Wavelet Analysis of Generalized Fractional Process

Alex C. Gonzaga, PhD

Department of Physical Sciences and Mathematics
University of the Phillippines, Manila

CONTENTS

1) What are wavelets?
2) Why wavelets?
3) What wavelets can do?
4) Discrete Wavelet Transform
5) Long-memory Process
6) Generalized Fractional Process
7) Some results

What is a wavelet?

> A wavelet is a waveform of effectively limited duration that has an average value of zero.
$>\quad$ Sine wave
Wavelet $\cdots \sqrt{A}$ $\sqrt{ } \cdots$

What is a wavelet?

> Admissibility condition:
$>$ The function $\psi(t) \in L^{2}(R)$ is often referred to as the mother wavelet and must satisfy the admissibility condition given by
$>\quad \int_{R}|\Psi(w)|^{2}|w|^{-1} d w<\infty$,
$>$ where $\Psi(w)$ is the Fourier transform of $\psi(t)$.
> If $\psi(\mathrm{t})$ has sufficient decay, then this condition is equivalent to

$$
\Psi(0)=\int_{R} \Psi(t) d t=0 .
$$

What is a wavelet?

> Example: Haar wavelet

$$
\psi(t)=\left(\begin{array}{cl}
1 & 0 \leq t \leq 1 / 2 \\
-1 & 1 / 2 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

What can wavelets do?

1) Performing local analysis
2) Analyzing nonstationary signals
3) Denoising Signals
4) Data Compression
5) Decorrelating time series

Discrete Wavelet Transform

As discretized cwt:

$$
C(a, b)=\int_{R} s(t) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) d t
$$

$$
a=2^{j}, b=k 2^{j},(j, k) \in Z^{2}
$$

Discrete Wavelet Transform

 wavelet coefficients:$$
d_{j, t}=\sum_{l=0}^{L-1} h_{l} c_{j-1,2 t-1 \bmod N_{j}-1}
$$

scaling coefficients:

$$
\begin{aligned}
& c_{j, t}=\sum_{l=0}^{L-1} g_{l} c_{j-1,2 t-1 \bmod N_{j}-1} \\
& t=0, \ldots, N_{j}-1
\end{aligned}
$$

Discrete Wavelet Transform

Let $\mathrm{c}_{0, \mathrm{t}}=\mathrm{X}_{\mathrm{t}}$ (the time series), then the wavelet and scaling coefficients are:

$$
\begin{aligned}
& d_{j, t}=\sum_{l=0}^{L_{j}-1} h_{j, l} X_{2^{j}(t+1)-1-l \bmod N} \\
& c_{j, t}=\sum_{l=0}^{L_{j}-1} g_{j, l} X_{2^{j}(t+1)-1-l \bmod N} \\
& L_{j}=\left(2^{j}-1\right)(L-1)+1
\end{aligned}
$$

Long-memory Process

Definition:

A long-memory process is commonly defined as a stationary process for which the autocorrelation function at lag k satisfies

$$
\rho(k) \sim C_{\rho} k^{2 d-1}
$$

as $k \rightarrow \infty$, where $C_{\rho} \neq 0$ and
$0<d<0.5$.
An equivalent statement for the power spectrum is given by

$$
f(\omega) \sim C_{f}|\omega|^{-2 d}, \quad \text { as } \omega \sim 0,
$$

which has a pole at the origin when $0<d<0.5$.

Long-memory Process

Example: Autocorrelations of video traffic data

Long-memory Process

Example: Autocorrelations of Ethernet data
Series: Ethernet

Generalized Fractional Process

The Model

A Gegenbauer autoregressive moving average $\operatorname{GARMA}(p, d, u, q)$ process is the output of the system function

$$
H(z)=\frac{\Theta(z)}{\Phi(z)}\left(1-2 u z^{-1}+z^{-2}\right)^{-d}
$$

driven by a stationary white noise input with mean 0 and variance σ^{2}.

Generalized Fractional Process

The Model

The rational function

$$
\frac{\Theta(z)}{\Phi(z)}=\frac{1+\theta_{1} z^{-1}+\ldots+\theta_{q} z^{-q}}{1-\phi_{1} z^{-1}-\ldots-\phi_{p} z^{-p}}
$$

is the autoregressive moving average, $\operatorname{ARMA}(p, q)$ system, such that $z^{p} \Theta(z)$ and $z^{p} \Phi(z)$ have no common zeros and the zeros lie outside the unit circle.

Generallized Fractional Process

The Model

The Gegenbauer system is defined by

$$
\begin{aligned}
& \left(1-2 u z^{-1}+z^{-2}\right)^{-d}=\sum_{n=0}^{\infty} C_{n}^{d}(u) z^{-n} \\
& C_{n}^{d}(u)=\sum_{k=0}^{[n / 2\rfloor} \frac{(-1)^{k}(2 u)^{n-2 k} \Gamma((d)-k+n)}{k!(n-2 k)!\Gamma(d)}
\end{aligned}
$$

When the input is a stationary white noise, the output is called a Gegenbauer process, which is stationary if $d<0.5$ and $|u|<1$ If or if $d<0.25$ and $|u|=1$; it is invertible if $-0.5<d$ and $|u|<1$ or $-0.25<d$ and $|u|=1$. If $u=1$, we have ARFIMA(p, d, q) process.

Generalized Fractional Process

The Model

The power spectrum of a GARMA (p, d, u, q) process is given by

$$
f(\omega)=\sigma_{z}^{2}\left|\frac{\Theta\left(e^{-i 2 \pi \omega}\right)}{\Phi\left(e^{-i 2 \pi \omega}\right)}\right|^{2}\left[4(\cos (2 \pi \omega)-u)^{2}\right]^{-d}
$$

where $\omega \varepsilon(-0.5,0.5]$ and $v=\cos ^{-1}(u) / 2 \pi$ is called the Gegenbauer frequency at which the power spectrum becomes unbounded when $0<d<0.5$.

Generalized Fractional Process

The Model

The autocovariance function of a GARMA (p, d, u, q) process is given by

$$
\gamma(k)=\frac{\sigma^{2}}{2 \sqrt{\pi}} \Gamma(1-2 d)[2 \sin (v)]^{0.5-2 d} \cdot\left|P_{k-0.5}^{2 d-0.5}(u)+(-1)^{k} P_{k-0.5}^{2 d-0.5}(-u)\right|
$$

where are the associated Legendre functions of the first kind.

Generalized Fractional Process

Spectrum of Garma(0,d,u,0) Process

Generalized Fractional Process

Example: Spectrum of heart rate data

Generalized Fractional Process

GARMA(p,d,u,q) Process generalizes the following:

1) Gegenbauer process
2) Fractionally Integrated process
3) ARMA Process
4) AR Process
5) MA Process

Covariance Structure of Wavelet Coefficients

Covariance of wavelet coefficients

$$
\begin{aligned}
& \operatorname{Cov}\left(d_{j t} d_{j i t}\right)=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f\left(2^{\prime}\left(t^{\prime}+1\right)-2^{j}(t+1)\right)} H_{j}(f) H_{j^{\prime}}^{*}(f) S_{Y}(f) d f \\
& \operatorname{Cov}\left(d_{j t}, d_{j(t+s)}\right)=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi / s}\left|H_{j}(f)\right|^{2} S_{Y}(f) d f
\end{aligned}
$$

where $H_{, \mu}(f)$ is the Fourier transform of the level j Daubechies wavelet filiter $\left\{h_{, j,}\right\}$

Covariance Structure of Wavelet Coefficients

Note that:

$$
\begin{gathered}
H_{j, L}(f)=H_{1, L}\left(2^{j-1} f\right) \prod_{l=0}^{j-2} G_{1, L}\left(2^{l} f\right) \\
G_{j, L}(f)=\prod_{l=0}^{j-1} G_{1, L}\left(2^{l} f\right)
\end{gathered}
$$

Covariance Structure of Wavelet Coefficients

Lemma 1 (Gonzaga and Kawanaka) Let $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal

Daubechies wavelet filter of length L, then as $L \rightarrow \infty$,

$$
\begin{align*}
& \left.\mid H_{j^{\prime}, L}(f)\right)^{2} \mid G_{1, L}\left(2^{j^{\prime-1}} f\right)^{2} \rightarrow 0 \text { a.e. and } \\
& \left|H_{1, L}\left(2^{j^{\prime}-1} f\right)^{2} \prod_{m=0}^{j-2}\right| G_{1, L}\left(2^{m} f\right)^{2} \rightarrow 0 \text { a.e. } \tag{A1}
\end{align*}
$$

on $[0,0.5]$

Covariance Structure of Wavelet Coefficients

Theorem 2 (Gonzaga and Kawanaka). Let $\left\{Y_{\}}\right\}$be a generalized fractional process and $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal Daubechies wavelet filter of length L, then for $j>j^{\prime}$ and $\mathrm{d}<0$,

$$
\left\lvert\, \operatorname{Cov}\left(d_{j} d_{i j} j_{i j} \left\lvert\,=O\left(\frac{1}{L^{3 / 4}}\right) .\right.\right.\right.
$$

Covariance Structure of Wavelet Coefficients

Theorem 3 (Gonzaga and Kawanaka). Let $\left\{Y_{i}\right\}$ be a generalized fractional process and $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal Daubechies wavelet filter of length L, then for $j>j^{\prime}$ and $d>0$,

$$
\begin{equation*}
\left\lvert\, \operatorname{Cov}\left(d_{j}\left(d_{j} j^{\prime}\right) \left\lvert\,=O\left(\frac{1}{L^{3 / 4}}\right)\right., \quad \text { if } v \in\left[0,2^{-j-1}\right]\right.\right. \tag{A24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Cov}\left(d_{i j} d_{j ; j^{\prime}}\right)\right|=O\left(\frac{1}{L^{1 / 4}}\right), \quad \text { if } v \notin\left[0,2^{-j-1}\right] . \tag{A25}
\end{equation*}
$$

Covariance Structure of Wavelet Coefficients

Theorem 4 (Gonzaga and Kawanaka) Let $\left\{Y_{\}}\right\}$be a generalized fractional process and $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal Daubechies wavelet filter of length L, then

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \operatorname{cov}\left(d_{j t}, d_{j(t+s)}\right)=2^{j+1} \int_{2^{-j-1}}^{2^{-j}} \cos \left(2^{j+1} \pi f s\right) S_{Y}(f) d f, \tag{A52}
\end{equation*}
$$

which exists for $j \in Z^{+}$.

Covariance Structure of Wavelet Coefficients

Theorem 5 (Gonzaga and Kawanaka). Let $\{Y\}$ be a generalized fractional process and $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal Daubechies wavelet filter of length L, then if $u=-1$ and $j>1$

$$
\left|\operatorname{cov}\left(d_{j f}, d_{j(t+s)}\right)\right|=O\left(\left[2^{j} s\right]^{-[L-4 d]-1}\right) \text { as } 2^{j} s \rightarrow \infty \text {. }
$$

Covariance Structure of Wavelet Coefficients

Lemma 6. (Gonzaga and Kawanaka) Let $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ be the orthonormal
Daubechies wavelet filter of length L and $\left|H_{j, 2, k}(f)\right|^{2}$ its energy spectrum at level j and frequency f. Then

$$
\begin{equation*}
\left|H_{j, k \times \pi}(f)\right|^{2} \leq \frac{1}{2^{j}}\left(\frac{2 \sin ^{2}\left(2^{j-1} \pi f\right)}{\sin (\pi f)}\right)^{L-2} \tag{A66}
\end{equation*}
$$

Covariance Structure of Wavelet Coefficients

Theorem 7 (Gonzaga and Kawanaka). Let $\left\{Y_{\}}\right\}$be a generalized fractional
process and $\left\{h_{\ell, 1}, \ell=0,1, \ldots, L-1\right\}$ the orthonormal Daubechies wavelet filter of length L, then if $u \in(-1,1)$

$$
\left|\operatorname{Cov}\left(d_{j}, d_{j(t s)}\right)\right|=O\left(2^{j(2 d-2)} s^{2 d-1}\right) \text { as } 2^{j} \rightarrow \infty \text { and } s \rightarrow \infty .
$$

Covariance Structure of Wavelet Coefficients

Absolute maximum values of correlations

Covariance Structure of Wavelet Coefficients

Within-scale correlations

Weighted Least Square Estimation

Wavelet variance

$$
v_{Y}^{2}(\lambda)=\frac{E\left(W_{t, \lambda}^{2}\right)}{2 \lambda}
$$

Maximal overlap estimator

$$
\hat{v}_{Y}^{2}(\lambda)=\frac{1}{2 \lambda N_{W_{\lambda}}} \sum_{t=L_{\lambda}}^{N} w_{t, \lambda}^{2}
$$

Note:

$$
\log \hat{v}^{2}(\lambda) \xrightarrow{d} N\left(\log \nu^{2}(\lambda), A_{W_{\lambda}} /\left(2 \lambda^{2} N_{W_{\lambda}} \nu^{4}(\lambda)\right)\right.
$$

Weighted Least Square Estimation

Regression equation:

$$
\log \left(v^{2}\left(\lambda_{j}\right)\right) \approx-2 d \log (2 \mid \cos (2 \pi \mu)-\cos (2 \pi v \mid)
$$

Weighted Least Square Estimation

Estimator of the long-memory parameter

$$
\begin{aligned}
& \hat{d}=-\frac{1}{2}\left[\frac{\sum_{j=1}^{j} u_{j} x_{j} y_{j}-\left(\sum_{j=1}^{j} u_{j} y_{j}\right)\left(\sum_{j=1}^{j} u_{j} x_{j}\right)}{\sum_{j=1}^{j} u_{j} x_{j}^{2}-\left(\sum_{j=1}^{j} u_{j} x_{j}\right)^{2}}\right] \\
& \left.x_{j}=\log \left(2 \cos \left(2 \pi u_{j}\right)-\cos (2 \pi)^{2}\right)\right) \quad y_{j}=\log \left(\hat{v}^{2}\left(2^{\prime}\right)\right)
\end{aligned}
$$

Weighted Least Square Estimation

Estimation of short-memory parameters:

$$
J_{X}\left(f_{j}\right)=\left(1-2 u e^{-i f_{j}}+e^{-i 2 f_{j}}\right)^{\hat{d}} J_{Y}\left(f_{j}\right)
$$

DFT of ARMA (p, q)
DFT of GARMA (p, d, u, q)

Likelihood Estimation

> We use wavelet packet wavelet transform

Wavelet packet decomposition

Likelihood Estimation

Basis Selection Algorithm

For $j<J$, we test the vector $D_{j, n}$ for white noise. If the test fails
to reject, we retain $D_{j, n}$. If the test rejects, we split $D_{j, n}$ into
$D_{j+1,2 n}$ and $D_{j+1,2 n+1}$, and test both the resulting subbands for white noise. We repeat this process until $j=J$ in which we retain
$D_{J, n}$. We denote the resulting vector of DWPT coefficients by
$\boldsymbol{D}=\left(D_{j, n},(j, n) \in B\right)$, which is approximately uncorrelated.

Likelihood Estimation

The approximate likelihood can be written as a univariate density from which e.g. the posterior density can be obtained and an MCMC algorithm be implemented:

$$
L(D \mid \Psi)=\left(2 \pi \sigma_{\varepsilon}^{2}\right)^{-N / 2}\left(\prod_{(j, n \in \in B}\left(\sigma_{j, n}^{2}\right)^{-N_{m n} / 2}\right) \exp \left[\frac{-1}{2 \sigma_{\varepsilon}^{2}} \sum_{(j, n \in \in \in \in} \frac{D_{j, n}^{T} D_{j, n}}{\sigma_{j n}^{2}}\right]
$$

