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Finite mixture estimation problem

Goal: Estimate ); and f; (or fx) given an i.i.d. sample from

Univariate Case: x e R Multivariate case: x € R"
m m r
9(x) =Y Aifi(x) gx) => N T fix(xx)
=1 j=1 k=1

N.B.: Assume conditional
independence of xq, ..., Xy

Motivations:
Do not assume any more than necessary about the parametric
form of f; or fy (e.g., avoid assumptions on tails...)

D. Chauveau — June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case Motivations, examples and notation
Multivariate non-parametric “EM” algorithms Review of EM algorithm-ology
Nonlinear smoothed Likelihood maximization

Univariate example: Old Faithful wait times (min.)

Time between Old Faithful eruptions

_ .

S’r -

< 1 from www.nps.gov/yell

. @ Obvious bimodality
@ Normal-looking

. components ?

[ T T T T T 1

40 50 60 70 80 90 100 @ More on this later!
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Multivariate example: Water-level data

Example from Thomas Lohaus and Brainerd (1993).

The task:

@ Subjects are shown 8
vessels, pointing at 1:00,
2:00, 4:00, 5:00, 7:00,
8:00, 10:00, and 11:00

@ They draw the water
surface for each

@ Measure: (signed) angle
formed by surface with
horizontal
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Vessel tilted to point at 1:00

Nonparametric multivariate mixtures



Mixture models and EM algorithms
The semi-parametric univariate case Motivations, examples and notation
Multivariate non-parametric “EM” algorithms Review of EM algorithm-ology
Nonlinear smoothed Likelihood maximization

Notational convention

We have:

@ n = # of individuals in the sample

@ m = # of Mixture components

@ r = # of Repeated measurements (coordinates)
Thus, the log-likelihood given data x4, ..., X, is

L(0) => log [ > NI fix(xi)
i= k=1

j=1 =

@ Note the subscripts: Throughout, we use
1<i<n 1<j<m, 1<k<r
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For the examples

The Old Faithful geyser data
@ Number of observations: n = 272
@ Number of coordinates: r = 1 (univariate).
@ Number of mixture components m = 2 (obviously)

The Water-level dataset
@ Number of subjects: n = 405
@ Number of coordinates (repeated measures): r = 8.
@ What should m be (and mean for child development) ?
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Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X, Z) consists of:
@ The observed, “incomplete” data X
@ The “missing” vector Z, defined by

1 if X comes from component j

for1 <j<m,Z = .
0 otherwise

What does this mean?
@ In simulations: We generate Z first, then X|Z; =1 ~ f;

@ Inreal data, Z is a latent variable whose interpretation
depends on context.
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Parametric mixture model

In parametric case f(x) = f(x; ¢;) € F, a parametric family
indexed by a parameter ¢ € R?

The parameter of the mixture model is

0=N¢)=N\,.. ., A\m, &1,...,0m)

Example: the Gaussian mixture model,

f(x; o) = f(x; (1), U}?)) = the pdf of N(,Uj,O'jz).
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Parametric (univariate) EM algorithm for mixtures

Let 6! be an “arbitrary” value of @
E-step: Amounts to find the conditional expectation of each Z

)\ltf(X,‘; ¢/t)

21 = RalAil = ol =101 = 5 it )

M-step: Maximize the “complete data” loglikelihood

n m

=> "> Z}log [Nf(xi; ;)]

i=1 j=1

lterate: Let """ = argmaxy L;(0) and repeat.
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Typical M-step: forj=1,...,m

no >t
)\l.‘-l—'l _ Zi:1 ZU
/ n
n ty.
H1 2= Zijx’
'uj - n>\{+1
j
N oty 12
G2 >oim Z (X — )
/ n)\}+1



All computational techniques in this talk are implemented in the
mixtools package for the R Statistical Software

www.r-project.org

R @
runs on a wide vasiety of UNIX platforms, Windows and MacOS. To download R, please.

cran.cict.fr/web/packages/mixtools

mixtools: Tools for analyzing miztu
A collection of R functions for analyzing mixture models.

Version: 030

Autor:  Derck Young Tat El
Whats new? ‘David Hunter Hoben Thormas Fengjuan Xuan,
Task Views Mainainer: Derek Young <dsy109 atstat psu.cdu>

License:  GPL (=

Inviews: Cluster
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Old Faithful data with parametric Gaussian EM

Density

Time between Old Faithful eruptions

< . -
3 A =0.361 4 “ In R with mixtools, type

/ \ @ R> data(faithful)

U \|
38 R> attach (faithful)

1 ! R> normalmixEM(waiting,
5 \ R+ mu=c (55, 80),
= ; R+ sigma=5)
g - number of iterations= 24

@ Gaussian EM result:
o A~
g~ ; ; ; ; ; ‘ i = (54.6,80.1)
40 50 60 70 80 90 100
Minutes
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|dentifiability

Univariate Case
m
a(x) = Nfi(x)
j=1

Identifiability means: g(x) uniquely determines all \; and f;
(up to permuting the subscripts).

@ Parametric case: When fi(x) = f(x; ¢;), generally no
problem

@ Nonparametric case: \We need some restrictions on f;
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How to restrict f; in the univariate (r = 1) case?

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wang
and Hettmansperger (2007) both showed that,
For m = 2, g is identifiable, at least when Ay # 1/2, if

F(x) = f(x — 1)
for some density f(-) that is symmetric about the origin.
Location-shift semiparametric mixture model with parameter:

0= (A p,f)
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A semi-parametric “EM” algorithm

Assume that
2
g(x) =D Nf(x — pyp),
j=1

where f(-) is a symmetric density.

Bordes Chauveau and Vandekerkhove (2007) introduce an
EM-like algorithm that includes a kernel density estimation step.

@ |t is much simpler than the algorithms of Bordes et
al. (2006) or Hunter et al. (2007).
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An “EM” algorithm for m=2, r = 1:

E-step: Same as usual:
)\/tft(X,' — /L]t)

j = EorlZylxi] NG — 1) + A F1(G — ph)

M-step: Maximize complete data “loglikelihood” for A and p:
1 n
t+1 t tH1 _ (i
A DI AL Rb ST
i=1
Weighted KDE-step: Update ! (for some bandwidth h) by

U X+ bt
N (u hzz ('ll), then symmetrize.

i=1 j=1
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Old Faithful data again (in mixtools)

Density

0.04

Time between Old Faithful eruptions

A1 =0.361
A1 =0.353

80 90

Minutes

D. Chauveau — June 2010

100

@ Gaussian EM:
i+ = (54.6,80.1)

@ Semiparametric EM
R> spEMsymmloc (waiting,
R+ mu=c (55, 80),
R+ h=4) # bandwidth 4
= (54.7,79.8)
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The blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:
m r
=2 H ()
j=1 k=1
N.B.: Assume conditional independence of xy, ..., X

@ Hall and Zhou (2003) show that when m =2 and r > 3,
the model is identifiable under mild restrictions on the f(-)

@ Hall et al. (2005) ... from at least one point of view, the
‘curse of dimensionality’ works in reverse.

@ Allman et al. (2008) give mild sufficient conditions for
identifiability whenever r > 3
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The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.
@ Let the r coordinates be grouped into B blocks of iid
coordinates.
Denote the block index of the kth coordinate by
bye{l,....B},k=1,...,r.
@ The model becomes

g(x) => NI fie. (x)
j=1 k=1

@ Special cases:
e by = k for each k: Fully general model, seen earlier
(Hall et al. 2005; Qin and Leung 2006)
e by =1 for each k: Conditionally i.i.d. assumption
(Elmore et al. 2004)
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Motivation: The water-level data example again

8 vessels, presented in order 11,4,2,7,10,5, 1,8 o’clock

@ Assume that opposite clock-face 2
orientations lead to conditionally .
iid responses (same behavior) _ _

o B — 4 blocks defined by ' ¥
b= (4,3727173747172)

@ eg.,bys=b;=1,i.e.,block 1
relates to coordinates 4 and 7,
corresponding to clock -
orientations 1:00 and 7:00

1:00 8:00
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The nonparametric “EM” (npEM) generalized

E-step: Same as usual:
M 1T ,Zk(Xik)
> A Tk 1, (i)

M-step: Maximize complete data “loglikelihood” for A:
1 n
t+1 _ t
N = d z
i=1
WKDE-step: Update estimate of f;, (component j, block /) by

t+1 U — Xik
for (U) = nhC, )\t—|—1 ZZ H{bk=@}K< h >

k=1 i=1

Z:;t = Egt[Z]x] =

where C; = Y~ _¢ Ijp,—p = # of coordinates in block ¢
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Bandwidth issues in the kernel density estimates

Crude method :

@ use R default (Silverman’s rule) based on sd (standard
deviation) and /QR (InterQuartileRange) computed by
pooling the n x r data points,

h=0.9min {sd, 134} (nr)

@ Inappropriate for mixtures, e.g. for components with
supports of different locations and/or scales
Example (see later): fi1 = t(2) and foo = Beta(1,5)
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lterative and per component & block bandwidth

Estimated sample size for jth component and ¢th block
nor
> Ln=Zj = nCuj
i=1 k=1
lterative bandwidth h;g“ applying (e.g.) Silverman’s rule
t+1

t+1 _ ; t+1 Je t+1\—1/5

where ¢’s and /IQR’s have to be estimated per
iteration/component/block
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Augment each M-step to include

n

r
>0 Zline=nyXi

t41 =1 k=1
'uje B an)\lt—H ’
n r 1/2
DO 2y (i — i 1)
G = | i=1k=t
jt nCzA/’f“

NB: these “parameters” are not in the model
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lterative and per component/block quantiles

Let x* denote the nC, data in block ¢, and 7(-) be a permutation
on {1,...,nC;} such that
Xi(1) S X2) S+ S Xo(ngy)
Define the weighted a-quantile estimate:
S
Qi) =xl.), where iy =minds: > Z! . > anClt

]
u=1

tH1 At t4+1
Set QR = Q575 — Qj/o 5
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Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion method
m=2,r=3,b=(1,2,3), 3 models

Forj=1,2and k = 1,2,3, we compute as in Hall et al.

2
MISEj = SZ / f(s) s u)) du

over S replications, where Z-j’s are the final posterior, and

o 1 " . U — Xjk
)= s 2ok ()

S =1
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MISE comparisons with Hall et al (2005) benchmarks

n =500, S = 300 replications, 3 models, log scale

Normal Double Exponential t(10)

JMISE

-~ Component 1
4 Component 2

0.1 0.2 03 0.4 0.1 0.2 03 0.4 0.1 0.2 03 0.4
A A Ay
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The Water-level data

Dataset previously analysed by Hettmansperger and
Thomas (2000), and Elmore et al. (2004)

Assumptions and model:
@ r = 8 coordinates assumed conditionally i.i.d.
@ Cutpoint approach = binning data in p-dim vectors

@ mixture of multinomial identifiable whenever r > 2m — 1
(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interesting
features that our model reveals
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The Water-level data, m = 3 components, 4 blocks

Block 1: 1:00 and 7:00 orientations Block 2: 2:00 and 8:00 orientations

Appearance of Vessel
at Orientation = 1:00

Appearance of Vessel
at Orientation = 2:00

g g
g g
s s
g g
H H
g g
B B
5 5 =
g g
S S

50 E B3 B B3 3 ES 50 E B3 B B3 3 ES

Block 3: 4:00 and 10:00 orientations Block 4: 5:00 and 11:00 orientations
Appearance of essel Appearance of essel
at Orientation = 4:00 at Orientation = 5:00

g g
g g
s s
g g
H H
g g
B B
s s =S
g g
S S

50 E B3 B B3 3 ES 50 E B3 B B3 3 ES
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The Water-level data, m = 4 components, 4 blocks

Block 1: 1:00 and 7:00 orientations Block 2: 2:00 and 8:00 orientations
Appearance of Vessel Appearance of Vessel
at Orientation = 1:00 [Mixing Proportion (Mean, Std Dev) at Orientation = 2:00 [Mixing Proportion (Mean, Std Dev)
009¢310. 109 0.049 (-48.2, 36.2)
0.117( 0.3, '51.9)
6.4 0355 (-14.5, 18.0)
5. 0478 (27, 4.3)

0.020 0.030
oo
oo
345
Lok
o
abe
0.020 0.030

0010
0010

0.000
0.000

Block 3: 4:00 and 10:00 orientations Block 4: 5:00 and 11:00 orientations
Appearance of Vessel Appearance of Vessel
at Orientation = 4:00 [Mixing Proportion (Mean, Std Dev) at Orientation = 5:00 [Mixing Proportion (Mean, Std Dev)
2 0.0: 2 0.0:
g g
S S
4 4
S S
2 2
S S
3 3
g g
8 8
S S
-90 -60 -30 [ 30 60 %0 -90 -60 -30 0 30 60 %0

D. Chauveau — June 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms

The semi-parametric univariate case
Multivariate non-parametric “EM” algorithms
Nonlinear smoothed Likelihood maximization

Model and algorithms
Examples

lterative bandwidth #/, illustration

Multivariate example with m =2, r =5, B = 2 blocks
@ Block 1: coordinates k = 1,2, 3,
components fiy = t(2,0), f»y = t(10,4)
@ Block 2: coordinates k = 4,5,
components fio = B(1,1) = Ujp 1), f2 = B(1,5)

block 1

0.15
I

0.10

0.05

0.00
I
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00 05 10 15 20 25 30

T T T T T T
00 02 04 06 08 10

X
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Simulated data, n = 300 individuals

Default bandwidth Bandwidth per block & component

> b = npEM(x, centers, id, eps=le-8, samebw=FALSE)
> plot (b, breaks = 18)
> b$bandwidth
component 1 component 2
block 1 0.38573749 0.35232409
block 2 0.08441747 0.04388618

> id = ¢(1,1,1,2,2)
> a = npEM(x, centers, id, eps=le-8)
> plot (a, breaks = 18)

> a$bandwidth

[1] 0.5238855

Coordinates 1,2,3 Coordinates 4,5
Coordinates 12,3 Coordinates 4.5

015
\
5

015
)

010
L
010
L

Density
Density

Densy
Densy
]

005
L

000
000
L
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Integrated Squared Error for densities fi;'s

o0 02 o0

000

000 o010 020 030

Using ise.npEM () in mixtools:

Default bandwidth Bandwidth per block & component

Integrated Squared Error for fy, =0.0014 Integrated Squared Error for f;, = 0.2494 Integrated Squared Error for fy, = 0.0015 Integrated Squared Error for fy, = 0.0562

00 02 04 06 08 10
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Further extensions: Semiparametric models

Component or block density may differ only in location and/or

scale parameters, e.g.

1
fu(x) = —f
fie(X) s
or
Fl(x) =
Ji4 oje 4
or
Folx) = 1
) =

where f;, f,, f remain fully unspecified

For all these situations special cases of the npEM algorithm
can easily be designed (some are already in mixtools).

D. Chauveau — June 2010
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Further extensions: Stochastic npEM versions

In some setup, it may be useful to simulate the latent data from
the posterior probabilities:

2~ Mult(1; 2Zh,...,28), i=1,....n

Then the sequence (0');~1 becomes a Markov Chain

@ Historically, parametric Stochastic EM introduced by
Celeux Diebolt (1985, 1986,...)
@ see also MCMC sampling (Diebolt Robert 1994)

@ In non-parametric framework: Stochastic npEM for
reliability mixture models, Bordes Chauveau (2010)
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Pros and cons of npEM

@ Pro: Easily generalizes beyond m = 2, r = 3 (not the case
for inversion methods)

@ Pro: Much lower MISE for similar test problems.
@ Pro: Computationally simple.

@ Pro: No need to assume conditionally i.i.d. (not the case
for cutpoint approach)

@ Pro: No loss of information from categorizing data.
@ Con: Not a true EM algorithm (no monotonicity property)
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From EM to NEMS for “nonparametric” mixtures

Nonparametric in this literature relates to the mixing distribution

@ true EM but ill-posed difficulties , Vardi et al. (1985)
@ Smoothed EM (EMS), Silverman et al. (1990)

@ regularization approach from Eggermont and LaRiccia
(1995) and Eggermont (1999): Nonlinear EMS (NEMS)

Goal: combining regularization and npEM approach
Joint work with M. Levine and D. Hunter (2010)
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Smoothing the log-density

Following Eggermont (1992, 1999):
@ Smoothing, for f € L1(Q2) and Q C R’

Sf(x) = /Q Kp(x — u)f(u) du,

where Ky(u) = h™"[],_4 K(h~"u) is a product kernel
@ Nonlinear smoothing

NE(x) = exp{(Slogf)(x)} = exp/QKh(x—u)log f(u) du.

N is multiplicative: N'f; = [T, N fi
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Forf=(f,...,fn), define

MANE(X) = i ANE(X)

j=1

9x) iy

00) =L(f,A) = /ﬂg(x) log NG

with fi’s univariate pdf and 37, A; = 1.
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Majorization-Minimization (MM) trick

MM trick: instead of ¢, minimize a majorizing function:

b°(@) + constant > £(),

with  °(8°) + constant = ¢(8°), 6° = current value
Set
MNAPxX) M
0 N 0
( _ —1
Wi (x MyoNTO(x)’ Z,-:1 w; (x)
m
P(FA) = — / g(x) 3" wO(x) log [ANF(x)] dx
=

Then  bO(f, A) — BO(°, A%) > ¢(f, A) — £(°, A)
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Minimization of bO(f, \) forj=1,... . mandk=1,...,r

5 = [obxwPx)ox

W) x| Kl - wgnPx)dx, weR

0, X) < (10, X0). l
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MM algorithm with a descent property

Discrete version: given the sample X4, ..., X, iild ~ g

(n(f,A) = / Iogden(x) = —;Iog[MANf](x,-)

The corresponding MM algorithm satisfies a descent property

En(ft+1 ’ )\t—H) < En(ft, )\t)
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nonparametric Maximum Smoothed Likelihood
(npMSL) algorithm

E-step:

o N NH()

U MAtht(X;) N Z;,n:1 )\j//\/lj-’,(x,-)'
M-step: forj=1,....m

1 n
t+1 t
A=~ Z W} (1)
e

WKDE-step: For each jand k, let

LH U — Xik
);kJr nh/\t+1 Z < ) ’ (2)
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npEM vs. npMSL for Hall et al benchmarks

m=2,r=3,n=>500, S = 300 replications, 3 models

JMISE

0.14

0.12

0.10

0.08

0.06

0.04

Normal

—e— Smoothed Component 1

Double Exponential

£(10)

—o— Smoothed Component 2 <« <+

—A~ npEM Component 1 pi! pb!

~A—  npEM Component 2
o o
o o
2 2
o o
o °
o4 o4
S S
° °
o4 o4
S S

-l
== == z== -A
e§.=g;=E=====
< <
S H S
S S
0 1 0.2 03 0.4 0.1 0.2 0.3 0.4
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npEM vs. npMSL for the Water-level data

Density

Density

Block 4: 5:00 and 11:00 Orientations Block 3: 4:00 and 10:00 Orientations
g <5 g m = 3 components
S w0 w0 0 . e 0 4 blocks of 2 coord. each
colored lines: npEM
g g dotted lines: npMSL
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Conclusion...

Possible generalizations of the npMSL

@ to block structure (see the Water-level data)
@ to semiparametric (location/scale) models
@ to adaptive bandwidth issue

Open questions for npEM and npMSL

@ Can we have different block structure in each component?
Yes, but in this case label-switching becomes an issue.

@ Are the estimators consistent, and if so at what rate?
Emperical evidence: Rates of convergence similar to those
in non-mixture setting.
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