized cwi:

a=2 b=k (jk)eZ



Discrete Wavelet Transtform

wavelet coefficients:

scaling coefficients:



Discrete Wavelet Transtform

Let c,, = X, (the time series), then the
wavelet and scaling coefficients are:



Long-memory: Process

Definition:

A long-memory process is commonly defined as a stationary
process for which the autocorrelation function at lag k satisfies

as k — oo, where Cp Z 0 and
0<d<0.5.
An equivalent statement for the power spectrum is given by

flw)lJC, |w|[?, asw-0,

which has a pole at the origin when 0<d<0.5.



Long-memory: Process

Example: Autocorrelations of video traffic data




Long-memory: Process

Example: Autocorrelations of Ethernet data



Generalized Fractional Process

The Model

A Gegenbauer autoregressive moving average
GARMA(p,d,u,q) process is the output of the system
function

driven by a stationary white noise input with mean 0 and
variance g #



Generalized Fractional Process

The Model

The rational function

IS the autoregressive moving average, ARMA(p,q) system,
such that zrO(z) and z°®(z) have no common zeros and the
zeros lie outside the unit circle.



Generalized Fractional Process
The Model

The Gegenbauer system is defined by

When the input is a stationary white noise, the output is called
a Gegenbauer process, which is stationary if d<0.5 and |u| <1 If
or if d<0.25 and |u|=1; itis invertible if —-0.5<d and |u| <1 or
-0.25<d and |u|=1. If u=1, we have ARFIMA(p,d,q) process.



Generalized Fractional Process

The Model

TThe power spectrum of a GARMA(p,d,uU,q) process is
given by

where we(-0.5,0.5] and v = cos’(u)/21r is called the
Gegenbauer frequency at which the power spectrum
becomes unbounded when 0<d<0.5.



Generalized Fractional Process

The Model

The autocovariance function of a GARMA(p,d,u,q)
Process Is given by

where are the associated Legendre functions of the first
King.



Generalized Fractional Process

Spectrum of Garma(0,d,u,0) Process




Generalized Fractional Process

Example: Spectrum of heart rate data

0.2 0.3
frequency(Hz)




Generalized Fractional Process

GARMA(p,d,u,q) Process generalizes the
following:

1) Gegenbauer process
2) Fractionally Integrated process
3) ARMA Process
4) AR Process
)

9) MA Process



Covariance Structure of Wavelet
Coefficients

Covariance of wavelet coefficients

Cov(d,d,) =

Cov(d;, 0;4.q)=

where IS the Fourier transform of the
level | Daubechies wavelet filter



Covariance Structure of Wavelet
Coefficients

Note that:



Covariance Structure of \WWavelet

Coefficients

Lemma 1 (Gonzaga and Kawanaka) Let {#,,, (= 0,1,...,[-1} the orthonormal

Daubechies wavelet filter of length L, thenas L —» o,

P{j,j(f)ﬂ(?u (2“*"‘11“]2 -0 ae. and

H,, 7 T1G.R" ] >0 ae. (A1)




Covariance Structure ofi \WWavelet

Coefficients

Theorem 2 (Gonzaga and Kawanaka). Let {Yi} be a generalized fractional

process and {A,,, (= 0,1,...[-1} the orthonormal Daubechies wavelet filter of

length L, then for j> ;' and d<0,

3/4
L

(Could; )] - ( | ] A7



Covariance Structure ofi \WWavelet

Coefficients

Theorem 3 (Gonzaga and Kawanaka). Let {Y;} be a generalized fractional

process and {4, = 0,1,...,L-1} the orthonormal Daubechies wavelet filter of

length L, then for j> ;'and d>0,

|Cov(dd)| = O[Li] fvelo27] (A24)
and
1 | .
|Cov(d diy)] = O[W]’ it velo27| (A25)



Covariance Structure ofi \WWavelet

Coefficients

Theorem 4 (Gonzaga and Kawanaka) Let {Y;} be a generalized fractional

process and {A,,, {= 0,1,...,L-1} the orthonormal Daubechies wavelet filter of

length L, then

17

limeov(d, .d,,..,) = 27" j cos( 2" nfs)S,( £ )df (A52)

L—wm :
27

which exists for je Z~.



Covariance Structure ofi \WWavelet
Coefficients

process and {A,,, = 0,1,...,[-1} the orthonormal Daubechies wavelet filter of

length L, then if u=-1and j>1

cov(d ,.d,

s )




Covariance Structure ofi \WWavelet
Coefficients




Covariance Structure ofi \WWavelet
Coefficients

process and {A,

£10

(=0,1,...,L-1} the orthonormal Daubechies wavelet filter of

length L, then if ue(-11)




Covariance Structure of \WWavelet
Coefficients

Absolute maximum values of correlations




Covariance Structure ofi \WWavelet
Coefficients

Within-scale correlations
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Welighted LLeast Square Estimation

\Wavelet variance

Maximal overlap estimator

Note:



Welighted LLeast Square Estimation

Regression eguation:



Welighted LLeast Square Estimation

Estimator of the long-memory parameter



Welighted LLeast Square Estimation

Estimation of short-memory parameters:

DFET off ARMA(p,qg) DFET of GARMA(p,d,u.q)



Likelihood! Estimation

» We use wavelet packet wavelet transform

Wavelet packet decomposition




Likelihood! Estimation

Basis Selection Algorithm|

For j<J, we test the vector D ;.» for white noise. If the test fails

to reject, we retain D iuz. If the test rejects, we split D;,ﬂintu

D j+l1,2n and Djﬂ,gnﬂ, and test both the resulting subbands for

white noise. We repeat this process until j=J in which we retain

D 7.n . We denote the resulting vector of DWPT coefficients by

D= (D_;-,m (j.n)e B), which is approximately uncorrelated.




Likelihood! Estimation

TThe approximate likelihood can be written
as a univariate density from which e.g. the
posterior density can be obtained and an
MCMC algorithm be implemented:



End




