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Introduction: Stochastic Differential Equations
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Problem:
Mathematical formulation of systems with ’noise’, randomness, insufficient

knowledge of parameter values, ....
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Applications

Population dynamics;

Molecular dynamics;

Chemical kinetics;

Finance;

Electrical circuit simulation;

Polymer physics;

Neuroscience;

PDE simulation;
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Applications

Population dynamics;

Molecular dynamics;

Chemical kinetics;

Finance;

Electrical circuit simulation;

Polymer physics;

Neuroscience;

PDE simulation;

.... practically everywhere ....
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Stochastic differential equations (SDEs)

dX (t)=F (t,X (t))dt + G (t,X (t))dW (t), t ∈ [0,T ], X (0) = x0

coefficients: (globally Lipschitz) F : [0,T ]× Rn → Rn,
G = (G1, . . . ,Gm) : [0,T ]× Rn → Rn×m;

Wiener process: W = {W (t, ω), t ∈ [0,T ], ω ∈ Ω} is an m-dim.
Wiener process on probability space (Ω,F , {Ft}t∈[0,T ],P).

F is called ’drift coefficient’, G is called ’diffusion coefficient’.

if G does not depend on X , the SDE ’has additive noise’, otherwise it
’has multiplicative noise’.
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Solutions of (Itô) stochastic differential equations

dX (t)=aX (t)dt+bdW (t), BX (t)=eat(1 + b
∫ t
0 e−asdW (s))

dX (t)=aX (t)dt+bX (t)dW (t),
BX (t)=exp((a− 1

2b
2)t + bW (t))
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Introduction: Some numerical methods, notions of convergence
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Introduction: Some numerical methods
I
tn,tn+1
r = Wr (tn+1)−Wr (tn) ∼

√
hN (0, 1), I

tn,tn+1
r1,r2

=
∫ tn+1
tn

∫ s
tn

dWr1
(u) dWr2

(s)

and tn = n · h, n = 0, 1, . . .,

Euler-Maruyama-method (G. Maruyama 1955):

Xn+1 = Xn + h F (tn,Xn) +
m∑
r=1

Gr (tn,Xn) I tn,tn+1
r

θ-Milstein-method (G. Milstein 1974):

Xn+1 = Xn + h (θF (tn+1,Xn+1) + (1− θ)F (tn,Xn))

+
m∑
r=1

Gr (tn,Xn) I tn,tn+1
r +

m∑
r1,r2=1

(Gr1)′x Gr2(tn,X (tn)) I tn,tn+1
r1,r2

BDF2-Maruyama-method (E.B., R.Winkler 2006):

Xn − 4
3Xn−1 + 1

3Xn−2 = h 2
3F (tn,Xn)

+
m∑
r=1

Gr (tn−1,Xn−1) I
tn−1,tn
r − 1

3

m∑
r=1

Gr (tn−2,Xn−2) I
tn−2,tn−1
r
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Two Objectives - Two Modes of Convergence

Strong Approximations: Compute (several to many) single paths, strong
convergence criterion (mean-square convergence), p order of method:

max
1≤n≤N

(
E|X (tn)− Xn|2

) 1
2 ≤ C hp, for h→ 0 .

Weak Approximations: Compute (using many paths) the expectation of a
function Ψ of the solution, weak convergence criterion, p order of method:

max
1≤n≤N

|EΨ(X (tn))− EΨ(Xn)| ≤ C hp, for h→ 0 .

approx. E(Ψ(Xn)) by M realisations 1
M

M∑
i=1

Ψ(X
(i)
n )

→ ’Monte Carlo Method’ computes EΨ(X (t)), full error and efficiency
depend on step-size h and number of paths M!
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Modes of Convergence

�� ��Euler(BDF2)-Maruyama method: strong order 1
2 , weak order 1.

�� ��θ-Milstein method: strong order 1, weak order 1.

Note: inclusion of iterated Wiener integrals

I t,t+h
r1,r2,...,rj

=

∫ t+h

t

∫ s1

t
. . .

∫ sj−1

t
dWr1(sj) . . . dWrj (s1),

where ri ∈ {0, 1, . . . ,m} and dW0(s) = ds determines order of
convergence, higher order integrals difficult to simulate!
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State-of-the-Art (not in the least complete!)

Development and (finite time) weak and strong convergence analysis of ’standard’
classes (Taylor-type, Runge-Kutta, Linear multi-step methods) of numerical
methods for Itô or Stratonovich SODEs. X
Results e.g., by Kloeden, Platen, Milstein, Tretyakov, Talay, Rößler, Komori,
Buckwar & Winkler.
Efficiency and reduction of complexity for Monte Carlo Methods by Multi-level
Monte Carlo. Current.
Results e.g., by Heinrich, Kebaier, Giles, Higham.
Structure preserving numerical methods, such as Lie groups methods or methods
for stochastic Hamiltonian systems. Current.
Results e.g., by Mizawa, Wiese, Talay, Milstein, Tretyakov, Bou-Rabee.
Linear and nonlinear stability analysis of numerical methods for SODEs.

Current.
Results e.g., by Higham, Buckwar, Mao, Mitsui, Abdulle.
Development and (finite time) weak and strong convergence analysis of, e.g.,
Finite Element/Difference methods, Spectral methods, Galerkin methods for
SPDEs. Current.
Results e.g., by Győngy, Hausenblas, Debussche, Larsson, Kruse, Lang, Lord,
Shardlow.

• Less developed: Efficiency, stability, robustness of methods, esp. for SPDEs
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Analysis of numerical methods for SDEs beyond convergence
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Analysis of numerical methods for SDEs beyond
convergence

Motivation:

Provide the knowledge of what an algorithm actually does in the
stochastic case when implemented on a computer: Convergence is a limit
procedure, whereas running a simulation means fixing a step-size/number
of paths and dealing with the dynamics of a discrete system!

Goal:

Develop a systematic dynamic analysis of numerical methods, justifying
the choice of test equations/systems, gaining insight into
deterministic/stochastic features relevant for stability and other issues,
identifying benchmark problems, develop appropriate analytical
techniques......
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A standard first step: Linear stability analysis of numerical methods
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Disambiguation: Stability

Numerical stability, Zero-stability, Dahlquist stability, Lax stability :
robustness of a numerical scheme wrt perturbations such as round-off
error, ’measured’ over finite interval for step-size to zero, necessary
for convergence!

Lyapunov stability: characterises qualitative behaviour of equilibria
wrt perturbations in the i.v., fundamental problem ’does the
(convergent) numerical method have the same stability behaviour as
the continuous problem and if under which conditions on the
step-size?’, ’measured’ for ’fixed step-size’ and t going to infinity.
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An illustration of a numerically unstable, thus not
converging scheme

α=−1, β=0.01
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dX (t) = αX (t)dt + βX (t)dW1(t) using the numerically unstable scheme

Xn − 3Xn−1 + 2Xn−2 = hα( 1
2Xn−1 − 3

2Xn−2) + β(Xn−1I
tn−1,tn
1 − 2Xn−2I

tn−2,tn−1

1 )

Evelyn Buckwar[2mm]joint work with Markus Ableidinger, Harald Hinterleitner, Conall Kelly, Thorsten Sickenberger, Andreas Thalhammer (JKU)SDEs and Numerics Wien 2015 19 / 44



In contrast, convergent schemes and a different
’problem’
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Linear stability analysis of numerical methods for
ODEs

I Question: given an ODE x ′(t) = f (x(t)) and a numerical method, does
the (convergent) method share the qualitative properties of the ODE and
if so, under which restrictions on the step-size?

I (Usually) first step: linear stability analysis, using the test equation
x ′(t) = λx(t), λ ∈ C. This means: apply the method to the test equation,
determine its stability behaviour and compare with that of the test
equation.

I Based on: linearisation and centering of nonlinear ODE around an
equilibrium, the resulting linear system x′(t) = Ax(t) (A the Jacobian of f
evaluated at equilibrium) is then diagonalised and the system thus
decoupled, justifying the use of the scalar test equation.
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Linear stability analysis of numerical methods for
SODEs

I Question: given an SODE as above and a numerical method, does the
(convergent) method share the qualitative properties of the SODE and if
so, under which restrictions on the step-size?

I (Usually) first step: linear stability analysis, now with which test
equation?

I Further questions: Stability in which sense, i.e. in the a.s. sense or in
mean-square? What effect does the r -dim noise have?
I Still holding: linearisation and centering of nonlinear SODE around an

equilibrium, the resulting linear system is now
dX (t) = (AX (t))dt +

∑r
j=1 BjX (t)dWj(t) (A, Bj the Jacobians of F , Gj

evaluated at equilibrium). Simultaneously diagonalisable?
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Linear stability analysis of numerical methods for
SODEs, the set-up (1)

Consider autonomous (SDEs)

dX (t)=F (X (t))dt + G (X (t))dW (t) , (1)

where X ∈ Rd and F and G as stated above, we denote a solution to (1)
by X (t), with initial conditions X (0).
Equilibria Xe (or equilibrium points, fixed points or stationary points), are
constant solutions

X (t) ≡ Xe with dX (t) = F (Xe) = G (Xe) = 0 , (2)

Note: In general, it is known from stochastic/random dynamical systems
theory, that equilibria in a stochastic setting do not need to be
deterministic constants. In particular, the appropriate notion of
equilibrium for an SDE with additive noise is a ’stationary process’.
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Linear stability analysis of numerical methods for
SODEs, the set-up (2)

Definition

Lyapunov-stability

1 The equilibrium Xe of an SODE (1) is mean-square stable/a.s. stable
if and only if, for each ε > 0, there exists a δ ≥ 0 such that

E|X (t)− Xe |2 < ε, t ≥ 0, / |X (t)− Xe | < ε, t ≥ 0, a.s.

whenever E|X (0)− Xe |2 < δ / |X (0)− Xe | < δ;

2 The equilibrium Xe is asymptotically mean-square stable/a.s. stable if
and only if it is mean-square stable/a.s. stable, and for all
X (0)− Xe ∈ R,

lim
t→∞

E|X (t)− Xe |2 = 0 / lim
t→∞

X (t)− Xe = 0 a.s.
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Linear stability analysis of numerical methods for
SODEs, Example
Linear equation, for t ≥ 0 , with X (0) = X0, λ, µ,X0 ∈ R,

dX (t) = λ X (t)dt + µ X (t)dW (t), (1)

with the geometric Brownian motion X (t) = exp((λ− 1
2µ

2)t + µW (t)) as exact
solution.

Thm.: (e.g. in Arnold 1974, Khasminskii 1980, 2011)
The zero solution of (1) is asymptotically mean-square stable iff

λ+ 1
2 |µ|

2 < 0

and asymptotically a.s. stable iff

λ− 1
2 |µ|

2 < 0
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Linear stability analysis of numerical methods for
SODEs, Example

Consider

dX (t) = 0.1 X (t)dt + 0.5 X (t)dW (t), (1)

then

λ+
1

2
σ2 = 0.225 > 0, λ− 1

2
σ2 = −0.025 < 0,

and therefore the equilibrium solution is simultaneously mean-square
unstable and a.s. asymptotically stable.
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Linear mean-square stability analysis for Geometric
Brownian Motion (D. Higham 2000)

Consider: scalar linear test equation, geometric Brownian Motion:

dX (t) = λX (t)dt + µX (t)dW1(t), X (0) = X0

θ-Maruyama-method:

Xi+1 = Xi + h (θλXi+1 + (1− θ)λXi ) +
√
hµXi ξ1,i

Rewrite as a recurrence equation

Xi+1 = (ã + b̃ ξi ) Xi , where ã =
1 + (1−θ)λh

1− θλh , b̃ = µh
1
2

1− θλh .
Mean-square stability analysis consists of ’Squaring and taking the
expectation’ ⇒ exact one-step recurrence for E|Xi |2

E|Xi+1|2 = (|ã|2 + 2|ã| |b̃| |E ξi |+ |b̃|2 |E ξ2i |) E|Xi |2 = (|ã|2 + |b̃|2) E|Xi |2
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Mean-square Stability for Linear Systems of SODEs
EB & T Sickenberger, APNUM 2012

dX (t) = FX (t)dt +
m∑
r=1

GrX (t)dWr (t), t ≥ t0 ≥ 0, X (t0) = X0 . (3)

Here, the drift and diffusion matrices are given by F ∈ Rd×d and
G1, . . . ,Gm ∈ Rd×d , respectively, and W = (W1, . . . ,Wm)T is an
m-dimensional Wiener process.
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Notation

(i) The vectorisation vec(A) of an m × n matrix A transforms the matrix A into an
mn × 1 column vector obtained by stacking the columns of the matrix A on top of
one another.

(ii) The Kronecker product of an m× n matrix A and a p× q matrix B is the mp× nq

matrix defined by A⊗ B =
(

aij · B
)
i,j=1,...,n

.

(iii) vec(ABC) = (CT ⊗ A)vec(B), when A, B and C are three matrices, such that the
matrix product ABC is defined;

(iv) A special case of (iii) is given by
vec(AB) = (BT ⊗ Idm)vec(A) = (Idq ⊗ A)vec(B), where A is an m × n matrix, B
a n × q matrix, and Ids is the s-dimensional identity matrix for any s ∈ N.

(v) The spectral abscissa α(A) of a matrix A is defined by α(A) = maxi R(λi ), where
R is the real part of the real or complex eigenvalues λi of the matrix A.

(vi) The spectral radius ρ(A) of a matrix A is defined by ρ(A) = maxi |λi |, where again
λi are the real or complex eigenvalues of the matrix A.
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Equation for the second moment
The expectation of the matrix-valued process P(t) = X (t)X (t)T with i.v.
P(t0) = X0X

T
0 is given by

dE(P(t)) =
(
FE(P(t)) + E(P(t))FT +

m∑
r=1

GrE(P(t))GT
r

)
dt ,

vec(P(t)) = Y (t) = (Y1(t),Y2(t), . . . ,Yd2(t))T

= (X 2
1 (t),X2(t)X1(t), . . . ,Xd(t)X1(t),

X1(t)X2(t),X 2
2 (t),X3(t)X2(t), . . . ,Xd(t)X2(t), . . . ,X 2

d (t))T .

Arrive at the deterministic linear system of ODEs for the d2-dimensional vector
E(Y (t))

dE(Y (t)) = S E(Y (t))dt , (4)

where S is given by

S = Idd ⊗ F + F ⊗ Idd +
m∑
r=1

Gr ⊗ Gr .
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Classical result

Lemma

The zero solution of the deterministic ODE system (4) is asymptotically
stable if and only if

α(S) < 0 . (5)
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Discrete equation

Explicit one-step recurrence equation involving a sequence {Ai}i≥0 of independent
random matrices

Xi+1 = AiXi , i = 0, 1, . . . . (6)

The second moments of the discrete approximation process {Xi}i∈N0 are given by

E(Yi+1) = E(Ai ⊗ Ai )E(Yi ) , i ∈ N0 , (7)

where the d2-dimensional discrete process {Yi}i∈N0 is given by Yi = vec(XiX
T
i ).

S = E(A⊗ A) (8)

Lemma

The zero solution of the system of linear difference equations (7) is asymptotically stable
in mean-square if and only if

ρ(S) < 1 .
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Discrete equation, Example

For a simple system of SODEs

d

(
X1(t)
X2(t)

)
=

(
λ 0
0 λ

)(
X1(t)
X2(t)

)
dt

+

(
σ 0
0 σ

)(
X1(t)
X2(t)

)
dW1(t) +

(
0 −ε
ε 0

)(
X1(t)
X2(t)

)
dW2(t), t > 0, (9)

We obtain an explicit one-step recurrence equation from applying the θ-Maruyama
method involving a sequence {Ai}i≥0 of independent random matrices

Xi+1 = AiXi , i = 0, 1, . . . . (10)

as (
X1,n+1

X2,n+1

)
=

(
1+(1−θ)hλ

1−θhλ +
√

hσξ1,n+1

1−θhλ
−
√

hεξ2,n+1

1−θhλ√
hεξ2,n+1

1−θhλ
1+(1−θ)hλ

1−θhλ +
√

hσξ1,n+1

1−θhλ

)(
X1,n

X2,n

)
(11)
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Analysis of general matrices

dX (t) = FX (t)dt +
m∑
r=1

GrX (t)dWr (t), t ≥ 0, X (t0) = X0 .

We have studied

θ-Maruyama method applied to the SDE above

θ-Milstein method applied to the SDE above with a single noise

θ-Milstein method applied to the SDE above with commutative noise

θ-Milstein method applied to the SDE above with non-commutative
noise
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Analysis of general matrices, example

Xi+1 = Ai Xi with Ai = Ā +
m∑
r=1

Br ξr,i +
m∑

r1,r2=1

Cr1,r2 ξr1,i ξr2,i (12)

where Ā, B, and C are deterministic matrices determined by

A = (Id− hθF )−1(Id + h(1− θ)F ) (13)

Ā = A− (Id− hθF )−1
( m∑

r=1

1

2
h G 2

r

)
= A−

m∑
r=1

Cr,r ,

Br = (Id− hθF )−1
(√

h Gr

)
, (14)

Cr1,r2 = (Id− hθF )−1
(1

2
h Gr1Gr2

)
.
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Analysis of general matrices, example

Theorem

The mean-square stability matrix of the θ-Milstein method applied to the
system (3) with commutative noise is given by

S=(A⊗ A) +
m∑
r=1

(Br ⊗ Br )+2
m∑
r=1

(Cr ,r ⊗ Cr ,r )+

 m∑
r1,r2=1
r1 6=r2

Cr1,r2⊗
m∑

r1,r2=1
r1 6=r2

Cr1,r2

.
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The test equations

Considering

dX (t) = FX (t)dt +
m∑
r=1

GrX (t)dWr (t), t ≥ t0 ≥ 0, X (t0) = X0 .

with full matrices F and Gr has two problems: a) Maple (or similar) waves
the white flag when it comes to computing eigenvalues, b) even if it could
one would be ’drowning in parameters’, in particular there are too many
parameters around to get any insight of the effect of each paramter.
Solution: choose a few parameters wisely and set the remaining ones to 0.
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The test equations based on ideas from EB & Kelly, SINUM 2010

dX (t) =

(
λ 0
0 λ

)
X (t)dt +

(
σ ε
ε σ

)
X (t)dW1(t) ; (15)

the second test system is a two-dimensional system with two commutative noise terms:

dX (t) =

(
λ 0
0 λ

)
X (t)dt +

(
σ 0
0 σ

)
X (t)dW1(t) +

(
0 −ε
ε 0

)
X (t)dW2(t) ;

(16)
and the third one has two non-commutative noise terms:

dX (t) =

(
λ 0
0 λ

)
X (t)dt +

(
σ 0
0 −σ

)
X (t)dW1(t) +

(
0 ε
ε 0

)
X (t)dW2(t) .

(17)
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The test equations, stability conditions

Corollary

Stability conditions for θ-Maruyama method

for (15): λ+
1

2
(σ2 + ε2 + 2|σε|) +

1

2
h(1− 2θ)λ2 < 0 ,

for (16) and (17): λ+
1

2
(σ2 + ε2) +

1

2
h(1− 2θ)λ2 < 0 .

Stability conditions for θ-Milstein method

for (15): λ+
1

2
(σ + |ε|)2 +

1

2
h(1− 2θ)λ2 +

1

4
h(σ + |ε|)4 < 0 ,

for (16): λ+
1

2
(σ2 + ε2) +

1

2
h(1− 2θ)λ2 +

1

4
h(σ2 + ε2)2 < 0 ,

and for (17):

λ+
1

2
(σ2 + ε2) +

1

2
h(1− 2θ)λ2 +

1

4
h(σ2 + ε2)2 + (K(p)− 1)hσ2ε2 < 0 .
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Summary and further projects

I We have suggested a structural framework to perform a linear mean-square
stability analysis of numerical methods for systems of SDEs with multiplicative
noise. The main points are:
I Test equations for this type of analysis require some justification and some

thought!
I ’Matrix analysis’ approach allows to work more efficiently with systems of

equations.
I Interaction between drift and diffusion terms, as well as dimension of Wiener

process and SDE system play a role!
I Characterising stiffness in a stochastic setting. (Questions: Can one get a

system of SDEs that is only stiff due to the diffusion? Is stiffness in mean-square
different from almost sure stiffness?)
I Stability issues and Multi-level Monte-Carlo methods.
I Stability issues for space discretised SPDEs, in particular for additive noise

SPDEs.
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Thank you for your attention
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