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What is a wavelet?What is a wavelet?

 A wavelet is a waveform of effectively A wavelet is a waveform of effectively 
limited duration that has an average value limited duration that has an average value 
of zero. of zero. 

             Sine wave                   WaveletSine wave                   Wavelet



What  is a wavelet?What  is a wavelet?

 Admissibility conditionAdmissibility condition::
 The function The function ψψ (t)(t)∈∈LL22(R) is often referred to as the (R) is often referred to as the 

mother waveletmother wavelet and must satisfy the admissibility  and must satisfy the admissibility 
condition given by condition given by 

                                           ∫∫ RR | |ΨΨ (w)|(w)|22|w||w|-1-1 dw <  dw < ∞∞,,

 where where ΨΨ (w) is the Fourier transform of (w) is the Fourier transform of ψψ (t). (t). 

 If If ψψ (t) has sufficient decay, then this condition is (t) has sufficient decay, then this condition is 
equivalent to equivalent to 

                                                 ΨΨ (0) = (0) = ∫∫ RR  ψψ (t) dt = 0. (t) dt = 0. 

   



What  is a wavelet?What  is a wavelet?

 Example:  Haar waveletExample:  Haar wavelet
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What can wavelets do?What can wavelets do?

  1) Performing local analysis1) Performing local analysis

  2) Analyzing nonstationary signals2) Analyzing nonstationary signals

  3) Denoising Signals3) Denoising Signals

  4) Data Compression 4) Data Compression 

  5) Decorrelating time series5) Decorrelating time series



Discrete Wavelet TransformDiscrete Wavelet Transform

As discretized cwt:As discretized cwt:



Discrete Wavelet TransformDiscrete Wavelet Transform

wavelet coefficients:wavelet coefficients:

scaling coefficients:scaling coefficients:
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Discrete Wavelet TransformDiscrete Wavelet Transform

Let cLet c0,t0,t = X = Xtt (the time series), then the  (the time series), then the 

wavelet and scaling coefficients are: wavelet and scaling coefficients are: 
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Long-memory ProcessLong-memory Process

Definition:

A long-memory process is commonly defined as a stationary 
process for which the autocorrelation function at lag k satisfies      

12 −dkC~)k( ρρ
as k→ ∞, where Cρ ≠ 0 and 

0<d<0.5. 

An equivalent statement for the power spectrum is given by  

                 f(ω )∼  Cf |ω|-2d ,    as ω→0,

which has a pole at the origin when 0<d<0.5. 



Long-memory ProcessLong-memory Process

Example: Autocorrelations of video traffic data Example: Autocorrelations of video traffic data 



Long-memory ProcessLong-memory Process

Example: Autocorrelations of Ethernet dataExample: Autocorrelations of Ethernet data
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Generalized Fractional ProcessGeneralized Fractional Process
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The Model

A Gegenbauer autoregressive moving average
GARMA(p,d,u,q) process is the output of the system 
function

driven by a stationary white noise input with mean 0 and 
variance σ 2.



Generalized Fractional ProcessGeneralized Fractional Process

The ModelThe Model

The rational functionThe rational function  
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is the autoregressive moving average, ARMA(p,q) system,
such that zpΘ(z) and zpΦ(z) have no common zeros and the 
zeros lie outside the unit circle.

 

 



Generalized Fractional ProcessGeneralized Fractional Process

The ModelThe Model  

The The Gegenbauer system Gegenbauer system is defined by is defined by 
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When the input is a stationary white noise, the output is called 
a Gegenbauer process, which is stationary if d<0.5 and |u| <1 If
or if  d<0.25 and |u|=1; it is invertible if –0.5<d and |u| <1 or  
-0.25<d and |u|=1. If u=1, we have ARFIMA(p,d,q) process. 



Generalized Fractional ProcessGeneralized Fractional Process

    The ModelThe Model  

        The power spectrum of a GARMA(The power spectrum of a GARMA(p,d,u,qp,d,u,q) process is ) process is 
given by given by 
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 where ωε(-0.5,0.5] and v = cos-1(u)/2π is called the 
Gegenbauer frequency at which the power spectrum 
 becomes unbounded when 0<d<0.5. 



Generalized Fractional ProcessGeneralized Fractional Process

    The ModelThe Model  

        The autocovariance function of a GARMA(The autocovariance function of a GARMA(p,d,u,qp,d,u,q) ) 
process is given by process is given by 

        where  are the where  are the associated Legendre functions of the first associated Legendre functions of the first 
kindkind..
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Generalized Fractional ProcessGeneralized Fractional Process

Spectrum of Garma(0,d,u,0) ProcessSpectrum of Garma(0,d,u,0) Process



Generalized Fractional ProcessGeneralized Fractional Process

Example: Spectrum of heart rate dataExample: Spectrum of heart rate data



Generalized Fractional ProcessGeneralized Fractional Process

GARMA(p,d,u,q) Process generalizes the GARMA(p,d,u,q) Process generalizes the 
following: following: 

      1) Gegenbauer process1) Gegenbauer process
      2) Fractionally Integrated process2) Fractionally Integrated process
      3) ARMA Process3) ARMA Process
      4) AR Process4) AR Process
      5) MA Process5) MA Process



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients

Covariance of wavelet coefficientsCovariance of wavelet coefficients

  Cov(dCov(djt, jt, ddj(t+s)j(t+s)))= = 

where            is the Fourier transform of thewhere            is the Fourier transform of the

level j Daubechies wavelet filterlevel j Daubechies wavelet filter
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Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients

Note that:Note that:
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  Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients



Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients

Absolute maximum values of correlationsAbsolute maximum values of correlations
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Covariance Structure of Wavelet Covariance Structure of Wavelet 
CoefficientsCoefficients

Within-scale correlationsWithin-scale correlations
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Weighted Least Square EstimationWeighted Least Square Estimation

Wavelet varianceWavelet variance

Maximal overlap estimatorMaximal overlap estimator

Note:Note:
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Weighted Least Square EstimationWeighted Least Square Estimation

Regression equation:Regression equation:

( ) ≈)(log 2
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Weighted Least Square EstimationWeighted Least Square Estimation

Estimator of the long-memory parameterEstimator of the long-memory parameter
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Weighted Least Square EstimationWeighted Least Square Estimation

Estimation of short-memory parameters:Estimation of short-memory parameters:

                                  DFT of  ARMA(p,q)                       DFT of GARMA(p,d,u,q)DFT of  ARMA(p,q)                       DFT of GARMA(p,d,u,q)
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Likelihood EstimationLikelihood Estimation

 We use wavelet packet wavelet transformWe use wavelet packet wavelet transform



Likelihood EstimationLikelihood Estimation



Likelihood EstimationLikelihood Estimation

The approximate likelihood can be written The approximate likelihood can be written 

as a univariate density from which e.g. the as a univariate density from which e.g. the 

posterior density can be obtained and an posterior density can be obtained and an 

MCMC algorithm be implemented: MCMC algorithm be implemented: 
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EndEnd


