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Finite mixture estimation problem

Goal: Estimate λj and fj (or fjk ) given an i.i.d. sample from

Univariate Case: x ∈ R

g(x) =
m∑

j=1

λj fj(x)

Multivariate case: x ∈ Rr

g(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

N.B.: Assume conditional
independence of x1, . . . , xr

Motivations:
Do not assume any more than necessary about the parametric
form of fj or fjk (e.g., avoid assumptions on tails...)
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Univariate example: Old Faithful wait times (min.)

Time between Old Faithful eruptions

Minutes

40 50 60 70 80 90 100

0
10

20
30

40
50

from www.nps.gov/yell

Obvious bimodality
Normal-looking
components ?
More on this later!
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Multivariate example: Water-level data

Example from Thomas Lohaus and Brainerd (1993).

The task:
Subjects are shown 8
vessels, pointing at 1:00,
2:00, 4:00, 5:00, 7:00,
8:00, 10:00, and 11:00
They draw the water
surface for each
Measure: (signed) angle
formed by surface with
horizontal

Vessel tilted to point at 1:00

D. Chauveau – June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case

Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Motivations, examples and notation
Review of EM algorithm-ology

Notational convention

We have:
n = # of individuals in the sample
m = # of Mixture components
r = # of Repeated measurements (coordinates)

Thus, the log-likelihood given data x1, . . . ,xn is

L(θ) =
n∑

i=1

log

 m∑
j=1

λj

r∏
k=1

fjk (xik )


Note the subscripts: Throughout, we use

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r
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For the examples

The Old Faithful geyser data
Number of observations: n = 272
Number of coordinates: r = 1 (univariate).
Number of mixture components m = 2 (obviously)

The Water-level dataset
Number of subjects: n = 405
Number of coordinates (repeated measures): r = 8.
What should m be (and mean for child development) ?

D. Chauveau – June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case

Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Motivations, examples and notation
Review of EM algorithm-ology

Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X ,Z) consists of:
The observed, “incomplete” data X
The “missing” vector Z, defined by

for 1 ≤ j ≤ m, Zj =

{
1 if X comes from component j
0 otherwise

What does this mean?
In simulations: We generate Z first, then X |Zj = 1 ∼ fj
In real data, Z is a latent variable whose interpretation
depends on context.
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Parametric mixture model

In parametric case fj(x) ≡ f (x ; φj) ∈ F , a parametric family
indexed by a parameter φ ∈ Rd

The parameter of the mixture model is

θ = (λ,φ) = (λ1, . . . , λm,φ1, . . . ,φm)

Example: the Gaussian mixture model,

f (x ; φj) = f
(

x ; (µj , σ
2
j )
)

= the pdf of N (µj , σ
2
j ).
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Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z t
ij ≡ Eθt [Zij |xi ] = Pθt [Zij = 1|xi ] =

λt
j f (xi ; φ

t
j )∑

j ′ λ
t
j ′ f (xi ; φ

t
j ′)

M-step: Maximize the “complete data” loglikelihood

Lc(θ) =
n∑

i=1

m∑
j=1

Z t
ij log

[
λj f (xi ; φj)

]
Iterate: Let θt+1 = arg maxθ Lc(θ) and repeat.
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Parametric Gaussian EM

Typical M-step: for j = 1, . . . ,m

λt+1
j =

∑n
i=1 Z t

ij

n

µt+1
j =

∑n
i=1 Z t

ij xi

nλt+1
j

σ2
j

t+1
=

∑n
i=1 Z t

ij (xi − µt+1
j )2

nλt+1
j
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Advertising!

All computational techniques in this talk are implemented in the
mixtools package for the R Statistical Software

www.r-project.org cran.cict.fr/web/packages/mixtools
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Old Faithful data with parametric Gaussian EM

Time between Old Faithful eruptions

Minutes

D
en

si
ty

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

λλ1 == 0.361
In R with mixtools, type

R> data(faithful)
R> attach(faithful)
R> normalmixEM(waiting,
R+ mu=c(55,80),
R+ sigma=5)

number of iterations= 24

Gaussian EM result:
µ̂ = (54.6,80.1)
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Identifiability

Univariate Case

g(x) =
m∑

j=1

λj fj(x)

Identifiability means: g(x) uniquely determines all λj and fj
(up to permuting the subscripts).

Parametric case: When fj(x) = f (x ;φj), generally no
problem
Nonparametric case: We need some restrictions on fj
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How to restrict fj in the univariate (r = 1) case?

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wang
and Hettmansperger (2007) both showed that,
For m = 2, g is identifiable, at least when λ1 6= 1/2, if

fj(x) ≡ f (x − µj)

for some density f (·) that is symmetric about the origin.

Location-shift semiparametric mixture model with parameter:

θ = (λ,µ, f )
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A semi-parametric “EM” algorithm

Assume that

g(x) =
2∑

j=1

λj f (x − µj),

where f (·) is a symmetric density.

Bordes Chauveau and Vandekerkhove (2007) introduce an
EM-like algorithm that includes a kernel density estimation step.

It is much simpler than the algorithms of Bordes et
al. (2006) or Hunter et al. (2007).
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An “EM” algorithm for m = 2, r = 1:

E-step: Same as usual:

Z t
ij ≡ Eθt [Zij |xi ] =

λt
j f

t (xi − µt
j )

λt
1f t (xi − µt

1) + λt
2f t (xi − µt

2)

M-step: Maximize complete data “loglikelihood” for λ and µ:

λt+1
j =

1
n

n∑
i=1

Z t
ij µt+1

j = (nλt+1
j )−1

n∑
i=1

Z t
ijxi

Weighted KDE-step: Update f t (for some bandwidth h) by

f t+1(u) =
1

nh

n∑
i=1

2∑
j=1

Z t
ijK

(
u − xi + µt+1

j

h

)
, then symmetrize.
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Old Faithful data again (in mixtools)

Time between Old Faithful eruptions

Minutes

D
en

si
ty

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

λλ1 == 0.361
λλ1 == 0.353 Gaussian EM:

µ̂ = (54.6,80.1)

Semiparametric EM
R> spEMsymmloc(waiting,
R+ mu=c(55,80),

R+ h=4) # bandwidth 4

µ̂ = (54.7,79.8)
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The blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:

g(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

N.B.: Assume conditional independence of x1, . . . , xr

Hall and Zhou (2003) show that when m = 2 and r ≥ 3,
the model is identifiable under mild restrictions on the fjk (·)
Hall et al. (2005) . . . from at least one point of view, the
‘curse of dimensionality’ works in reverse.
Allman et al. (2008) give mild sufficient conditions for
identifiability whenever r ≥ 3
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The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.
Let the r coordinates be grouped into B blocks of iid
coordinates.
Denote the block index of the k th coordinate by
bk ∈ {1, . . . ,B}, k = 1, . . . , r .
The model becomes

g(x) =
m∑

j=1

λj

r∏
k=1

fjbk (xk )

Special cases:
bk = k for each k : Fully general model, seen earlier

(Hall et al. 2005; Qin and Leung 2006)
bk = 1 for each k : Conditionally i.i.d. assumption

(Elmore et al. 2004)
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Motivation: The water-level data example again

8 vessels, presented in order 11, 4, 2, 7, 10, 5, 1, 8 o’clock

Assume that opposite clock-face
orientations lead to conditionally
iid responses (same behavior)
B = 4 blocks defined by
b = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1
relates to coordinates 4 and 7,
corresponding to clock
orientations 1:00 and 7:00

11:00 4:00 2:00

7:00 10:00 5:00

1:00 8:00

D. Chauveau – June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case

Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Model and algorithms
Examples

The nonparametric “EM” (npEM) generalized

E-step: Same as usual:

Z t
ij ≡ Eθt [Zij |xi ] =

λt
j
∏r

k=1 f t
jbk

(xik )∑
j ′ λ

t
j ′
∏r

k=1 f t
j ′bk

(xik )

M-step: Maximize complete data “loglikelihood” for λ:

λt+1
j =

1
n

n∑
i=1

Z t
ij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1
j` (u) =

1
nhC`λ

t+1
j

r∑
k=1

n∑
i=1

Z t
ij I{bk =`}K

(
u − xik

h

)
where C` =

∑r
k=1 I{bk =`} = # of coordinates in block `
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Bandwidth issues in the kernel density estimates

Crude method :

use R default (Silverman’s rule) based on sd (standard
deviation) and IQR (InterQuartileRange) computed by
pooling the n × r data points,

h = 0.9 min
{

sd ,
IQR
1.34

}
(nr)−1/5

Inappropriate for mixtures, e.g. for components with
supports of different locations and/or scales
Example (see later): f11 ≡ t(2) and f22 ≡ Beta(1,5)
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Iterative and per component & block bandwidth

Estimated sample size for j th component and `th block

n∑
i=1

r∑
k=1

I{bk =`}Z t
ij = nC`λ

t
j

Iterative bandwidth ht+1
j` applying (e.g.) Silverman’s rule

ht+1
j` = 0.9 min

{
σt+1

j` ,
IQRt+1

j`

1.34

}
(nC`λ

t+1
j )−1/5

where σ’s and IQR’s have to be estimated per
iteration/component/block

D. Chauveau – June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case

Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Model and algorithms
Examples

Iterative and per component/block sd’s

Augment each M-step to include

µt+1
j` =

n∑
i=1

r∑
k=1

Z t
ij I{bk =`}xik

nC`λ
t+1
j

,

σt+1
j` =


n∑

i=1

r∑
k=1

Z t
ij I{bk =`}(xik − µt+1

j` )2

nC`λ
t+1
j


1/2

NB: these “parameters” are not in the model
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Iterative and per component/block quantiles

Let x` denote the nC` data in block `, and τ(·) be a permutation
on {1, . . . ,nC`} such that

x`τ(1) ≤ x`τ(2) ≤ · · · ≤ x`τ(nC`)

Define the weighted α-quantile estimate:

Qt+1
j`,α = x`τ(iα), where iα = min

{
s :

s∑
u=1

Z t
τ(u)j ≥ αnC`λ

t+1
j

}

Set IQRt+1
j` = Qt+1

j`,0.75 −Qt+1
j`,0.25
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Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion method
m = 2, r = 3, b = (1,2,3), 3 models

For j = 1,2 and k = 1,2,3, we compute as in Hall et al.

MISEjk =
1
S

S∑
s=1

∫ (
f̂ (s)
jk (u)− fjk (u)

)2
du

over S replications, where Ẑij ’s are the final posterior, and

f̂jk (u) =
1

nhλ̂j

n∑
i=1

ẐijK
(

u − xik

h

)
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MISE comparisons with Hall et al (2005) benchmarks

n = 500, S = 300 replications, 3 models, log scale
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The Water-level data

Dataset previously analysed by Hettmansperger and
Thomas (2000), and Elmore et al. (2004)

Assumptions and model:
r = 8 coordinates assumed conditionally i.i.d.
Cutpoint approach = binning data in p-dim vectors
mixture of multinomial identifiable whenever r ≥ 2m − 1
(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interesting
features that our model reveals
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The Water-level data, m = 3 components, 4 blocks
Block 1:  1:00 and 7:00 orientations

0.
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03
0

 Mixing Proportion (Mean, Std Dev) 
0.077 (−32.1,  19.4)
0.431 ( −3.9,  23.3)
0.492 ( −1.4,   6.0)

Appearance of Vessel
at Orientation = 1:00

 
 
 
 
 
 
 
 

−90 −60 −30 0 30 60 90

Block 2:  2:00 and 8:00 orientations
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 Mixing Proportion (Mean, Std Dev) 
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0.431 (−11.7,  27.0)
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Appearance of Vessel
at Orientation = 2:00
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Block 3:  4:00 and 10:00 orientations
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Block 4:  5:00 and 11:00 orientations
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Appearance of Vessel
at Orientation = 5:00
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The Water-level data, m = 4 components, 4 blocks
Block 1:  1:00 and 7:00 orientations

0.
00
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0

 Mixing Proportion (Mean, Std Dev) 
0.049 (−31.0,  10.2)
0.117 (−22.9,  35.2)
0.355 (  0.5,  16.4)
0.478 ( −1.7,   5.1)

Appearance of Vessel
at Orientation = 1:00
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Block 2:  2:00 and 8:00 orientations
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 Mixing Proportion (Mean, Std Dev) 
0.049 (−48.2,  36.2)
0.117 (  0.3,  51.9)
0.355 (−14.5,  18.0)
0.478 ( −2.7,   4.3)
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at Orientation = 2:00
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Block 3:  4:00 and 10:00 orientations
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 Mixing Proportion (Mean, Std Dev) 
0.049 ( 58.2,  16.3)
0.117 ( −0.5,  49.0)
0.355 ( 15.6,  16.9)
0.478 (  0.9,   5.2)

Appearance of Vessel
at Orientation = 4:00
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Block 4:  5:00 and 11:00 orientations
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 Mixing Proportion (Mean, Std Dev) 
0.049 ( 28.2,  12.0)
0.117 ( 18.0,  34.6)
0.355 ( −1.9,  14.8)
0.478 (  0.3,   5.3)

Appearance of Vessel
at Orientation = 5:00
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Iterative bandwidth ht
j` illustration

Multivariate example with m = 2, r = 5, B = 2 blocks
Block 1: coordinates k = 1,2,3,
components f11 = t(2,0), f21 = t(10,4)
Block 2: coordinates k = 4,5,
components f12 = B(1,1) = U[0,1], f22 = B(1,5)
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Simulated data, n = 300 individuals

Default bandwidth
> id = c(1,1,1,2,2)
> a = npEM(x, centers, id, eps=1e-8)
> plot(a, breaks = 18)
> a$bandwidth
[1] 0.5238855
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Coordinates 4,5

Bandwidth per block & component
> b = npEM(x, centers, id, eps=1e-8, samebw=FALSE)
> plot(b, breaks = 18)
> b$bandwidth

component 1 component 2
block 1 0.38573749 0.35232409
block 2 0.08441747 0.04388618
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Integrated Squared Error for densities fj`’s

Using ise.npEM() in mixtools:

Default bandwidth
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Further extensions: Semiparametric models

Component or block density may differ only in location and/or
scale parameters, e.g.

fj`(x) =
1
σj`

fj

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f`

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f
(

x − µj`

σj`

)
where fj , f`, f remain fully unspecified

For all these situations special cases of the npEM algorithm
can easily be designed (some are already in mixtools).
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Further extensions: Stochastic npEM versions

In some setup, it may be useful to simulate the latent data from
the posterior probabilities:

Ẑ
t
i ∼ Mult

(
1 ; Z t

i1, . . . ,Z
t
im
)
, i = 1, . . . ,n

Then the sequence (θt )t≥1 becomes a Markov Chain

Historically, parametric Stochastic EM introduced by
Celeux Diebolt (1985, 1986,. . . )
see also MCMC sampling (Diebolt Robert 1994)
In non-parametric framework: Stochastic npEM for
reliability mixture models, Bordes Chauveau (2010)
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Pros and cons of npEM

Pro: Easily generalizes beyond m = 2, r = 3 (not the case
for inversion methods)
Pro: Much lower MISE for similar test problems.
Pro: Computationally simple.
Pro: No need to assume conditionally i.i.d. (not the case
for cutpoint approach)
Pro: No loss of information from categorizing data.
Con: Not a true EM algorithm (no monotonicity property)
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From EM to NEMS for “nonparametric” mixtures

Nonparametric in this literature relates to the mixing distribution

true EM but ill-posed difficulties , Vardi et al. (1985)
Smoothed EM (EMS), Silverman et al. (1990)
regularization approach from Eggermont and LaRiccia
(1995) and Eggermont (1999): Nonlinear EMS (NEMS)

Goal: combining regularization and npEM approach
Joint work with M. Levine and D. Hunter (2010)
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Smoothing the log-density

Following Eggermont (1992, 1999):

Smoothing, for f ∈ L1(Ω) and Ω ⊂ Rr

Sf (x) =

∫
Ω

Kh(x− u)f (u) du,

where Kh(u) = h−r ∏r
k=1 K (h−1uk ) is a product kernel

Nonlinear smoothing

N f (x) = exp {(S log f )(x)} = exp
∫

Ω
Kh(x−u) log f (u) du.

N is multiplicative: N fj =
∏

k N fjk
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Smoothing the mixture

For f = (f1, . . . , fm), define

MλN f(x) :=
m∑

j=1

λjN fj(x)

Goal: minimizing the objective function

`(θ) = `(f,λ) :=

∫
Ω

g(x) log
g(x)

[MλN f](x)
dx.

with fjk ’s univariate pdf and
∑m

j=1 λj = 1.

D. Chauveau – June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case

Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Majorization-Minimization (MM) trick

MM trick: instead of `, minimize a majorizing function:

b0(θ) + constant ≥ `(θ),

with b0(θ0) + constant = `(θ0), θ0 = current value

Set

w0
j (x) :=

λ0
j N f 0

j (x)

Mλ0N f0(x)
,

m∑
j=1

w0
j (x) = 1

b0(f,λ) := −
∫

g(x)
m∑

j=1

w0
j (x) log

[
λjN fj(x)

]
dx

Then b0(f,λ)− b0(f0,λ0) ≥ `(f,λ)− `(f0,λ0)
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MM (Majorization-Minimization) “algorithm”

Minimization of b0(f,λ) for j = 1, . . . ,m and k = 1, . . . , r

λ̂j =

∫
g(x)w0

j (x) dx

f̂jk (u) ∝
∫

Kh(xk − u)g(x)w0
j (x) dx, u ∈ R

Theorem: Descent property (like a true EM)

`(̂f, λ̂) ≤ `(f0,λ0).
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MM algorithm with a descent property

Discrete version: given the sample x1, . . . ,xn iid ∼ g

`n(f,λ) :=

∫
log

1
[MλNf](x)

dGn(x) = −
n∑

i=1

log[MλNf](xi)

The corresponding MM algorithm satisfies a descent property

`n(ft+1,λt+1) ≤ `n(ft ,λt )
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nonparametric Maximum Smoothed Likelihood
(npMSL) algorithm

E-step:

w t
ij =

λt
jN f t

j (xi)

MλtN ft (xi)
=

λt
jN f t

j (xi)∑m
j ′=1 λj ′N f t

j ′(xi)
.

M-step: for j = 1, . . . ,m

λt+1
j =

1
n

n∑
i=1

w t
ij (1)

WKDE-step: For each j and k , let

f t+1
jk (u) =

1
nhλt+1

j

n∑
i=1

w t
ijK
(

u − xik

h

)
. (2)
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npEM vs. npMSL for Hall et al benchmarks

m = 2, r = 3, n = 500, S = 300 replications, 3 models
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npEM vs. npMSL for the Water-level data
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Conclusion. . .

Possible generalizations of the npMSL

to block structure (see the Water-level data)
to semiparametric (location/scale) models
to adaptive bandwidth issue

Open questions for npEM and npMSL
Can we have different block structure in each component?
Yes, but in this case label-switching becomes an issue.
Are the estimators consistent, and if so at what rate?
Emperical evidence: Rates of convergence similar to those
in non-mixture setting.
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