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How are non-uniform  random NUMBERS 

generated?



Non-Uniform Random Variate Generation

 Usually generated by transforming sequence of independent   

U(0,1)  random numbers into sequence of independent random 

variates of desired distribution.

 The basic assumption of such algorithms is that there is an ideal 

source of  uniform random numbers available.

 Some of the well known transformation methods are inversion, 

acceptance-rejection and decomposition methods.

 Various of these algorithms have been used to build universal 

generators for fairly large distribution of families [1].



WHAT KIND OF ERRORS CAN BE 

CONFRONTED ?



Errors in Random Variate Generators

 Random variate generators  might not produce random 

numbers from the desired distribution.

 Most of the non-conformation with the theoretical concepts 

are caused by:

a. Implementation errors:- Mistakes in computer programs.

b. Error in design of algorithm:- The proof of the theorem 

that claims the correctness of the algorithm is wrong.

c. Limitations of floating point numbers and Round off 

errors in implementation of these algorithms in real world 

computers.



Examples of Errors

 A relevant example is the Kinderman-Ramage generator for 

normal distribution, in R, prior to version 1.6.

 In this, a line of code was overlooked by the programmer. On 

further research, it was detected that the in algorithm, a rejection

line was missing. [2]

 Error in F distribution with df1=1 and df2 ~ 0.001, where:

pf (1e100,1,.001)= 0.112, pf(1e200,1,.001)= 0.21, 

pf(1e308,1,.001)= 0.30 and pf(>1e308,1,.001)= 1. 

Numbers greater than 10^308 cannot be handled due to limitation 

of floating point numbers. 



Examples continued..

u<-runif(1e5)

X<-pbeta(qbeta(u,1,.01),1,.01)

hist(x,breaks=100)

u<-runif(1e5)

x<-pbeta(qbeta(u,1,1),1,1)

hist(x,breaks=100)



Potential Hazards of Errors in Random 

Variate Generators.

 In Monte-Carlo simulations, which depends on the quality 

of random variates generated, there might be serious errors 

due to error in generated random variates.

 In Transformed Density Rejection technique [1], computed 

hat function might not remain a valid hat function, 

especially in the tails of the distribution, due to round off 

errors in random variates.



THEORY OF ERROR DETECTION



1. Fundamental Property of Random Variates:

If a  random point (X,Y) is uniformly distributed in the region Gf  

between the graph of the density function f and the x-axis then X 

has density f

2.    Theory of Probability Integral Transform:

Let F(x) be a continuous cumulative distribution function(cdf) and 

U be a uniform U(0,1) random number. Then the random variate 

X=F-1(U) has cdf F. Furthermore, if X has cdf F, then F(X) is 

uniformly distributed.



Clustering of Random Variates in Histogram bins

There are two ways in which generated random variates can be 

clustered into bins of histogram:

 Transformation of generated random variates using 

cumulative distribution function.

 Transformation of uniform(0,1) scale by application of 

inverse cumulative distribution function.



Application of Cumulative Distribution Function F

 Cumulative distribution function F is applied on random 

variates.

 Theoretically, the transformed variates should follow U(0,1) 

distribution.

 The (0,1) scale is divided into equispaced bins of histogram 

and transformed variates clustered into it.

 Every bin should have equal frequency count, as probability 

of random variates entering a bin is equal.

 Very expensive due to large number of variates generated.



Application of  Inverse Cumulative Distribution 

Function F-1

 The (0,1) scale is divided into intervals which is equal to 

the specified number of bins of histogram.

 F-1 is applied to the limits of the intervals, which generates 

random variates having distribution F.

 Generated random variates are clustered into the bins of 

varying width.

 Every bin should have equal frequency count. as probability 

of random variates entering a bin is equal.

 Greatly reduces computational expense but exact inverse 

distribution not always available



Advantage of Clustering Random Variates 

into Histogram Bins

 Efficiency of execution.

 Can be visually inspected for significant 

bin deviation by plotting of histogram.

 Testing of errors effectively reduces to 

testing for equality of bins.

 Can handle very large samples, of more 

than 100 million points. 



WHAT TESTS HAVE BEEN 

CONSIDERED?



Graphical Test

 Visual inspection of random variates histogram is a quick yet 

efficient technique for detection of errors.

 Plot zooms on the unit line of the normalized frequency 

histogram and draws the confidence lines for a specified 

significance level.

 It can be visually inspected whether there is any significant bin 

deviation from equality, indicating error in the random variates.



Histogram plot of normalized frequency of random variates 

generated by Buggy Kinderman-Ramage generator in R.



Statistical Tests

 The following statistical tests were 

considered in this project:

1. Chi-Square Goodness of Fit Test.

2. Adjusted Residual or M-test.[3]

3. Kolmogorov-Smirnov Test.

4. Anderson-Darling Goodness of Fit Test.

5. Test of Uniformity by Fisher or Level-2 

chi-Square Test.[4]



Chi-Square Goodness of Fit Test

 Popular and efficient test.

 Used to check whether a sample of data comes from a 

population with specified distribution.

 Since frequency of each histogram bin is supposed to be equal, 

chi-square test was applied to check for any significant bin 

deviation.

 The test statistic is calculated as ∑(Oi – Ei )2/Ei, which follows

chi-square distribution; Oi being observed frequency of bin i, Ei

being expected frequency, which is 1 (normalized frequency).

 p-value for test is reported.



Adjusted Residual or M-test

 Test for detecting outlying cells in the multinomial 

distribution.

 Developed by Fuchs,C. And Kenett, R. [3].

 Let n be a random vector from a multinomial distribution,

n={ni  : 1<=i<=k}~ mult(N,p), N= ∑ ni , pi >=0, ∑pi =1.

 In our case, ni  represents normalized frequency of bin i and k 

represents the number of bins.

 We test Ho : p=p(o) against H1 : p≠p(o) , where p(o) is 

prespecified frequency vector. In our case, pi
(o) is equal to 1/k, 

for all pi . 



 Under the null hypothesis, ni is asymptotically normally 

distributed with mean N pi
(o) and variance N pi

(o) (1- pi
(o) ).

 The adjusted residuals Zi are defined as: 

Zi = (ni - N pi
(o) )/ (N pi

(o) (1- pi
(o) )) ½ , i=1,2,….k

 The proposed M test for two-sided alternative, at significance 

level α, rejects the null hypothesis if max| Zi | > M, where

{Pr max| Zi | > M| Ho }=α.

 The upper bound on  M is calculated as Φ -1 {1- α/2k}.

 To maintain consistency with result generated from chi-square 

test,  in our project, we calculate p-value from this test as 

2*k*{1-pnorm (max| Zi |)}



ARTIFICIALLY INTRODUCED ERRORS IN 

RANDOM VARIATE GENERATORS FOR 

TESTING PURPOSE:



Perturbating Parent Distribution with Uniform 

Distribution(Additive)



 Sample of random variates generated from mixture of a parent 

distribution and uniform distribution.

 Probability of error is specified as p.

 Random variate generator of parent distribution is used to 

generate random variates with probability 1-p.

 Uniform distribution of varying width and placement forms the 

error distribution.

 Random variates are drawn from the uniform distribution with 

probability p.

Total number of random variates generated is equal to specified 

sample size n.



Removing Part of Parent Distribution 

Uniformly



 Random variate generator of parent distribution is used to 

generate n random variates, where n is sample size.

 Uniform distribution of varying width and placement forms the 

error distribution.

 Random variates which fall in the uniform distribution range  

are rejected with probability p.

 For the rejected random variates,  new random variates are 

generated from the parent distribution.



SIMULATION EXAMPLES



GRAPHICAL EXAMPLES



Standard Normal Distribution Perturbated Additively with 

Uniform(0,2.5), Probability of Error=0.001, bins=100, 

α=0.01,n=1e7



Standard Normal Distribution Perturbated Negatively 

with Uniform(1,2), Probability of Error=0.001, bins=100, 

α=0.01,n=1e7.



STATISTICAL TEST EXAMPLES



 The statistical tests that were conducted focused 

on standard normal distribution as parent 

distribution, perturbated additively by uniform 

distribution, of varying width, arbitrarily placed along 

the normal distribution.

 Two interesting observations were made:

1. Effect of Histogram breaks on the efficieny of the test.

2. Sensitivity of tests to error width and placement.



Effect of Histograms Breaks on Efficiency of 

Chi-Square Test

 Chi-square test was conducted on generated random 

vairates, with histogram breaks of 11,101,1001. Probability 

of error was kept fixed at p=0.001, and significance level 

α=0.001.

 The following tables and graphs will give examples of 

some of the select experiments.

 It was observed throughout that decreasing the number of 

breaks made the test more efficient in detecting errors.



Width(0,2.5) 1 2 3 4 5 6 7 8 9 10

Breaks:10 0.636 0.172 0.063 0.016 1e-4 6e-5 9e-5 2e-4 2e-4 3e-5

Breaks:100 0.067 0.155 0.005 0.014 0.056 0.019 0.044 0.021 0.025 0.004

Breaks:1000 0.37 0.286 0.30 0.04 0.039 0.015 0.074 0.024 0.022 0.07

Width(-1,1) 1 2 3 4 5 6 7 8 9 10

Breaks:10 0.209 0.001 1.3e-6 3e-8 3e-7 1.5e-6 1.7e-7 9e-8 3e-8 2e-9

Breaks:1010 0.443 0.509 0.127 0.148 0.009 2e-4 1e-4 3e-4 3e-5 1e-5

Breaks:1000 0.247 0.737 0.658 0.298 0.529 0.758 0.464 0.244 0.105 0.128

Width(-

0.5,0.5)

1 2 3 4 5 6 7 8 9 10

Breaks:10 0.477 0.103 0.086 0.158 0.054 0.069 0.009 8e-5 5e-5 4e-6

Breaks:100 0.424 0.219 0.062 0.032 0.031 0.024 0.027 0.027 0.011 0.015

Breaks:1000 0.687 0.949 0.924 0.953 0.919 0.792 0.661 0.433 0.103 0.014

Width(-2,2) 1 2 3 4 5 6 7 8 9 10

Breaks:10 0.461 0.861 0.847 0.515 0.059 0.111 0.039 0.002 1e-4 1e-4

Breaks:100 0.651 0.694 0.638 0.219 0.129 0.016 0.008 0.005 8e-4 0.006

Breaks:1000 0.697 0.200 0.392 0.151 0.101 0.339 0.232 0.448 0.315 0.110







Sensitivity of Tests to error Width and 

Placement

 Both chi-square and M test was conducted to check the 

sensitivity of tests when uniform distribution was 

arbitrarily moved along the normal distribution.

 Probability of error was kept fixed at p=0.001.

 Around 0 point, as width of uniform distribution was 

increased,  both tests became less effective in detecting 

errors.

 Tests were extremely efficient in detecting error when 

uniform distribution was placed in the tails of the normal

distribution.



Width(-.2,.2) 1 2 3 4 5 6 7 8 9 10

Test 1: Chi-sq 0.054 0.006 0.047 0.003 6e-4 3e-4 8e-5 1e-5 5e-6 8e-6

Test 2: M 0.174 0.010 4e-4 8e-5 2e-5 2e-4 3e-6 9e-7 8e-7 1e-8

Width(-.4,.4) 1 2 3 4 5 6 7 8 9 10

Test 1: Chi-sq 0.911 0.529 0.365 0.522 0.219 0.179 0.155 0.010 0.005 5e-4

Test 2: M 1.00 1.00 0.188 0.674 0.506 0.511 0.710 0.209 0.025 0.003

Width(-.8,.8) 1 2 3 4 5 6 7 8 9 10

Test 1: Chi-sq 0.074 0.117 0.025 0.059 0.056 0.109 0.098 0.054 0.068 0.051

Test2: M 0.043 0.241 0.067 0.011 0.025 0.151 0.115 0.203 0.320 0.143

Width(1.96,4) 1 2 3 4 5 6 7 8 9 10

Test 1: Chi-sq 0.151 0.019 0.023 0.078 0.078 0.014 0.007 2e-4 4e-4 3e-5

Test2: M 0.782 0.003 0.001 3e-4 6e-7 2e-6 1e-6 2e-7 4e-7 2e-8

Width(0,2.5) 1 2 3 4 5 6 7 8 9 10

Test 1: Chi-sq 0.671 0.221 0.088 0.183 0.219 0.063 0.021 0.007 0.003 5e-4

Test 2: M 1.000 1.000 0.506 0.937 0.131 0.017 0.004 0.003 3e-4 3e-4



Red Line: Chi-square test

Blue Line: M test



Red Line: Chi-square test

Blue Line: M test



Red Line: Chi-square test

Blue Line: M test



Tests conducted with Buggy Kinderman-Ramage 

Generator.



DEVELOPMENT OF ERROR TESTING 

PACKAGE IN R



 Package Name : rvgtest

 Version : 0.1

 Title : Test suite for pseudo-random variate 

generators

 AUTHOR            : Sougata Chaudhuri, Josef Leydold

 MAINTAINER     : Josef Leydold 

 LICENSE              : GPL-2



FUNCTIONS AVAILABLE IN THE 

PACKAGE



rvgt.ftable(n, r = 10, rvg = rnorm, qdist = qnorm, ..., 

breaks = 101)

 Creates frequency table for random variate generator.

 Each row represents a histogram and each cell represents a 

bin of histogram.

 Break points of bins are uniformly distributed in u-

scale,i.e, break points are calculated  as u_i= i/(breaks-1), 

for i=0,1,2...(breaks-1) and points transformed into x-scale 

using qdist(i).

 The bins have equal probabilities.

 The frequency table can be now used to run tests or 

visualize possible errors in random variate generator.



rvgt.fhistplot(ftable, row = 1, alpha = 0.01)

 Plots normalized counts of the frequency table.

 The plot range is the union of 2 times the confidence 

intervals and the range of the normalized counts.

 The display zooms in on the expected value for the 

normalized counts.

 Also plots the confidence intervals calculated using alpha.

 Helps in visualizing significant bin deviations at certain 

significance level.



rvgt.rvghistplot(n, rvg = rnorm, qdist = qnorm, ..., 

breaks = 101, alpha = 0.01)

 Clusters random variates generated by rvg into histogram 

bins  and plots normalized counts of the bins.

 No need to separately create frequency table.

 The plot range is the union of 2 times the confidence 

intervals and the range of the normalized counts.

 The display zooms in on the expected value for the 

normalized counts.

 Also plots the confidence intervals calculated using alpha.

 Helps in visualizing significant bin deviations at certain 

significance level.



rvgt.chisq( table)

 Performs chi-square test on rvg frequency table.

 A stepwise cumulation of row frequencies is performed 

(columnwise), and chi-square test is done on the columns, 

at every step.

 Each of the p-values is reported

 This allows for getting an idea of the power of the test.

 A list is returned, which contains information about the 

test and p-values calculated at every step.



rvgt.Mtest(table)

 Performs M-test on rvg frequency table.

 A stepwise cumulation of row frequencies is performed 

(columnwise), and M-test test is done on the columns, at 

every step.

 Each of the p-values is reported

 This allows for getting an idea of the power of the test.

 A list is returned, which contains information about the 

test and p-values calculated at every step.



rvgt.write(result, file)

 Function to write result to a file.

 result is a list generated from chi-square or M-test. 

 A large number of tests can be done in batch mode and 

results can be written in one particular file.

 Subsequent reading back of files allows further calculation 

and plotting of p-values.



rvgt.read(file)

 Function to read data from a file.

 A list of list(s) is created, where every individual list 

contains the information and p-values of each experiment 

written in the file.

 file should be a valid name of an existing file.

 p-values can now be plotted or further calculations done.



rvgt.plot(result, alpha = 0.001)

 Plots log(10)p-values against sample size.

 result can be a list  or list of lists, containing information 

about single/multiple experiments and corresponding p-

values.

 For multiple experiments,  p-values will be plotted in the 

same graph, with different colours.

 A line corresponding to log10(alpha)is displayed, for 

visually inspecting whether test has been able to detect 

errors at a given significance level.



Examples of plot function

Left: Single Experiment.

Right: Multiple experiment



rvgt.pertadd(n, rvg = rnorm, ..., min = 0, max = 1, p 

= 0.001)

 Generates random variates from a mixture of rvg and 

uniform distribution on the interval (min,max).

 The uniform distribution is chosen with a probability p.

 By varying the width of uniform distribution (min,max) 

and probability of error p,  different levels of artificial 

errors can be introduced.

 Allows to investigate power of test in detecting errors in 

random variate generators.

 A vector of size n, of random variates from the 

perturbated distribution, is returned.



rvgt.pertsub(n, rvg = rnorm, ..., min = 0, max = 1, p 

= 0.001)

 Generates random variates from rvg but rejects all points in 

the interval (min,max), with probability p.

 By varying the width of uniform distribution (min,max) 

and probability of error p,  different levels of artificial 

errors can be introduced.

 Allows to investigate power of test in detecting errors in 

random variate generators.

 A vector of size n, of random variates from the 

perturbated distribution, is returned.
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