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Numerical mathematics: Contact problem

Primal problem: min 1
2 uT Ku − uT f , B1u ≤ c1.
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Problem in computation

K =

[
K1 O
O K2

]
K1 · · · SPS , K1u1 = f1, f1 ∈ Im(K1), f1 = K1y1.

I Evaluation of the action of generalized inverse of the SPS
stiffness matrix K of floating subdomains:

K = KK +K ⇒ u = K +f ,

where K + is a one-condition generalised inverse.

I Solution:

Ku = KK +f = KK +Ky = Ky = f
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Computation of the generalized inverse of SPS matrix

I Cholesky decomposition, LU decomposition
- setting to zero the columns which correspond to zero pivots
(rounding errors, the nonsingular part of A is ill-conditioned).

I Singular Value Decomposition (SVD)
- good results, only for relativelly small matrices!

I Combination of Cholesky decomposition and SVD
- quality of SVD + fastness of Cholesky decomposition
(Farhat and Geradin, Papadrakakis and Fragakis).
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Computation of the generalized inverse of SPS matrix

3. Combination of Cholesky decomposition and SVD
(Farhat and Geradin, Papadrakakis and Fragakis)

I Starting with Cholesky decomposition.

I In case of ”suspected” pivot (zero pivot) starts SVD.

Problem: Zero pivot can arise at the beginning ⇒ SVD on large
matrices and ill-conditioned regular part of matrix A.
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Modified Farhat-Gerardin Algorithm

Decomposition of the matrix A ∈ Rn×n:

PAPT =

[
ÃJJ ÃJI

ÃIJ ÃII

]
=

[
LJJ O
LIJ I

] [
LT

JJ LT
IJ

O S

]
,

I ÃJJ is well-conditioned regular part of A,

I LJJ ∈ R r×r is a lower factor of the Cholesky factorization of ÃJJ ,

I LIJ ∈ Rs×r , LIJ = ÃIJL−T
JJ ,

I S ∈ Rs×s is a singular matrix,

I s = n − r and s is the number of displacements corresponding to
the fixing nodes,

I P is a permutation matrix.
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Modified Farhat-Gerardin Algorithm

Then

A+ = PT

[
L−T

JJ −L−T
JJ LT

IJS†

O S†

] [
L−1

JJ O

−LIJL−1
JJ I

]
P,

I S† denotes the Moore–Penrose generalized inverse.
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Modified Farhat-Gerardin Algorithm

Finding P:

1. P1:

P1APT
1 =

[
ÃJJ ÃJI

ÃIJ ÃII

]
,

I where the submatrix ÃJJ is nonsingular and ÃII corresponds to
the degrees of freedom of the M fixing nodes.

2. P2: reordering algorithm on P1APT
1 to get a permutation

matrix P2 which leaves the part ÃII without changes and
enables the sparse Cholesky factorization of ÃJJ .

Then P = P2P1.
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Pavla Kabeĺıková Fixing nodes of meshes from point of view of graph theory



Motivation
Computation of the Generalized Inverse Matrix

Detection of Fixing Nodes
Sketch of Theoretical Proof

Vibration Model

Fixing Nodes as Graph Centers
Fast Algorithm for Fixing Nodes Finding
Spectral Approach

Detection of Fixing Nodes

Consider the mesh of the problem as an unweighted
non-oriented graph and the matrix A as an Laplacian matrix of
the original mesh.

I Conditioning of A seems to be related with detection of ‘fixing
nodes’ such that the related Dirichlett conditions make the
structure as stiff as possible.

I Having the ‘fixing nodes’, we reorder the matrix A so that the
rows corresponding to these nodes (degrees of freedom) are at
the bottom.

I These rows represent the submatrix ÃII .

Now, our problem is to identify the fixing nodes in the graph.
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Definition of Fixing Nodes

Definition 1 Fixing nodes.
We define i -fixing nodes to be the set of i nodes that make the
matrix of a given problem nonsingular and well conditioned, i.e.
the removing of these i nodes makes the regular condition number
of the matrix finite and sufficiently small.

The best choice of i-fixing nodes is then the set of fixing
nodes, that make the numerical solution as stable as
possible, i.e. the removing of these i nodes makes the
regular condition number of the matrix of a given problem
minimal.

Regular condition number κ is then computed as

κ(ÃJJ) = cond(ÃJJ) =
λmax(ÃJJ)

λmin(ÃJJ)
.
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Definition of Fixing Node (one vertex)

Definition 2 One fixing node.
Let Ax = b be a system of linear equations such that A has
one-dimensional kernel. We define the best choice of fixing node to
be the node J that makes the numerical solution as stable as
possible, i.e., the principal submatrix Ãjj , j = J, has the minimal

condition number over all Ãjj .

κ(ÃJJ) = mineAjj , j=1,···n
cond(Ãjj) =

λmax(Ãjj)

λmin(Ãjj)
,
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Experiments

(a) κ=1.42×1020 (b) κ = 2622

(c) κ = 587 (d) κ = 435
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k-Graph center

Let us consider the problem of finding the ‘fixing nodes’ as the
problem of finding a graph centers.
A k-graph center as a set of k vertices:

min
C⊂V (G)
|C |=k

max
v∈V (G)

dist(C , v) = min
C⊂V (G)
|C |=k

max
v∈V (G)

(
min
x∈C

dist(x , v)

)
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Speedup of computation  MatSol library

Solution:

1. dividing the graph into k parts
→ using METIS software,

2. finding one center in each part
→ from the vertices that fit the basic definition choose

the nearest vertex to the geometrical center.
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Spectral Approach

I The eigenvalues and the eigenvectors espetially express some
characteristic of graphs.

(a) first eigenvector (b) second eigenvector
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Spectral Approach

I We work with the (Perron) eigenvector corresponding to the
largest eigenvalue of the adjacency matrix. The maximum
entry of this eigenvector (in absolute value) corresponds to
the fixing node.

I One of the methods suitable for computing this eigenvector is
the Power method.
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Spectral Approach

Lemma
Let A be the adjacency matrix of a given mesh and let B = Ak .
Each element bij of B gives the number of distinct (i , j)-walks of
length k in the mesh.

We call the node corresponding to the maximum entry in matrix B
as ”eigenvector center” (1−eigenvector center).
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Experiments 2

In following figures appear the following symbols.

1. The fixing node is drawn as a circle ©.
2. The graph center is drawn as a square �. When more vertices

satisfy the definition, all such vertices are drawn.
3. The 1−eigenvector center is drawn as a triangle4.
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Experiments 2

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4
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Experiments 2

(e) Example 5 (f) Example 6

(g) Example 7 (h) Example 8
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No. cond(A) cond(ÃJJ) cond(ÃJJ) cond(ÃJJ)
(fixing n.) (eigenvec. c.) (last v.)

1 107.75 379.80 379.80 1228.4
2 130.00 341.24 345.26 1317.4
3 90.76 341.10 341.10 1111.1
4 98.44 308.78 317.04 995.3
5 142.69 314.74 341.05 1218.1
6 126.41 273.08 289.53 840.4
7 129.21 298.41 298.41 1124.8
8 144.63 270.21 270.21 1015.6

Table 1: Condition numbers.
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Spectral Approach

Again, we do not require the optimal solution ⇒ speedup of
computation:

1. dividing the graph into k parts
→ using METIS software,

2. finding one 1−eigenvector center in each part.
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Proof

We would like to prove theoretically:

The 1−eigenvector center is the best choice of one fixing
node.

I.e. if we remove the row and column corresponding to the
1−eigenvector center from the original matrix A, the remaining
principal submatrix has the the best condition number over all
principal sumbatrices.
(In fact, we prescribe the Dirichlett condition to the given vertex)
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Proof

For this purpose we consider several simplifications:

1. instead of in the maximum entry of the ”largest” eigenvector
of the adjacency matrix we consider the fixing node in the
minimum entry (in absolute value) of the second ”smallest”
eigenvector of the Laplacian matrix.

2. As we consider the condition number in the form
κ(ÃJJ) = λmax(ÃJJ)/λmin(ÃJJ), we suppose, that removing
the fixing node doesn’t change the λmax so much as the λmin.
Thus, minimalization of the condition number
corresponds to the maximalization of the λmin.

3. We consider eigenvectors in the normed form, e.g. ‖vi‖ = 1.
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Proof

From the Rayleigh quotient, the smallest eigenvalue can be
computed as

λ̃min = min
‖x‖=1

xT L̃x = min
‖x‖=1
xi =0

xT Lx

λ̃min = min
‖x‖=1

eT
i

x=0

xT QΛQT x = min
‖y‖=1

eT
i

Qy=0

yT Λy = min
‖y‖=1

yT qi =0

yT Λy (1)

The minimization problem can be then computed, e.g., in sense of
Lagrange multiplires:

min
y

[
yT Λy − syT qi − t(yT y − 1)

]
(2)
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Proof

By computing gradient we get

y = s
2 (Λ− tI )−1qi , s 6= 0 and t = yT Λy = λ̃1

After several operations we get

qT
i (Λ− tI )−1qi = 0

n∑
k=1

q2
ik

1

λk − t
= 0 (3)

In the equation (3), the λk are the eigenvalues of the original
matrix L without removing fixing nodes, thus the smalest
eigenvalue is zero (0 = λ1 < λ2 ≤ · · · ≤ λn).
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Proof

The equation (3) can be thus written as

−
q2
i1

t
+

q2
i2

λ2 − t
+ · · ·+

q2
in

λn − t
= 0 (4)

− 1

nt
+

q2
i2

λ2 − t
= −

(
n∑

k=3

q2
ik

1

λk − t

)
(5)

The maximal value of the smallest eigenvalue λ̃1 of the reduced
problem is obtainted in the vertex i , in which the entry of the
second smallest eigenvector of the Laplacian matrix L is minimal
(in absolute value, i.e. closest to zero).
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Eigenvalues and eigenvectors of the path Pn

Laplacian matrix with Neumann boundary conditions:

I λk = 2− 2cos(πk
n )

I vk(j) = cos(πk
n (j − 1

2 ))

Laplacian matrix with Dirichlett boundary conditions:

I λ = 2− 2cos(πk
n )

I vk(j) = cos(πkj
n )
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Eigenvectors of the path
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Eigenvalues and eigenvectors of Cartesian product Pn�Pn

LPn�Pn = LPn ⊗ IPn + IPn ⊗ LPn

Laplacian matrix with Neumann boundary conditions:

I The eigenvalues are all possible sums of λi + λj :

λij = 4− 2cos(
πi

n
)− 2cos(

πj

n
), ∀i , j .

I The eigenvectors are Kronecker products of eigenvectors vi , vj :

vk(ij) = cos(
πk

n
(i − 1

2
)) · cos(

πk

n
(j − 1

2
)), ∀i , j .
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Eigenvectors of Cartesian product Pn�Pn

Figure: Adjacency matrix, 1st largest eigenvector
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Eigenvectors of Cartesian product Pn�Pn

(a) Adjacency m., 2nd largest (b) Laplacian m., 2nd smallest
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Eigenvectors of Cartesian product Pn�Pn

(c) Adjacency m., 4st largest (d) Laplacian m., 4st smallest
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Eigenvectors of Cartesian product Pn�Pn

Figure: Laplacian matrix, 4th smallest eigenvector
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Thank you for your attention.
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